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Figure 1. We propose a new image editing paradigm with a unified model that can handle various open-domain image editing tasks: (a)
multimodal image editing, (b) language-guided image editing, (c) examplar-based image editing, (d) editing style retrieval, (e) editing style
clustering. Images in (c)-(e) are visualized as half-before half-after edited.

Abstract

Recently, large pretrained models (e.g., BERT, Style-
GAN, CLIP) show great knowledge transfer and general-
ization capability on various downstream tasks within their
domains. Inspired by these efforts, in this paper we propose
a unified model for open-domain image editing focusing on
color and tone adjustment of open-domain images while
keeping their original content and structure. Our model
learns a unified editing space that is more semantic, intu-
itive, and easy to manipulate than the operation space (e.g.,
contrast, brightness, color curve) used in many existing
photo editing softwares. Our model belongs to the image-
to-image translation framework which consists of an image
encoder and decoder, and is trained on pairs of before-
and-after edited images to produce multimodal outputs. We
show that by inverting image pairs into latent codes of the

learned editing space, our model can be leveraged for vari-
ous downstream editing tasks such as language-guided im-
age editing, personalized editing, editing-style clustering,
retrieval, etc. We extensively study the unique properties of
the editing space in experiments and demonstrate superior
performance on the aforementioned tasks1.

1. Introduction
Image editing has shown wide spectrum of applications

in various scenarios including image retouching [12, 40],
style transfer [48, 49], language-guided image editing [18,
23, 26, 39], image harmonization [11], colorization [51],
etc. However, the current research landscape independently
studies these tasks on small and diverse datasets, underscor-
ing the commonality of the image editing required for each

1Code and supplementary material can be found at the project page
https://jshi31.github.io/SpaceEdit
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task. As such, the customized approach for one specific
task is cumbersome to extend to other related tasks, and the
bespoke model trained on a particular dataset has difficulty
generalizing to out-of-domain samples.

The recent surge of general pretrained architectures for
vision [5, 8] and vision+language [27, 34] unifies different
model structures for related tasks into common ones. These
unified models are first trained on some pretraining datasets
and then either fine-tuned on specific datasets or directly ap-
plied in a zero-shot manner for different downstream tasks.
Numerous studies have demonstrated that the generalization
and knowledge transfer capability of the pretrained models
are key to their success. Here comes a natural question, is
there any unified pretraining task or network architecture
that we can leverage for the scope of image editing? One
related work is StyleGAN [19], which is trained to gener-
ate realistic images for closed-domain categories such as
faces, cats, and cars. Since then, a series of manipulation
works [6,35,36,42,45,46] have been built upon StyleGAN
by inverting a given image to its latent space and then ma-
nipulating the latent code to generate a new image while
keeping the generator intact.

Despite being successful for closed-domain image edit-
ing, StyleGAN has not been demonstrated to generate open-
domain user photos which could contain various objects and
complex scenes, therefore compromising its generalizabil-
ity and application scenarios. In this paper, we are inter-
ested in one particular area of the open-domain image edit-
ing problem, i.e., apply some artistic styles to a given photo
to achieve a different look while keeping its original con-
tent, structure, and texture. Although not covering all edit-
ing scenarios, the applications of our problem are already
quite useful and broad for many photo editors and photog-
raphers. Indeed many commercial photo editing softwares
such as Adobe Lightroom provide some predefined global
and local editing operations (e.g., contrast, brightness, color
curves) to solve this problem. However, their editing inter-
faces are not intuitive or convenient for many users, espe-
cially beginners, which we hope to mitigate with our newly
proposed editing framework.

To achieve our goal, we propose a pretraining task that is
useful for many editing downstream tasks. The pretraining
task aims to transform a given before-edited image into an
after-edited image with some artistic editing style controlled
by some random noise vector. To learn the pretraining task,
we first collect a new large-scale dataset with 60k pairs of
before-and-after photos from the Lightroom Discover web-
site2. Then we propose a new encoder-decoder network
structure that appends the StyleGAN as a decoder to an im-
age encoder. The modulation modules and the mapping net-
work of StyleGAN are inherited; therefore sampling differ-
ent latent codes can generate multimodal outputs.

2https://lightroom.adobe.com/learn/discover

Having trained the generator, we further analyze the
properties of the new latent spaceW , whose meaning is en-
tirely different from StyleGAN’sW space. Concretely, the
W space of StyleGAN contains the complete content in-
formation of the generated images while ourW space only
captures various editing styles, which are independent of
image content. Therefore, we use a recent method SeFa [37]
to analyze the latent semantic directions and employ some
GAN inversion method [20] to invert the latent code from a
pair of before-and-after images. We find that ourW space
has similar controllability and semantic disentanglement as
the original StyleGAN, and ourW space emphasizes on the
semantics of editing style. We also verify that our inverted
latent code is useful for both generation and recognition
(e.g. clustering, retrieval) tasks.

Given the unique properties of our editing spaceW , we
apply our pretrained generator to several open-domain im-
age editing tasks. First, we explore the task of language-
guided image editing (LGIE) [18,39], which aims to edit an
image to match a given editing request. Existing methods
must train their full models with sophisticated pixel-level
losses on the limited dataset, thus facing the overfitting issue
given the enormous language and image space. In contrast,
we propose a simple encoder which maps the input image
and text features into the 512-dimensional editing space and
then resorts to our pretrained generator to generate the out-
put image. Experimental results verify the advantage of our
pretrained model serving for this downstream task.

Second, inspired by recent styleCLIP [32], we further
equip our generator with CLIP [34] for zero-shot free-form
LGIE. Our method is able to not only generate semantic
editing styles such as “sunset,” “gloomy,” but also change
the color of an object to different colors as shown in Fig. 1.

Last but not least, since each latent code of a before-and-
after pair inW space corresponds to some editing style, we
can transfer the editing style of one image pair to the other
images to achieve personalized editing. Besides, we can
retrieve similar editing styles for personal style recommen-
dation on a large database of user editing examples.

In summary, our contributions are three-fold. First, we
propose a new pretraining task and a network architec-
ture that is beneficial for various pertinent tasks for open-
domain image color and tone editing. Second, we demon-
strate that theW space of the pretrained model corresponds
to various editing styles. Such embeddings are useful for
both generative and recognition tasks. Finally, we demon-
strate better performance of our pretrained model on various
downstream tasks, including multimodal image editing and
language-guided image editing benchmarks.

2. Related Work
Leveraging GAN latent space for image editing. Many
works have been proposed to discover the semantics in
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GAN’s latent space for image editing in the supervised
way [10,24,36], self-supervised way [17,33], and unsuper-
vised way [6, 37, 42, 43, 45]. However, all the above works
focus on unconditional GANs while our method relies on
conditional GAN. Although traversing the latent space of
unconditional GANs can achieve image editing in closed-
domain images such as faces, its incapability of generat-
ing real-world images (e.g., multiple objects and complex
scenes) limits their generalization and application. In ad-
dition, since their hidden spaces need to retain all the in-
formation of the generated outputs, the inversion [55] of
an open-domain image is usually compromised for photo
fidelity [1, 35]. In contrast, the editing space of our pro-
posed model does not have such limitations. Moreover,
since each inverted latent code in the editing space corre-
sponds to some editing style, we can directly cluster them
to find representative semantics, which is not investigated
by previous methods.

Multimodal image editing. Our pretraining is a multi-
modal image editing task which requires diverse outputs
controlled by some random vectors given an input image. A
branch of works achieves the multimodal diversity by using
an inverse mapping from the generated image to the input
noise [56], disentangling of image content and style [15,22],
or explicitly enforcing the image diversity with distance-
based loss term [25, 28]. However, the enforcement of di-
versity deteriorates the image quality. Inspired by the recent
modulation approach [54] for multimodal image inpainting,
we propose a similar network architecture specifically for
open-domain image editing. The difference is that our mod-
ulation layer does not use the features of the input image,
which leads to better fidelity and diversity.

Language-guided image editing. Language is a flexi-
ble and user-friendly way to control image editing. [4, 9,
18, 38, 39] collect paired data (i.e. input image, language
request, target image) for supervised training. However,
the language annotation is expensive, and the limited data
size would constrain their generalizability. Other works
[7,23,29,30,50] are trained with only image caption pair but
are restricted to domain-specific images such as birds and
flowers. Recently, some attempts are made to achieve zero-
shot open-vocabulary image editing [2,32,46] by modifying
the latent space of a pretrained StyleGAN [19] via a state-
of-the-art image-text matching model CLIP [34]. Hence,
the data domain that the StyleGAN is pretrained on will
limit the editing domain. Although [26] trains a genera-
tor by reconstruction and thus can work for any open im-
age domain, the generation quality is not guaranteed. In
contrast, the editing quality of our method is guaranteed by
the unique properties of our learned editing space. We pro-
pose different approaches for both supervised and zero-shot
language-guided image editing. Each of them achieves bet-
ter editing results than other methods.
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Figure 2. The structure of our generator for the pretraining task.
The blue arrows represents skip connections.

3. Multimodal Image Editing as Pretraining
For the pretraining task, our goal is to learn an image-

conditional generator with a latent space that can control
various editing styles. The latent space should be seman-
tic, disentangled as well as complete to be useful for vari-
ous downstream editing tasks. We select multimodal image
editing as our pretraining task as it encourages to produce
diversified outputs with different editing styles.

We propose an image-to-image translation framework
that consists of an image encoder and an image decoder
with some random noise z ∈ Z as additional inputs to
control different editing styles. Since StyleGAN2 [1] has
shown great disentanglement of its latent space for genera-
tive tasks, we adopt its architecture as our decoder where the
noise input z is firstly mapped to an intermediate latent code
w ∈ W , and then is further used to modulate the convolu-
tional kernel at different layers, as depicted in Fig. 2. The
role of the image encoder is to encode the input image into
features of different levels, and the lowest 4x4 feature map
is used to replace the original constant input of StyleGAN2.
Apart from the straightforward docking of the encoder and
decoder, we further stitch them via skip connection at dif-
ferent resolutions of the feature maps from the encoder to
decoder, in view of preserving fine-grained details. Please
refer to Appx. A for detailed structure.

More formally, let the source (before) image be Iin, the
target (after) image Itgt, the generator G, the discrimina-
tor D, the output image Iout = G(Iin,w) where w =
Mapping(z). Our generator is trained with the regular con-
ditional discriminator loss Ladv as

Ladv =− EIin,Itgt [log(D(Iin, Itgt))]

− EIin,Iout [log(1−D(Iin, Iout))]. (1)

Note that we circumvent direct pixel supervision such as
L1 loss [16] for the purpose of encouraging the generation
diversity, as suggested in [54]. Some qualitative output
results from our trained generator is visualized in Fig. 3.
Our generator is able to not only generate diverse outputs
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Figure 3. The multimodal image editing results controlled by dif-
ferent z, each of which portrays one unique editing style.
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Figure 4. The visualization of conditional GAN inversion.

given different noise inputs on a single image, but also pro-
duce consistent editing styles given the same noise input on
different images, indicating the independence between the
learned editing space and image content.

4. Editing Space Analysis
4.1. Editing Space Inversion

Similar to StyleGAN, the W space of our generator is
more disentangled than the input Z space. Therefore we
rely on the W space as the editing space for our editing
tasks. The first question is whether the style embedding for
any source and target image pair can be inverted into editing
space, which measures the completeness and upper-bound
editing ability of the W space. To answer this question,
we propose a conditional GAN inversion problem: finding
a w that can transfer the source image Iin to the target
Itgt. We adapt an existing unconditioned GAN inversion
method [55] to solve this problem, as formulated in Eq. (2)

w,n = argmin
w,n
LLPIPS(Itgt, G(Iin,w,n)) + λnLn(n),

(2)
where w and n are the inverted latent code and stochas-
tic noise inputs to different layers of the decoder, respec-
tively. LLPIPS is the LPIPS perceptual loss [52] and Ln

" = 0.5" = −0.25 Input Target " = 1.25

Figure 5. From the left to right, the strength the editing style in-
creases.

denotes the noise regularization term [20] with λn as a bal-
ance weight. We show some randomly picked inversion
results in Fig. 4. It is clear that our editing space W can
represent diverse editing styles such as drastic color ma-
nipulation, colorization, and local editing, which are use-
ful for various downstream tasks. Besides qualitative re-
sults, we also show the quantitative result of reconstruc-
tion errors on both training and testing datasets in Tab. 1.

Inversion Train Test

Init 24.88 24.93
w 4.43 4.43
w0 1.86 1.86

Table 1. Init, w, w0 measure
the mean pixel absolute error
(maximum 255) between source
and target image, inverted and
target image, source and recon-
structed source image, respec-
tively.

With inverted w, the out-
puts from our generator
can almost reconstruct
the target images per-
fectly with negligible ∼4
pixel errors, indicating
the completeness of our
learned editing space.

4.2. Interpolation

A special case of the
conditional GAN inver-
sion, which has not been
investigated in the previous literature, is to find a latent code
w0 that can reconstruct the source image itself. Such latent
code has some semantic meaning in terms of editing as it
represents the unchanged status of the source image. We
can find its embedding by simply replacing the Itgt term
with Iin in Eq. (2). The reconstruction error on the testing
dataset is less than 2 pixel difference as shown in Tab. 1.

With the help of w0, we can control the strength of an
arbitrary editing style w by using their linear interpolations
as w′ = (1−α)w0+αw, where α is a factor to control the
strength of editing. Some examples are shown in Fig. 5.

4.3. Other Properties

We further demonstrate the editing capability and recog-
nition capability of W space. For editing capability, as
Fig. 3 reveals that each w shows a consistent style for differ-
ent images, enabling the transfer of w inverted from one im-
age pair to other images to achieve similar editing style, in-
dicating its transferability property as shown in Fig. 12, de-
tailed in Sec. 6.3.2. For recognition capability, we demon-
strate that the latent codes representing similar editing styles

19733



“Dark sunset”

concat

ℒ!(&!"#, &#$#)

Image
Encoder

Text
Encoder MLP

!

&$%

(

&'(&

&&)&

Figure 6. The structure for supervised LGIE. Only gray shaded
module are trained while the generator is frozen.

are distributed closely inW space by studying the retrieval
and cluster performance inW space (see Sec. 6.2), showing
that the latent code has the intrinsic capability to be used for
recognize the editing style.

5. Language-Guided Image Editing
To show the advantage of our pretrained network on

the downstream tasks, we firstly show the language-guided
image editing (LGIE) by leveraging our pretrained model.
Other downstream tasks are illustrate in Sec. 6.3. Given an
image I , and a language editing request r, LGIE aims to
generate a new image following the editing request. Lan-
guage is a convenient way to incorporate user’s editing in-
tention, which is a more intuitive and convenient interface
than existing operation-based editing interfaces. Given our
pretrained generator, we solve the LGIE tasks by finding a
mapping between the text input and our low-dimensional
editing space, which is a different framework compared to
previous works [2,4,7,9,18,23,26,29,30,38,39,50]. Next,
we describe our approaches for both supervised LGIE as
well as zero-shot LGIE.
Supervised LGIE. The supervised LGIE directly learns the
mapping from language to theW space from the data triplet
consisting of the input image, target image, and language re-
quest. The structure of the model is shown in Fig. 6, where
the image and text feature are merged by concatenation, fol-
lowed by a Multilayer Perception (MLP) to predict a latent
code w. Given w, the generator serves as a render to gener-
ate the output image with the designated style. The training
is driven by the L1 loss between the output image and target
image, written as L1(Iout, Itgt). The generator G is frozen
while the other parameters are trained. Our novel learning
framework could be potentially useful for other image edit-
ing tasks with paired supervision, such as supervised image
harmonization, which will be left for future study.
Zero-Shot LGIE. Inspired by StyleCLIP [32], we propose
to use the pretrained image-text CLIP model [34] to directly
find a latent code w given an editing request r through op-
timization. Specifically, given the CLIP visual encoder fv
and textual encoder ft, the latent code w is optimized by

argmin
w
−〈fv(G(I,w)), ft(r)〉−λ 〈fv(G(I,w)), fv(I)〉 ,

(3)
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Figure 7. The multimodal image editing performance compared
with other methods

where 〈·, ·〉 denotes the cosine similarity and λ a balance
weight. Its first term enforces the CLIP similarity between
the generated image and the request. The second term
drives the similarity of the generated image to the origi-
nal image. Since the CLIP model is trained on billions of
image-text pairs and thus understands free-form language,
this approach is generic for open-vocabulary requests.

Moreover, to achieve precise local editing, our approach
can accepts as input an additional binary mask M to in-
dicate the editing foreground and background. Given an
editing request, we can simply replace the term G(I,w) in
Eq. (3) with M � G(I,w) + (1 − M) � I , where � is
Hadamard product.

6. Experiments
We evaluate the pretraining task, W properties, and

downstream tasks in this section. Due to space limitation,
we put the implementation details in Appx. B.

6.1. Multimodal Image Editing

Dataset. We use the Adobe Discover dataset collected from
the Adobe Discover website, where Lightroom users up-
load their edited images along with editing operations. This
paired dataset contains open-domain images with various
editing styles, focusing on color and tone retouching while
not changing image content, geometry, or texture. Given the
large number of active users, totally 62416 before-and-after
image pairs are collected with the split of 49932/6242/6242
for train/val/test.
Metrics. Fréchet Inception Distance (FID) [14] measures
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FID↓ LPIPS ↑
BiCycleGAN [56] 12.2837 0.0857
DivCo [25] 9.9586 0.1705
Ours 5.1755 0.1945

Ours shallow 6.0958 0.1581
Ours comod [54] 5.6355 0.1479

Table 2. Quantitative results of multimodal image editing on Dis-
cover dataset.

the quality and diversity of a set of generated images com-
pared to the set of real images through the feature computed
from an Inception network [41]. LPIPS [53] measures the
diversity of an image set by computing the average feature
distance of all pairs of images, following [55]. We generate
10 random outputs for one input to compute LPIPS.
Comparison methods. BiCycleGAN [56] learns the map-
ping from the output image to the input noise to encourage
diversity. DivCo [25] follows the structure of BiCycleGAN
but adds the contrastive loss to encourage better diversity.
Result analysis. Our algorithm surpasses BiCycleGAN and
DivCo by a large margin according to FID, mainly due to
the benefit of the StyleGAN-like structure. And as indi-
cated in [54], the modulation-based conditional generator is
intrinsically stochastic w.r.t. the input noise even without
explicit diversity constraint used in [25, 56]. The qualita-
tive comparison in Fig. 7 shows that our model can create
more diversified editing styles, while the BicycleGAN and
DivCo will only generate images in a single editing style
with different degrees. Moreover, we sample the same z for
different images in Fig. 3, showing that the same z (w) has
global consistency for all the images.
Ablation Study of the network structure. Firstly, since
the study of Sec. 6.2 suggests that our editing space takes
most effect at high-resolution layers of the decoder, we re-
move the deeper layers of both encoder and decoder and
only keep the layers sensitive to w, so as to reduce the model
size. We denote such setting as Ours shallow, whose perfor-
mance in Tab. 2 is worse than the standard setting. There-
fore, it proves that the depth of the network is still critical
for editing performance.

Moreover, our standard network is only modulated by
the noise input, while it also can be co-modulated by the
feature extracted from the input image, similar to the struc-
ture of [54]. We therefore compare this setting as Ours co-
mod in Tab. 2. However, the performance for co-modulation
drops. One possible reason is that the image modulation
features bring some input-constrained information which
impairs the editing quality and stochasticity.

6.2. Latent Space Analysis

We analyze the semantics of the editing space W with
the following experiments.
Semantic disentanglement. Given the line of works [6,37,
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Figure 8. The visualization for unsupervised latent direction dis-
covery using SeFa. The center column is the input image, and each
row is the traverse through one SeFa principle direction acrossw0.

vintage

Blue Vintage Retro B&W Clear

Figure 9. The clustering of the dataset using w. For each image,
the left half is the before-image, and the right half is the after-
image.

42, 43, 45] tackling unsupervised GAN latent semantic dis-
covery, we adopt Semantic Factorization (SeFa) [37] for the
sake of simplicity. Some discovered principal semantic di-
rection is visualized in Fig 8, showing that the editing space
W can be disentangled.
Layerwise effect of w. Similar to StyleGAN, our w ap-
plies to different layers of the decoder. So we further an-
alyze its layerwise semantics using SeFa. We find that the
editing is only caused by the w on high-resolution layers,
while the effect of w in low-resolution layers is not obvi-
ous. Concretely, w is most effective for the top 6 out of
14 layers in the decoder for 256x256 resolution input. This
is reasonable since our model focus on color manipulation
which is typically controlled via the top layers of the Style-
GAN [47]. However, we cannot tell obvious semantic dif-
ferences among the top layers, as shown in Appx. C, which
might be because the color adjustment is already located in
a fine-grained subspace.
Retrieval capability. Next, we assess the distribution of
different editing styles in the editing space W . We con-
duct k-nearest neighbor (KNN) search in the database using
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Lr Operation W (ours) W (euc)

Purity ↑ 4.25 12.76 11.30

Table 3. Quantitative clustering results on Discover dataset. Euc
denotes cluster using euclidean distance.

L1 ↓ SSIM↑ FID↓ σ×102 ↑
Input 0.1190 0.7992 12.3714 -
T2ONet [39] 0.0784 0.8459 6.7571 0.7190
EDNet [18] - - 9.9500 -
Ours 0.0731 0.8721 5.9791 0.6809

Ours w/o vis 0.0795 0.8596 6.9757 0.6281

Table 4. Quantitative results on MA5k-Req test sets. σ×102 de-
notes the image variance scaled by 100 times.

inverted w with cosine distance. Given a pair of before-
and-after images as query, the retrieved KNN image pairs
carry the similar editing style, shown in Fig. 1 (see more in
Appx. D.1) The retrieval result illustrates that the similarity
in theW space measures the similarity of editing style.
Clustering capability. Inspired by the retrieval result, it
uncovers another simple way for latent semantic discovery
– cluster in the W space and regard each cluster center as
an editing style. We employ K-means algorithm with co-
sine distance for clustering. To evaluate the cluster perfor-
mance, ideally we need to annotate the style class for each
editing pair. However, as the editing styles in the dataset
are diversified and compositional, a predefined list of style
tags might be short-sighted. So we instead annotate a com-
plete sentence that describes the edit, allowing novel styles
to be included. Then we create a style tag list including
both common styles and the novel styles mentioned in the
labeled sentences. Next, we evaluate the clustering perfor-
mance by purity which is a measure of the extent to which
clusters contain a single class. As the standard purity only
considers the data sample with the single-class label, while
our sample (image pair) bears multiple style tags. Hence we
customize the computation of purity in Appx. H.

For comparison, as the Adobe discover dataset also con-
tains the ground-truth Lr operation parameter, we compare
our editing space with the Lr operation space. The result
shown in Tab. 3 indicates that our editing space has better
semantics to represent styles than the Lr operation space.
Moreover, we compare the default cosine distance with the
euclidean distance and find that the cosine distance is bet-
ter. Fig. 9 shows the representative tag for some clusters.
Due to space limit, the details for the tag list and annotation
process are in Appx. G and F.

6.3. Downstream Tasks

6.3.1 Language-guided image editing

Experimental settings. For supervised LGIE, we fol-
low the experiment setting of [39] on the MA5K-Req [39]

Yellow shirtBlue shirtGreen shirt

Cinematic High contrast Split tone

Vincent van Gogh sunflower (three runs)

Figure 10. The open-vocabulary, open-image, language-guided
image editing samples optimized by CLIP. The last row show the
local editing with mask input.

dataset. The evaluation metrics are L1, SSIM, FID, and im-
age variance σ. Due to the space limit, we put the detailed
description and more comparison methods in Appx E.1. We
show two SOTA comparison methods T2ONet [39] and ED-
Net [18] that both designed for global image editing, as well
as a base evaluation between the input and output images
denoted as Input.

For zero-shot LGIE, as it works for open-domain image
and open-vocabulary requests, we compare the qualitative
performance on given examples with two other SOTA meth-
ods – OpenEdit [26] and StyleCLIP [32]. OpenEdit has no
constraint for both image and request, while StyleCLIP can
only work for close-domain images.
Result analysis. For the supervised LGIE, the performance
is shown in Tab. 5, showing that our method achieves the
best editing quality and comparable variance as T2ONet.
Given the strong editing ability of the pretrained generator,
the LGIE task becomes easier because the model only needs
to predict a latent code of 512 dimensions instead of the en-
tire image space. Moreover, we study whether the language
input alone is sufficient to predict the latent code. We de-
note the setting without image input as ours w/o viz shown
in Tab. 5, which shows inferior results to the standard set-
ting, thus suggesting the importance of the visual input.

For the zero-shot LGIE, we firstly show our result in
Fig. 1 and 10, indicating that our model can achieve the
editing with the diversified directive of high-level semantic
(aurora), editing terminology (split tone), color manipula-
tion (green shirt), or even some texture change (Van Gogh
painting). Furthermore, the comparison with the SOTA is
drawn in Fig. 11. StyleCLIP completely fails in these cases
because it does not work for open-domain images. The face
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Figure 11. The open-vocabulary, open-image, language-guided
image editing samples optimized by CLIP with comparison to
other methods.

will pop up due to the memory of its generator pretrained
on face dataset. Despite that OpenEdit can accept open-
domain images, its editing does not follow the request well,
and the output image contains obvious artifacts. In contrast,
our method can handle these cases well. Despite imperfect,
our model has the potential to achieve gray image coloriza-
tion while other methods cannot.

6.3.2 Personalized Editing and Recommendation

Given a user-edited before-and-after image pair as an ex-
emplar, our model can achieve both personalized editing
and editing style recommendation. For personalized edit-
ing, we study exemplar-based image editing (EBIE), which
is to edit the input image following the editing style of the
user preferred exemplar. This task can be naturally tack-
led by the transferability property (Sec. 4.3) of theW space
without training. When there are multiple exemplars with
consistent styles, we can find a common editing direction
by averaging the latent code of all the exemplars. We com-
pare our approach with the Lr preset, which is a set of
Lr operations that can also be applied to other images to
achieve a similar editing effect. The visualization of the
comparison is shown in Fig. 12, indicating our transfer re-
sult is reasonable and visually comparable with the Light-
room preset. However, the preset approach must know the
exact preset parameters of the exemplar images, while our
method is free from such constraint and thus is more gen-
eral. Moreover, different from the photorealistic style trans-
fer [49] where the color and texture of the reference image

Source Target Input Lr Preset Ours

Figure 12. The visualization of the exemplar-based image edit-
ing. The left of the dash line are exemplars and the right is the
transferred editing.

is directly transferred to the source image, our EBIE tries
to transfer the relative editing style. Taking the first row of
Fig. 12 as an example, our method transfer the “brighten”
effect instead of the green color to the other image.

Editing style recommendation is to recommend the im-
age pairs with similar editing styles to a given image pair.
This task is beneficial for the photography pedagogy if a
user wants to see multiple photo examples of the same edit-
ing style for specialized learning. Such task can be handled
via the retrieval capability in theW space, as illustrated in
Sec. 6.2. The visualization is shown in Appx. D.1.

7. Conclusion and Discussion

This paper introduces a new image editing paradigm:
learn a pretrained I2I generator with an editing space that
can work as a unified interface to bridge multiple down-
stream tasks. We find the editing space is well disentangled
and complete for color editing, which can be used for both
editing and recognition. Experiments on the downstream
tasks prove the advantages of our pretrained model.
Limitation. Our method relies on the Adobe Discover
dataset and thus cannot be expected to manipulate image
content (e.g. geometric change) or texture (though we have
shown some particular texture changes in painting style,
they are not general). For LGIE, a faithful image manip-
ulation is not guaranteed if the text requests are mapped to
the CLIP space where images are not well populated.
Potential Negative Impact. Our model might be mali-
ciously used to generate fake photos to forge criminal ev-
idence, e.g., daytime to night. Therefore we keep the user’s
identity and editing history to monitor misuse.
Acknowledgement. This work has been partially supported by
the National Science Foundation (NSF) under Grant 1909912 and
by an Adobe research gift. The article solely reflects the opinions
and conclusions of its authors but not the funding agents.
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