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Figure 1. SemanticStyleGAN factorizes its latent space based on semantic regions. Here, we show the results of style mixing by swapping
local latent codes. Note that our models also disentangles shape and texture but we are simultaneously changing both here.

Abstract
Recent studies have shown that StyleGANs provide

promising prior models for downstream tasks on image syn-
thesis and editing. However, since the latent codes of Style-
GANs are designed to control global styles, it is hard to
achieve a fine-grained control over synthesized images. We
present SemanticStyleGAN, where a generator is trained to
model local semantic parts separately and synthesizes im-
ages in a compositional way. The structure and texture of
different local parts are controlled by corresponding latent
codes. Experimental results demonstrate that our model
provides a strong disentanglement between different spatial
areas. When combined with editing methods designed for
StyleGANs, it can achieve a more fine-grained control to
edit synthesized or real images. The model can also be ex-
tended to other domains via transfer learning. Thus, as a
generic prior model with built-in disentanglement, it could
facilitate the development of GAN-based applications and
enable more potential downstream tasks.

1. Introduction

Recent studies on Generative Adversarial Networks
(GANs) have made impressive progress on image synthesis,
where photo-realistic images can be generated from random
codes in a latent space [11, 35–37]. These models provide
powerful generative priors for downstream tasks by serving
as neural renderers. However, their synthesis procedure is
usually stochastic and no user control is naturally promised.
Thus, it is still a challenging problem to achieve controllable
image synthesis and editing utilizing generative priors.

One of the most famous work among such generative
priors is the StyleGAN series [35–37], where each gener-
ated image is conditioned on a set of coarse-to-fine latent
codes (See Fig. 2). However, the meanings of these la-
tent codes are still relatively ambiguous. Thus, a plethora
of studies have attempted to further investigate into the
latent space of StyleGAN to improve controllability. It
is shown that by learning a linear boundary or a neu-
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ral network in the latent space of StyleGAN, one could
control the global attributes [4, 26, 59, 60] or 3D struc-
ture [64] of the generated images. Furthermore, by using an
optimization/encoder-based method, real images can also
be embedded into the latent space to create a unified synthe-
sis/editing model [2, 3, 5, 55, 65, 67, 75]. However, as pure
learning-based methods, these solutions inevitability suffer
from the biases in the StyleGAN latent space. For example,
since different attributes could be correlated in StyleGAN,
it often happens that unexpected attributes or local parts are
changed while one wants to edit a certain attribute or area.

To obtain a more precise control, another solution is to
train a new GAN model from scratch by introducing ad-
ditional supervision or inductive biases. For example, by
using 3D rendered faces, CONFIG [39] and DiscoFace-
GAN [18] aim to build a GAN where pose, 3D informa-
tion are factorized in the latent space. GAN-Control [61]
disentangles the latent space by incorporating pre-trained
attribute models for contrastive learning. Given the re-
cent progress on neural rendering, it has also been shown
that 3D-controllable GANs can be trained from images
by injecting volumetric rendering into the synthesis proce-
dure [13, 25, 46, 58, 74]. However, a major limitation of
above-mentioned models is that they are designed for holis-
tic attributes and there is no fine-grained local editability.

In this work, we propose SemanticStyleGAN, which in-
troduces a new type of generative prior for controllable im-
age synthesis. Unlike prior work, the latent space of Se-
manticStyleGAN is factorized based on semantic parts de-
fined by semantic segmentation masks (Fig. 2 (b)). Each
semantic part is modulated individually with correspond-
ing local latent codes and an image is synthesized by com-
posing local feature maps. Different from layout-to-image
translation methods [14, 69, 76], our local latent codes are
able to control both the structure and texture of seman-
tic parts (See Fig. 1). Compared to attribute-conditional
GANs [18, 39, 61], our model is not designed for any spe-
cific task and can serve as a generic prior like StyleGAN.
Thus, it can be combined with latent manipulation methods
designed for StyleGAN to edit output images while provid-
ing more precise local controls. The contributions of this
work can be summarized as follows:

• A compositional generator architecture that disentan-
gles the latent space into different semantic areas to
control the structure and texture of local parts.

• A GAN training framework that learns the joint mod-
eling of image and semantic segmentation masks.

• Experiments showing that our generator can be com-
bined with existing latent manipulation methods to edit
images in a more controllable fashion.

• Experiments showing that our generator can be
adapted to other domains with only limited images
while preserving spatial disentanglement.
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Figure 2. Abstract illustration of our method. Unlike StyleGAN,
whose latent codes are associated with different granularity. The
latent space of SemanticStyleGAN is factorized over different re-
gions, which controls both local shape and texture.

2. Related Work
2.1. GAN Latent Space for Image Editing

Given the success of GANs on synthesizing high qual-
ity images [11, 36, 37], many studies have attempted to uti-
lize GANs as a image prior to achieve controllable image
synthesis and editing. These studies can be categorized
into two types. The first type aims to learn a model to
manipulate the latent space of a pre-trained GAN network
to achieve editability. For example, InterFaceGAN [59],
GANSpace [26] and StyleFlow [4] trains a attribute model
in the StyleGAN latent space to control binary attributes.
StyleRig [64] learns a set of latent space networks to change
the pose and lighting. Similarly, StyleFusion [33] learns
to fuse semantic parts from different images in the latent
space. The second type aims to learn a GAN with more
disentangled latent space using additional supervision. For
example, CONFIG [39] and DiscoFaceGAN [18] uses 3D-
rendered data to disentangle pose, identity, expression from
other information. GAN-Control [61] separates attributes
like identity and age in the latent space by utilizing pre-
trained attribute models. Besides these, StyleMapGAN [38]
propose to use style maps to modulate a synthesis network,
but the meaning of each style pixel is unclear. Different
from prior works, we propose a new type of factorization
in the GAN latent space according to semantic labels. Our
disentangled latent codes could independently control the
shape and texture of each semantic part in the output image.

2.2. Compositional Image Synthesis

A plethora of studies have investigated how to build gen-
erative models to mimic the compositional nature of the
world. To achieve compositionality, some studies propose
to take images as input and compose a complicated scene
with elements from real images [8, 10, 57]. On the other
side, the majority studies aim to build a generative model
that unsupervisedly discovered different objects in the train-
ing images and then synthesize them from independent la-
tent codes. Most of these methods assume that objects
are positioned independently in the scene and a composi-
tional generative model is designed to discover such ob-
jects [6,12,19,20,23,24,31,66,71,72]. Some other methods

11255



𝑔!

𝑔"

𝑔#

……

MLP
𝐳~𝒩(0, 𝐼)

Fusion

Render Net

R

re
al

 / 
fa

ke

Discriminator

Real ImagesFake Images
feature map 𝐟

D

mask 𝐦 refinement

Δ𝐦

𝐰!

𝐰"

𝐰#

𝐟! 𝐝!

𝐟" 𝐝"

𝐟# 𝐝#

Figure 3. Overview of our training framework. A MLP first maps randomly sampled codes intoW space. The w code is used to modulate
the weights of local generators. Each local generator gk outputs a feature map fk and a pseudo-depth map dk, which are fused into a
coarse segmentation mask m and a global feature map f for image synthesis. The render network R, which is only conditioned on the
feature map, refines upsampled m into a high-resolution segmentation mask by learning a residual ∆m and generates the fake image. A
dual-branch discriminator models the joint distribution of RGB images and semantic segmentation masks.

approach the compositional synthesis from a 3D perspective
and disentangles objects and background by leraning multi-
view datasets [28, 45, 47, 48]. Similar to these work, we
inject composition as an inductive-bias to encourage disen-
tanglement. However, we focus on semantic parts that are
defined by humans. This allows us to decompose highly
correlated local parts below object level (e.g. hair and face)
and enables more fine-grained control during synthesis.

2.3. Layout-based Generators for Local Editing

In the layout-to-image translation problem, a layout im-
age is provided as the condition for controllable image syn-
thesis. The layout image can be a semantic segmenta-
tion mask [14, 15, 42, 49, 53, 68, 69, 76, 77], a sketch im-
age [16, 55, 68], etc. Among these, some studies have at-
tempted to represent different semantic parts with latent
codes [14, 76, 77]. But since the layout is controlled by
the input segmentation mask, they are only able to control
the local texture. Our method also shares similarity with
prior research that utilizes semantic masks as intermediate
representations for generation [9, 30, 32], but they are engi-
neered to serve conditional generation tasks and not able to
generate images from scratch. Recently, some researchers
have also analyzed the correlation between StyleGAN style
space and semantic masks [17, 33, 70] or supervise the la-
tent manipulation with segmentation masks [21, 41, 51] to
achieve local editing. In contrast to these methods, we build
a semantic-aware generator that directly associates different
local areas with latent codes, these codes can then be used
to edit both local structure and texture.

3. Methodology

A typical GAN framework learns a generator that maps
a vector z ∼ Z to an image, where Z is usually a standard
normal distribution. In StyleGANs [36, 37], to handle the

non-linearity of data distribution, z is first mapped into a
latent code w ∼ W with an MLP. This W space is then
extended into aW+ space that controls the output styles at
different resolutions [36]. However, these latent codes do
not have a strictly defined meaning and can hardly be used
individually.

We propose to build a generator whoseW+ space is dis-
entangled for different semantic areas. Formally, given a
labeled dataset D = {(x1, y1), (x2, y2)..., (xn, yn)}, where
yi ∈ {0, 1}H×W×K is the semantic segmentation mask of
image xi and K is the number of semantic classes, our gen-
erator gives a factorizedW+ such that:

W+ =Wbase ×W1 ×W2 × ...×WK . (1)

Here each local latent code wk ∈ Wk controls the shape
and texture of kth semantic area defined in segmentation la-
bels while wbase ∈ Wbase is a shared code that controls the
coarse structure, such as pose. Each wk is further decom-
posed into a shape code wk

s and a texture code wk
t . The

generator G : W+ → X × Y maps the latent codes to an
RGB image and a semantic segmentation mask. To this end,
we identify two major challenges:
1. How to decouple different local areas?
2. How to ensure the semantic meanings of these areas?

For the first problem, inspired by compositional genera-
tive models [12, 23, 48], we introduce local generators and
a compositional synthesis procedure as the inductive bias.
For the second problem, we use a dual-branch discrimina-
torD : X×Y → R that models the joint distribution p(x, y)
to supervise the shapes of local parts after composition.

3.1. Generator

The overall structure of our generator is shown in Fig-
ure 3. Similar to StyleGAN2 [36, 37], an 8-layer MLP first
maps z to the intermediate code w. Then, K local genera-
tors are introduced to model different semantic parts using
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Figure 4. The architecture of local generator. Blue blocks are mod-
ulated 1×1 convolution layers whose weights are conditioned on
input latent codes. Purple blocks are linear transformation layers.

w. A render net R takes in the fused results from local
generators and outputs an RGB image and a corresponding
semantic segmentation mask.

Local Generator Following recent work on continuous
image rendering [7, 62, 74], we use modulated MLPs for
local generators (Fig. 4), which allows explicit spatial con-
trol over synthesized output. Given Fourier features [63]
(position encoding) p and latent codes as inputs, a local
generator gk outputs a feature map fk and a pseudo-depth
map dk:

gk : (p,wbase,wk
s ,w

k
t ) 7→ (fk,dk). (2)

Here, to reduce the computation cost, the input Fourier
feature map as well as the outputs are of a reduced size
Hc ×W c, smaller than the final output image. In practice,
we choose it to be 64 × 64 to balance the efficiency and
quality. During training, style mixing [36] is conducted in-
dependently within each local generator between wbase, wk

s

and wk
t such that different local parts and different shapes

and textures could work collaboratively for synthesis. We
note that the pseudo-depth maps here are not strictly depth
maps, we call them “depth” because the they are used for a
composition strategy that mimics the z-buffering process.

Fusion In the fusion step, we first generate a coarse seg-
mentation mask m ∈ RK×Hc×W c

from pseudo-depth
maps. Following prior work on compositional genera-
tion [12, 23], the pseudo-depth maps are used as logits for
softmax function:

mk(i, j) =
exp(dk(i, j))∑K
k′ exp(dk′(i, j))

, (3)

where mk(i, j) denotes the pixel (i, j) in the kth class of
mask m and similarly for dk(i, j). The feature maps are
then aggregated by:

f =

K∑
k=1

mk � fk. (4)

Here � denotes element-wise multiplication. The aggre-
gated feature map f contains all the information about the
output image and is sent into R for rendering. We note

that directly using m for feature aggregation could be prob-
lematic when some classes are transparent. Thus, we use a
modified version m̃ for feature aggregation in case of trans-
parent classes, e.g. glasses (See appendix for details).

Render Net The render net R is similar to the original
StyleGAN2 generator with a few modifications. First, it
does not use modulated convolution layers and the output is
purely conditioned on the input feature map . Second, we
input the feature map at both 16×16 and 64×64 resolutions,
where feature concatenation is conducted at 64 × 64. The
additional input of low-resolution feature map allows a bet-
ter blending between different parts. Last, we find that di-
rectly training with m is difficult due to the intrinsic gap be-
tween softmax outputs and real segmentation masks. Thus,
besides the ToRGB branch after each convolution layer, we
have an additional ToSeg branch as in SemanticGAN [40]
to output residuals to refine the coarse segmentation mask
m into the final mask ŷ = upsample(m) + ∆m that has
the same size as output image. Here a regularization loss is
needed such that the final mask would not deviate too much
from the coarse mask:

Lmask = ‖∆m‖2 . (5)

3.2. Discriminator and Learning Framework

In order to model the joint distribution p(x, y), the dis-
criminator needs to take both RGB images and segmenta-
tion masks as input. We found that a simple conconcatena-
tion does not work due to the large gradient magnitude on
segmentation masks. Thus, we propose to use a dual-branch
discriminator D(x, y) that has two convolution branches
for x and y, respectively. The outputs are then summed
up for fully connected layers. Such a design allows us to
separately regularize the gradient norm of the segmentation
branch with an additional R1 regularization loss LR1seg .
The resulting training framework is similar to StyleGAN2
with the loss function:

Lall = LStyleGAN2 + λmaskLmask + λR1segLR1seg , (6)

where LStyleGAN2 denotes the loss functions used in the
original StyleGAN2.

4. Implementation Details
We implement our methods using PyTorch 1.15 library.

We use the same optimizer and batch settings as in Style-
GAN2. λR1img

, λR1seg , λmask are set to 10, 1000 and 100,
respectively. Style mixing probability and path regulariza-
tion are reduced to 0.3 and 0.5, respectively. For some ex-
periments, we fine-tune our models on image-only datasets.
In such cases, we drop the segmentation branch in discrimi-
nator and use the original StyleGAN2 loss functions to fine-
tune the model. Due to the space limit, more details about
network architectures are given in appendix.
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Figure 5. Illustration of compositional synthesis. Starting from background, we gradually add more components into the feature map.
The second row shows the pseudo-depth map of each corresponding component used for fusion. Note that the “hair” generator outputs a
complete shape even though it is covered by the face. During synthesis, all pseudo-depth maps are fused without an order.

Method Data Compositional FID↓ IS↑

StyleGAN2 img 7 4.45 3.40
SemanticGAN img&seg 7 18.54 2.77

+ proposed training img&seg 7 7.50 3.51
SemanticStyleGAN (ours) img&seg 3 6.42 3.21

Table 1. Quantitative evaluation on synthesis quality. All the mod-
els are trained on CelebAMask-HQ at 256×256. “img” and “seg”
refer to RGB image and segmentation mask, respectively.

Figure 6. Example generation results of our model trained on
CelebAMask-HQ. The images are generated at a resolution of
512×512 with a truncation of 0.7.

5. Experiments

5.1. Semantic-aware and Disentangled Generation

We first evaluate our model on the synthesis quality
and its local disentanglement. For synthesis quality, we
compare our model with StyleGAN2 [37] and Semantic-
GAN [40]. The original StyleGAN2, which neither mod-
els segmentation masks nor provides local controllability,
is compared against as an upper bound of synthesis qual-
ity. SemanticGAN modifies StyleGAN2 into a joint training
framework to output both image and segmentation masks.
Since its goal is to conduct segmentation, it does not al-
lows local control either. All the models are trained on
the the first 28,000 images of CelebAMask-HQ resized to
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Figure 7. Results of latent interpolation on the whole latent space
and specified subspaces. Here, “Face” refers to all the components
relevant to face, including eyes, mouth, etc.

256×256. Fréchet Inception Distance (FID) [29] and In-
ception Score (IS) [56] are used to measure the synthesis
quality.

Our project is initially built on SemanticGAN frame-
work for learning a semantic-aware model. The original
SemanticGAN is semi-supervised and we change it to use
all the training labels. As shown in Tab. 1, SemanticGAN
achieves much lower quality compared to original Style-
GAN, indicating that learning a joint model of images and
segmentation masks is a challenging task. Hypothesizing
that the main bottleneck of SemanticGAN is the additional
patch discriminator used for learning segmentation masks,
we replace it with the proposed dual-branch discriminator.
The new training framework achieves much better synthesis
score. We further replace the SemanticGAN generator with
our SemanticStyleGAN generator. Compared to Semantic-
GAN generator, our model shows a similar synthesis quality
while providing additional controllability on each semantic
area. We then extend our model to 512×512 resolution and
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real image reconstruction synthesized translation zoom out

Figure 8. Image composition and transformation via Fourier fea-
ture manipulation. Real images are used as background for syn-
thesis and inverted into feature maps. Then foreground can be
synthesized on this real image in the feature space. The location
and size of foreground can be controlled via Fourier features.

achieve a FID and IS of 7.22 and 3.47, respectively. For
reference, the StyleGAN2 generator achieves a FID and IS
of 6.47 and 3.55, respectively. Fig. 6 shows the synthesis
results of the 512×512 model.

To interpret the compositional synthesis of our model,
Fig. 5 shows the results of synthesis with limited compo-
nents. We first disable all the foreground generators and
gradually add them into the forward process. It can be seen
that these local generators can work independently to gener-
ate a semantic part. The pseudo-depth maps, in spite of the
lack of 3D supervision, learn meaningful shapes that could
be used to collaboratively compose different faces.

Fig. 7 shows the results of latent interpolation of our gen-
erator model. The first row shows that our model could in-
terpolate smoothly between two randomly sampled images.
Besides, we can interpolate on a specific semantic area by
changing the corresponding latent codes, e.g. face or hair,
while fixing irrelevant parts. The results indicate that our
model has learned a smooth and disentangled latent space
for semantic editing. Overall, even though there is no ex-
plicit constraint during training, we observe that our model
could disentangle most local shapes and textures. We also
refer the readers to the appendix for more results on se-
mantic local style mixing. We note that unlike traditional
GANs that generates a complete image, such a composi-
tional process also allows our model to generate the fore-
ground only and control it by manipulating the Fourier fea-
tures (See Fig. 8).

5.2. Controlled Synthesis and Image Editing

With the semantic decomposition in the latent space, our
model provides a more disentangled generative prior for im-
age editing. Here, we evaluate our model on downstream
editing tasks and compares it to StyleGAN2. We use the py-
torch conversion of official StyleGAN2 (config-F on FFHQ
1024x1024) as our baseline, which is widely used in rele-
vant studies on image editing. The 512×512 model is used
for our method.

5.2.1 Encoding and Editing Real Images

To evaluate the editing results on real images, we first need
to embed such images into the GAN latent space. Here,

Method MSE↓ ID↑ LPIPS↓

StyleGAN2 (FFHQ) 0.031± 0.015 0.654± 0.097 0.309±0.046
StyleGAN2 0.029± 0.016 0.575± 0.119 0.330±0.052
SemanticStyleGAN 0.031± 0.017 0.602± 0.122 0.335±0.051

Table 2. Quantitative evaluation of reconstruction performance us-
ing Restyle (psp) encoder. The bottom two rows (StyleGAN2 and
Ours) are trained on the same split of CelebAMask-HQ.

we adopt a state-of-the-art GAN encoder, i.e. Restyle-
psp [5], for both StyleGAN2 and our model. We use the
official model from Restyle authors for StyleGAN2 while a
new encoder is trained for our model with default hyper-
parameters. For reference, we also train a encoder for
our StyleGAN2 that is trained on CelebAMask-HQ. Tab. 2
shows the quantitative results of image reconstruction using
restyle encoders. Overall, our model achieves a comparable
performance in terms of reconstruction.

The next question is whether our model can be applied
to local editing on these reconstructed images. Here, we
adopt two popular editing methods that were proposed for
StyleGAN2: InterFaceGAN [59] and StyleFlow [4]. Both
methods need to generate a set of fake images and label their
attributes to train a latent manipulation model. In particular,
InterFaceGAN learns a linear SVM while StyleFlow uses
a conditional continuous normalizing flow [22] to model
the latent attribute manipulation. For both generators, we
randomly synthesize 50,000 images for labeling. Follow-
ing InterFaceGAN, a ResNet-50 [27] is trained on CelebA
dataset [44] to label these images. During the experiments,
we found that our model trained on CelebAMask-HQ ex-
hibits a much lower diversity compared to FFHQ-based
StyleGAN2. Thus, we fine-tune our model on FFHQ for
1, 000 steps (See Sec. 4), for which we observe a sufficient
improvement of diversity without loss of controllability.

We choose 4 local attributes covering different parts of
the face image for editing experiments, namely smile, bald-
ness, beard and bangs, and test on the last 1, 000 images
of CelebAMask-HQ, which were not used for training. For
StyleGAN2, we keep the original selection of latent dimen-
sions in these methods for content preservation. For ours,
we manually choose relevant areas for editing, e.g. hair for
baldness and face for beard, which can be regarded as a
trivial step during deployment. Fig. 9 shows the qualita-
tive results of applying InterFaceGAN to StyleGAN2 and
our model. Although InterFaceGAN successfully edits the
attributes on StyleGAN2, irrelevant parts are inevitably al-
tered due to the entanglement in the latent space. In com-
parison, our model focuses only on specified semantic ar-
eas. We also conduct a quantitative evaluation of the editing
task. For each image, we control the degree of manipulation
to generate 10 images. Then a “preservation-score” curve
is plotted using the attribute classifier. Here, score gain
refers to the average gain in classification score of the tar-
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image and the difference map between them.
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Figure 10. Quantitative comparison of local attribute editing using
StyleGAN2 and our model when combined with StyleFlow and
InterFaceGAN.

get attribute. pixel preservation refers to 1 minus the `1
loss between the two images. The `1 loss is an approx-
imation of `0 loss, which computes the number of pixels
that has been altered. In our experiments, we found this
simple metric best correlates with the spatial difference be-
tween images. From Fig. 10, it can be seen that our model
achieves a better overall performance. Note that for bald-
ness, our model stops when it removes all hairs, but Inter-
FaceGAN+StyleGAN2 keeps increasing the score by adapt-
ing into correlated attributes (such as aging). For bangs, our
model tends to increase the overall length of hairs, which
could be an inherited bias from original training data. Be-
sides, we found that StyleFlow is more sensitive to label
imbalance. Thus, given the small number of bald examples,
it fails to learn the baldness attribute for both generators.
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Figure 11. Results of text-guided image synthesis under sequential
editing. Starting from an average fake face, the first row (from left
to right) shows the results of sequentially applying optimization-
based StyleCLIP [50] with StyleGAN2 while the second row
shows the results of our model with the same input texts.

5.2.2 Text-guided Synthesis

Recent work have shown that one could use a text-image
embedding, such as CLIP [54], to guide the synthesis of
StyleGAN2 for controlled synthesis [50]. Similar to at-
tribute editing, StyleGAN2 suffers from the local disentan-
glement problem on. Fig. 11 shows a few examples of us-
ing StyleCLIP [50] to manipulate a synthesized image with
a sequence of text prompts. Here, we use the optimization-
based version of StyleCLIP as it is flexible for any input
text. It can be seen that the original StyleCLIP often modi-
fies the whole image while the text is trying to change only
a specified area. Our model, by additionally let the user to
choose relevant areas, can faithfully constrain the editing to
local parts. The results indicate that our model could be a
more suitable tool for text-guided portrait synthesis where
detailed descriptions are provided.
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Figure 12. Examples of changing hair styles on adapted new do-
mains. The first four and last three columns show the results of
different latent codes for hair shapes and textures, respectively.
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Figure 13. Controlled generation results on the DeepFashion
dataset. Our model can generate various style for different parts.

5.3. Results on Other Domains

Training our model from scratch requires access to im-
ages and segmentation masks at the same time, which might
not be feasible in some cases. Thus, we would like to ask
whether the model can be fine-tuned on image-only datasets
while preserving the local disentanglement (See Sec. 4 for
fine-tuning). Fig. 12 shows the results after fine-tuning our
model on the Toonify [52], MetFaces dataset [34] and Bit-
Moji [1]. All of these datasets have a much smaller number
of images compared to CelebAMask-HQ and no segmenta-
tion masks. We train our model for hundreds of steps until
perceptually good results are generated. It can be seen that,
for datasets with a limited domain gap, our model is able to
maintain local controllability even after fine-tuning.

In spite of the experiments on face datasets so far, our
method indeed does not include any module that is designed
for face only and hence can be applied to other objects as
well. Fig. 13 shows the results of training our model on the
DeepFashion dataset [43], for which we obtain the labels
from [77]. With the default hyper-parameters, we find that

our model can be successfully trained on fashion datasets
and we can similarly control the structure and texture of
different semantic parts in the latent space.

6. Limitations and Discussion
Applicable Datasets Although we have shown that our
method can be applied to other domains beyond face pho-
tos, we still see a limitation caused by the design and su-
pervision. Since we need to build a local generator for
each class, the method would not scale to datasets that have
too many semantic classes, such as scenes [73]. Besides,
for the purpose of synthesis quality, we change the semi-
supervised framework of SemanticGAN [40] into fully-
supervised, which limits our model from training on image-
only datasets from scratch. It would be beneficial to develop
a semi-supervised version of our method in the future.

Disentanglement As the disentanglement between pose,
shape and texture is only enforced by the design of layer
separation in local generators, we see that the boundary be-
tween them is still sometimes ambiguous. For example, the
shared coarse structure code could encode some informa-
tion about expression and the shape code could affect the
beard. However, in this work, we mainly focus on the spa-
tial disentanglement between different semantic parts and
we believe additional regularization losses or architecture
tuning could be incorporated in the future to better decou-
ple those information.

Societal Impact Our work focuses on the technical prob-
lem of improving controllability of GANs and is not specif-
ically designed for any malicious uses. This being said, we
do see that the method could be potentially extended into
controversial applications such as generating fake profiles.
Therefore, we believe that the images synthesized using our
approach should present itself as synthetic.

7. Conclusion
In this paper, we present a new type of GAN method

that synthesizes images in a controllable way. Through the
design of local generators, masked feature aggregation and
joint modeling of images and segmentation masks, we are
able to model the structure and texture of different seman-
tic areas separately. Experiments show that our method is
able to synthesize high-quality images while disentangling
different local parts. By combining our model with other
editing methods, we can edit synthesized images with a
more fine-grained control. Experiments also show that our
model can be adapted to image-only datasets while preserv-
ing disentanglement capability. We believe the proposed
method presents a new and interesting direction of GAN
priors for controllable image synthesis, which could shed
light on many potential downstream tasks.
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