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Abstract

Existing point cloud segmentation methods require a
large amount of annotated data, especially for the outdoor
point cloud scene. Due to the complexity of the outdoor
3D scenes, manual annotations on the outdoor point cloud
scene are time-consuming and expensive. In this paper,
we study how to achieve scene understanding with limited
annotated data. Treating 100 consecutive frames as a se-
quence, we divide the whole dataset into a series of se-
quences and annotate only 0.1% points in the first frame of
each sequence to reduce the annotation requirements. This
leads to a total annotation budget of 0.001%. We propose a
novel temporal-spatial framework for effective weakly su-
pervised learning to generate high-quality pseudo labels
from these limited annotated data. Specifically, the frame-
work contains two modules: an matching module in tem-
poral dimension to propagate pseudo labels across differ-
ent frames, and a graph propagation module in spatial di-
mension to propagate the information of pseudo labels to
the entire point clouds in each frame. With only 0.001%
annotations for training, experimental results on both Se-
manticKITTI and SemanticPOSS shows our weakly super-
vised two-stage framework is comparable to some existing
fully supervised methods. We also evaluate our framework
with 0.005% initial annotations on SemanticKITTI, and
achieve a result close to fully supervised backbone model.

1. Introduction
Recently, outdoor 3D semantic segmentation is attract-

ing more research attention since the introduce of sev-
eral large datasets, e.g., SemanticKITTI [1] and Semantic-
POSS [19]. The outdoor 3D point cloud dataset organises
the data as several sequences of point clouds, i.e. 4D point
cloud. Then, multiple scans in point cloud sequences are
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(a) Full annotation.

(b) Unsupervised super-voxel segmentation.

(c) Partially annotated super-voxel level labels.

Figure 1. An example of super-voxel segmentation and our
weak annotation. Super-voxel segmentation segments the whole
point cloud scan into several small units, each containing points
within the same class. Therefore, we assign the point level initial
annotation to all the points in the same super-voxel.

superimposed together and divided as small tiles to reduce
manual annotation costs. However, the annotation cost on
the small tiles is still high. In SemanticKITTI [1], the anno-
tation on one 100m× 100m tile of highway scene requires
an average of 1.5 hours, and the annotation on one tile
of more complex scenes requires an average of 4.5 hours.
The whole annotation task on SmeanticKITTI requires over
1700 hours. Therefore, the research on accelerating the an-
notation process is valuable and desirable. We here resort to
weakly supervised learning to tackle this annotation issue.

For indoor 3D point cloud scenes, there are several
weakly supervised methods [18,27,29,33] proposed for ac-
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celerating the annotation process. MPRM [29] generates
pseudo labels of an indoor 3D scene based on the 2D in-
formation. Other approaches [18, 33] annotate a subset of
the whole point cloud scene and update weak pseudo la-
bels with the annotated points. For outdoor 3D point cloud
scenes, there is no existing weakly supervised segmenta-
tion methods available. Directly applying techniques devel-
oped for indoor scenes to outdoor scenes can not perform
well due to following reasons. Firstly, there is no colour in-
formation in outdoor LiDAR point clouds, while methods
designed for indoor scenes rely on the colour information
to generate and smooth the pseudo labels. Secondly, a typi-
cal outdoor point cloud scene contains about 100,000 points
for a 150m × 150m area, which is much more sparse than
an indoor point cloud scene. Thirdly, as a single outdoor
4D point cloud contains several corresponding point cloud
scans, methods proposed for single point cloud scans in the
indoor case require extra burdens to generate pseudo labels
for each point cloud scan separately.

In this work, we propose a novel weakly supervised
framework to reduce the annotation cost in the outdoor
point cloud scenario. We exploit the temporal information
among point cloud sequences and only annotate 0.1% points
in one frame per 100-frame sequence in 4D point clouds.
However, training on a weakly labelled dataset with only
0.001% annotated points is unable to learn good features
for achieving satisfiable performance. This problem can be
concluded as the cold-start problem. To generate more su-
pervision at minimum annotation cost, we apply an efficient
super-voxel segmentation [17] on the dataset and assign the
labels of annotated points to their belonged super-voxels.
Inspired by ScanNet [7] and OTOC [18], super-voxel seg-
mentation segment a point cloud into several small groups,
and the points in each group share a same semantic label.
We show an example of our annotations in Figure 1.

We then design two modules, i.e., temporal matching
(TM) and spatial graph propagation (SGP), to propa-
gate the annotations to the whole dataset. TM is designed
to generate seeding points in different frames by tempo-
ral propagation. For TM , we design two approaches with
greedy matching and optimal transport matching. SGP fur-
ther propagates the searched results to the whole point cloud
scene in the spatial dimension.

Furthermore, we propose a two-stage training strategy,
which consists of a seed point propagation stage and a dense
scene propagation stage. Firstly, the seed point propagation
stage propagates initial annotations only along the tempo-
ral dimension with TM to generate high-quality pseudo la-
bels under the cold-start scenario. We improve the feature
quality by training a new segmentation model on the small
amount of high-quality pseudo labels.

In the second stage, we use the new segmentation model
from the previous stage to generate features, and based on

the new features, we use a dense scene propagation strategy
to combine TM and SGP to propagate the label informa-
tion to the whole dataset. We continue training the model
from the previous stage with more pseudo labels to improve
the performance further. We evaluate our method on two
outdoor segmentation datasets, i.e., SemanticKITTI [1] and
SemanticPOSS [19]. Experimental results show that our
method achieves comparable performance with some fully
supervised methods. We summarize the main contributions
as follows:

• We propose a novel two-stage weakly supervised seg-
mentation framework to exploit spatial and tempo-
ral information across frames. The first stage (seed
point propagation) generates seeding points in differ-
ent frames based on weak annotations (0.001% anno-
tated points). The second stage (dense scene propaga-
tion) propagates high-confident points in both tempo-
ral and spatial dimensions.

• We propose a temporal propagation module using tem-
poral matching to propagate pseudo labels to differ-
ent frames. There are two matching strategies, greedy
matching and optimal transport matching to search the
points from the annotated objects in different frames.

• We develop a spatial graph propagation module to
propagate pseudo labels along spatial dimension in the
dense scene propagation stage. Spatial graph propaga-
tion generates dense pseudo labels to further improve
the model.

• Experimental results on both SemanticKITTI and Se-
manticPOSS show that our weakly supervised two-
stage framework achieves on par performance with
some existing fully supervised methods, while we only
use 0.001% annotations for training. Furthermore, we
evaluate our weakly supervised method with 0.005%
initial annotations on SemanticKITTI, and performs
close to our fully supervised backbone network.

2. Related Work
3D Point Cloud Segmentation 3D point cloud semantic
segmentation is a basic scene understanding task for the
robotic system. Recent papers on point-cloud segmentation
can be divided into projection-based methods, point-based
methods, and volumetric-based methods. Projection-based
methods [2,5,15,30–32] transform the 3D scenario into the
2D scenario with a projection step to avoid the huge compu-
tation costs in the 3D point cloud processing. The inference
speed of projection-based methods reaches the real-time re-
quirement. However, the performance of these projection-
based methods is limited by the distortion of objects and
the sparsity of projected pixels in the projection step. Point-
based methods directly process points to extract the spatial
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information. Typical point-based methods [12, 21, 22, 35]
capture k nearest neighbours of each point and apply an
MLP to extract the features of the point clouds. To further
improve the capability of the simple MLP approach, point
convolution methods [14,16,25] design a convolution-style
operation based on the related position of the neighbours.
Furthermore, some graph-based methods [28] build k near-
est neighbour graph on the point cloud and adapt a graph
convolution network to aggregate the features. In point-
based methods, directly processing the points in the con-
tinuous space captures the original geometric information,
while point-based methods require massive computation re-
sources. Volumetric-based methods [3,4,9,10,23,24] index
the points with discrete coordinates and apply the convo-
lution on the indexed points. With the index, volumetric-
based methods accelerate the convolution on the sparse
point cloud and show good performance on the large scale
point cloud, e.g., outdoor point cloud.
Weakly Supervised Point Cloud Segmentation Weakly
supervised point cloud segmentation aims to train a us-
able segmentation model with weak annotations. The
Weakly semantic Segmentation on indoor 3D point cloud
has made great progress. Recently, MPRM [29] design
a multi-Path region mining module to generate the scene-
level annotation and subcloud-level annotation. Xun [33]
and OTOC [18] annotate a tiny subset of indoor point cloud
scene. The tiny subset contains less than 10% points for
Xun [33] and 0.01% points for OTOC [18] Then, they de-
sign a self training mechanism to propagate the annotations
to the whole point cloud scene, and approach the perfor-
mance of fully supervised segmentation.

3. Methodology

3.1. Overview

Our framework combines spatial and temporal informa-
tion to reduce the annotation costs for outdoor LiDAR point
cloud datasets. An outdoor LiDAR dataset [1, 19] contains
several sequences of 3D point clouds. To maximize the us-
age of spatial and temporal information, we split each se-
quence of 3D point cloud into several sub-sequences with
100 point cloud frames each. As the LiDAR devices in
KITTI [8] collect ten frames per second, each of our gen-
erated sub-sequence covers data within a time range of 10
seconds. Then, we only annotate the first frame of each
sub-sequence. A KITTI-style LiDAR point cloud contains
target objects (e.g. car, person) and environment objects
(e.g. road, building). We annotate 1 point pt

i per each tar-
get object, and 20 points per each environment object. The
average proportion of annotated points is around 0.001%
of the whole dataset. However, only 0.001% points are
not enough to train a satisfied model. We thus apply an
unsupervised super-voxel segmentation on the point cloud
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Figure 2. The overview of our proposed framework. Initially,
we sample and annotate about 0.001% points, and train an initial
model. In the seed Point propagation stage, we only select a low
amount of high quality pseudo labels with temporal matching to
train the first model. The dense scene propagation stage generates
more data for training the final model.

scene and assign the same label for each super-voxel vti′
containing annotated points to generate more initial anno-
tations. The unsupervised super-voxel segmentation is im-
plemented by Lin [17], which is a simple but effective ap-
proach. The updated annotation covers 0.0057% of points
in the SemanticKITTI.

With the initial annotation, one core challenges is the ex-
treme data imbalance issue in the outdoor scenario among
the target and environment objects. The proportion of an-
notated target object points is lower than 1% of the initial
annotation. Therefore, we design a two-stage framework
to improve the performance of the model. The first stage,
i.e., seed point propagation, uses a temporal matching with
greedy matching or optimal transport [26] to search the cor-
responding points of the initial annotations in different point
cloud frames. The updated pseudo dataset contains a low
amount of pseudo labels with high quality. We train a new
segmentation model with higher feature quality for the next
stage with the pseudo labels from the first stage, as stated
in Section 3.4. Afterwards, in the dense scene propaga-
tion stage, we use the new segmentation model to extract
features. With the new features, we combine the temporal
matching and spatial graph propagation to update the pre-
diction scores of non-annotated points. The updated points
with high confidence scores are the pseudo labels Sdense

of the second stage. The pseudo dataset in the second stage
contains a high amount of points with lower quality than the
pseudo labels from the first stage. Subsequently, we con-
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Figure 3. The structure for the seed point propagation (SPP)
stage. Our temporal matching generates the one-to-one matching
results for the super-voxel from the same objects of the pseudo
labels.
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Figure 4. The temporal propagation module using Greedy
matching (Temp-GM) or Optimal Transport (Temp-OT).

tinue training the model from the previous stage. The two-
stage framework updates the pseudo dataset with high ro-
bustness and achieves performance improvement. We show
the structure of our proposed framework in Figure 2. Note
that to use the limited initial annotations further, we prop-
agate the initial annotations in both forward (from t0 to
t0 + 50) and backward (from t0 to t0 − 50) directions.

3.2. Stage1: Seed Point Propagation (SPP)

As the amount of annotated data is meagre and an out-
door point cloud scene only contains coordinates of points,
features obtained from pre-trained models are not reliable
for updating the pseudo labels on the whole point cloud
scene directly, like Xun [33] and OTOC [18]. Therefore, to
solve the cold-start problems, we design a temporal match-
ing to efficiently search the super-voxels from the same
objects of annotated super-voxels in corresponding point
clouds. We show the structure of the seed point propaga-
tion stage in Figure 3. The temporal matching compares the
difference of features and coordinates between the points in
two corresponding frames and search for the matching re-
sults of pseudo labels. The temporal matching reduces the
effect of data unbalance, and is robust with just features and
coordinates. In our implementation, there are two matching

strategies, greedy matching and optimal transport matching.
Greedy matching generates matching results with a well-
designed similarity score. To further improve the perfor-
mance of temporal matching, we design an optimal trans-
port matching to generate 1-to-1 matching results with a
optimal transport solver. Inspired by the point cloud flow
methods [20], optimal transport builds up connections of
points in two corresponding point cloud frames. The 1-to-1
matching in the optimal transport improves the performance
of the model slightly. However, the optimal transport solver
also increases the cost of computation. Accordingly, the
choice of the matching strategies depends on the balance of
performance and inference speed. We show an explanation
of temporal matching in Figure 4.
Temporal matching with greedy matching (Temp-GM)
As an outdoor point cloud scene covers an average of
120,000 points, directly applying the temporal matching on
the original point cloud requires a massive amount of com-
putation. Therefore, we use the results of super-voxel seg-
mentation and update the pseudo labels at the super-voxel
level. The feature fv,ti′ , coordinate cv,ti′ , and probability yv,ti′

of the i′-th super-voxel vti′ are

cv,ti′ =
1

n′

n′∑
î

ctî; fv,ti′ =
1

n′

n′∑
î

ftî; yv,t
i′ =

1

n′

n′∑
î

yt
î, (1)

where î represents the î-th point belonging to the super-
voxel vti′ , and n′ is the total number of points in one super-
voxel. ct

î
, ft

î
, and yt

î
are the coordinate, feature and prob-

ability of point pt
î
. The label lv,ti′ of vt,i′ is the label with

the maximum probability score. Then, we build the trans-
port cost matrix Ct,t+1 to solve the optimal transport prob-
lem. In our task, the information of an outdoor point cloud
contains coordinates, remissions and features from the pre-
trained model. Therefore, we use the features from the pre-
trained network and the coordinates to extract the matching
points between Pt and Pt+1. Initially, the feature similar-
ity scores df,t,t+1

i′,j′ and coordinate similarity scores dc,t,t+1
i′,j′

between vt,i′ and vt+1,j′are formulated as:

df,t,t+1
i′,j′ =

(fv,t
i′ )T · fv,t+1

j′∥∥∥f′t,i′
∥∥∥ ·

∥∥∥fv,t+1
j′

∥∥∥ , dc,t,t+1
i′,j′ = exp (−

∥∥∥cv,t
i′ − cv,t+1

j′

∥∥∥2
2θ2

).

(2)
Note that θ is a hyperparameter, which is set to 0.5 in

our implementation. We use cosine similarity to determine
df,t,t+1
i′,j′ , which is better than the Gaussian kernel in our ex-

periment. Then, a matching cost matrix Ct,t+1
i′,j′ is

Ct,t+1
i′,j′ = 2− df,t,t+1

i′,j′ − dc,t,t+1
i′,j′ . (3)

To reduce noise data, we set Ct,t+1
i′,j′ as∞ if the L2 distance

of cv,ti′ and cv,t+1
j′ is larger than 10m. The matching result

of pt
i′ are the points pt+1

j′ with the lowest Ct,t+1
i′,j′ .
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t

Pseudo Label 

𝑺𝑑𝑒𝑛𝑠𝑒
𝑡+1

Temporal 
propagation

t+1

t+1

Spatial Graph 
Propagation

Confident 
Points
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Temporal matching with Optimal Transport (Temp-OT)
Optimal Transport measures a minimum cost to transport
set X to another set Y, and generates a transport plan T.
Based on Kantorovich’s formulation [13], an optimal trans-
port problem for our setting is formulated:

T = argmin
U∈Rn×m

+

n∑
i

m∑
j

Ci,jUi,j ,

s.t. U1m = 1n−1,UT 1n = 1m−1.

(4)

Here C is the transportation cost matrix. U is the assign-
ment matrix with each element Ui,j denoting the assign-
ment value from sample i in X to sample j in Y. n and m
are the amount of elements in set X and Y. In our setting,
X and Y are the point clouds Pt and Pt+1. The transporta-
tion cost matrix C is built up on the differences of features
and coordinates between Pt and Pt+1, and we directly use
the matching cost matrix Ct,t+1 in Equation (3). Then,
Sinkhorn algorithm [6] is capable of solving a smoothed
version of optimal transport, which is formulated as:

Tt,t+1 = argmin
U∈Rn×m

+

n∑
i

m∑
j

Ct,t+1
i′,j′ Ui,j

+ ϵUi,j(logUi,j − 1),

s.t. U1m = 1n−1,UT 1n = 1m−1.

(5)

Note that Tt,t+1 is the transportation plan matrix between

point cloud Pt and Pt+1. n and m are the number of points
in Pt and Pt+1. ϵ is a hyperparameter to enhance the dif-
ference of each point pair. Then, the detailed solution is
shown in Alg. 1. With the optimal transport, an one-to-one
matching can be determined with Tt,t+1.

Algorithm 1 Sinkhorn Algorithmn

Input: Transportation Cost Matrix Ct,t+1, hyperpa-
rameter ϵ, maximum iteration number L0

Output : Transportation Plan Tt,t+1

1: procedure
2: Kt,t+1 ← exp (Ct,t+1/ϵ)
3: a← 1n−1, b← 1m−1

4: for l = 1, ..., L0 do
5: b← 1m−1/((Kt,t+1)T · a)
6: a← 1n−1/(Kt,t+1 · b)
7: end for
8: Tt,t+1 ← diag(a) ·Kt,t+1 · diag(b)
9: end procedure

Updating Pseudo Label Set Sseed. The matching result of
vti′ is vt+1

j′ with the lowest matching cost or highest trans-
port score. We assign the label of annotated points to the
matching result vt+1

j′ , and the matching results are updated
as pseudo labels. Then, we apply the temporal matching se-
quentially to propagate the pseudo labels from the previous
frame to the next frame. However, the false matching results
during the propagation accumulate in the following propa-
gation steps. Furthermore, most objects annotated in the
first frame do not appear in distance frames. Therefore the
one-to-one matching is not able to generate accurate match-
ing results. Thus, the errors are propagated along with the
whole process, which leads to significantly reduced quality
of the generated pseudo labels. To reduce error accumula-
tion, we use confidence scores to filter the matching results.
When a prediction score of one matching result shows a low
confidence score for the label of annotated point from the
previous frame, we stop the propagation of this annotated
point in advance. Then, we record every remaining match-
ing result as the pseudo label set Sseed. The proportion of
pseudo labels Sseed is 0.8% of the whole point clouds. With
Sseed, we train a new model for the next stage.

3.3. Stage2: Dense Scene Propagation (DSP)

In the previous stage, temporal matching generates 0.8%
pseudo labels with high quality. The proportion of pseudo
labels is still low. Therefore, we propose the second stage
to update more pseudo labels with dense scene propaga-
tion and continue training the model for the performance.
With the model from previous stage, we firstly propagate
the initial annotations along the time dimension with tem-
poral matching to capture more pseudo labels. Then, in

11844



the spatial dimension, we use spatial graph propagation to
propagate the labels of matching results to the whole point
clouds and generate pseudo labels for these frames. Subse-
quently, we iteratively propagate the updated pseudo labels
to the following frames. We show the pipeline of dense
scene propagation stage in Figure 5.
Temporal Propagation Given two corresponding point
clouds Pt and Pt+1, we use the temporal matching (details
given in Sec. 3.2 and Figure 4) to search the super-voxel
vt+1
j′ from the same pseudo label of vt

i′ . Note that vt+1
k is the

k-th super-voxel of the matching results. The matching re-
sults are the confident points in the current point cloud Pt+1.
For the confident points vt+1

k , we assign the one-hot labels
of source super-voxel vt

i′ to the target super-voxel vt+1
k as

the probability yo,t+1
k .

Spatial Graph Propogation (SGP) Then, we build a di-
rected graph G(V,E) on the whole point cloud. In G(V,E),
the directions of edges E are from the confident points
to all the super-voxels in t + 1, which includes self-loop
edges. Afterwards, we build the transition matrix A for
graph G(V,E) with similarities of super-voxels. The simi-
larity of vt+1

k and vt+1
j′ are:

wk,j′ = exp (−λ0

∥∥∥cv,t+1
k − cv,t+1

j′

∥∥∥2

2θ20
− λ1

∥∥∥fv,t+1
k − fv,t+1

j′

∥∥∥2

2θ21
),

(6)
where λ0, λ1, θ0 and θ1 are hyper-parameters to control the
weights of the features cv,t+1

j′ and fv,t+1
j′ . Accordingly, we

build a transition matrix A, and each element of A is:

ak,j′ =
wk,j′∑m′

k′ wk′,j′
, (7)

where m′ is the number of matching results. Then, we prop-
agate the information of search results to the unannotated
super-voxel. As stated in Section 3.1, there is an extreme
data unbalance problem in outdoor point cloud scenario,
and the information of environment objects eliminates the
information of target objects during the graph propagation.
To reduce the effects of data unbalance, we apply a dropout
on the super-voxels of environment objects in the tail nodes.
In our implementation, we only keep 5% super-voxels of
environment objects for propagation. The updated proba-
bility ŷv,t+1

j′ is:

ŷv,t+1
j′ = αyv,t+1

j′ + (1− α)

m′∑
k′

ak′,j′yo,t+1
k , (8)

where α is a hyperparameter. Ultimately, we select the
super-voxel with high ŷv,t+1

j′ as the pseudo label. Further-
more, when t = 0, we directly use the annotated points as
the v0,k. We show an explanation of our proposed module
in Figure 6.
Updating Pseudo Label Set Sdense. In the dense scene
propagation stage, the predictions with high score of ŷv,t+1

j′

are selected as new pseudo labels. Then, we merge the
matching results and new pseudo labels as the Pseudo La-
bel Set Sdense, which covers an average of 20.0% points in
each point cloud.

3.4. Training Pipeline

With the SPP stage in Sec. 3.2, we search the pseudo la-
bels from the same annotated objects in different frames and
train a new segmentation model for next stage. DSP stage
in Sec. 3.3 extracts high-quality features using the new seg-
mentation model. Based on the similarity of the features
from the new segmentation model, the temporal matching
and spatial graph propagation generate the pseudo labels
of unannotated super-voxels. Finally, we train a final seg-
mentation model using the final pseudo labels. The training
pipeline is summarized in Algorithm 2. In the SPP stage,
we iteratively update the pseudo labels Sseed for better per-
formance. Then, we only update the pseudo label once in
the DSP stage. In our setting, our updating mechanism
depends on the first frame of each 100 frames. The false
positive pseudo labels are hard to be detected and revised,
leading to overfitting on those false positive pseudo labels
in both updating and training phases, especially for spatial
graph propagation. In our observation, iteratively updating
the pseudo labels Sdense does not lead to increased perfor-
mance of the final model.

Algorithm 2 Weakly Supervised 4D Point Cloud Seg-
mentation

Input: Point Clouds P
1: procedure
2: V← super voxel segmentation(P)
3: S← sample and annotation(P,V)
4: InitialSegmentModel← train(P,S)
5: # Seed Point Propagation Stage
6: for i ← 0 to 2 by 1 do
7: # Update with temporal matching.
8: Sseed ← generation with TM(P,S)
9: MidSegmentModel← train(P,Sseed)

10: end for
11: # Dense Scene Propagation Stage
12: # Update with temporal matching and spatial

graph propagation.
13: Sdense ← generation with SGP (P,S)
14: FinalSegmentModel← train(P,Sdense)
15: end procedure

4. Experiment
We evaluate our framework on the multiple scan segmen-

tation task on SemanticKITTI [1] and SemanticPOSS [19].
In SemanticKITTI, the training set contains 9 sequences
(19,130 frames). The number of frames in the validation
set is 4,071 for 1 sequence, and in the testing set it is 20,351
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Stage1: SPP Stage2: DSP
Temp-GM Temp-OT Temp-GM Temp-OT SGP mIoU

Fully Sup. 60.7
OTOC† [18] 43.1
Baseline-A 40.9
Baseline-B 42.6
Model-A

√
47.7

Model-B
√

47.9
Model-C

√ √
45.4

Model-D
√ √ √

49.2
Model-E

√ √ √
50.3

Table 1. Ablation study on the validation set of Se-
manticKITTI. SPP: seed point propagation; DSP: dense scene
propagation; Temp-GM: temporal matching with greedy match-
ing; Temp-OT: temporal matching with optimal transport match-
ing; SGP: spatial graph propagation. “Fully Sup.” denotes the fully
supervised (100% point annotations) model.

for 9 sequences. We uniformly divided 9 sequences into 198
sub-sequences with 100 frames. Note that we adjust several
choices of annotated frames to make sure every sequences
contain 100 frames. In the training set, we annotated 0.1%
points in the first frames of the 198 sub-sequences, which
leads to a total annotation budget of 0.001%. Similar to
SemanticKITTI, SemanticPOSS is a LiDAR point cloud
dataset of outdoor scenes. There are 6 scenes with 2988
frames in SemanticPOSS, which contain 2488 frames for
training set and 500 frames for testing set. After we uni-
formly divided training set as 26 sub-sequences, the num-
ber of initial annotated points in SemanticPOSS is around
3000 points for the first frames of 26 sub-sequences. We
implement our framework with the Minkowski Engine [4].
The whole training time for one model on SemanticKITTI
is 5 days with one Nvidia RTX 3090. We set θ, ϵ, θ0, θ1, α
and β to 0.5, 0.03, 0.5,0.3, 0.5 and 0.5, respectively.

4.1. Evaluation on SemanticKITTI

Ablation study on different components To study the ef-
fectiveness of each module, we conduct detailed experi-
ments on the validation set of SemanticKITTI. In our exper-
iments, all the backbones of the models are the Minkowski-
UNet [4] with 42 layers. As shown in Table 1, “Fully Sup.”
denotes the fully supervised backbone network. Baseline-A
is using only 0.001% initial annotations to train a segmen-
tation model. Compared to “Fully Sup.”, the mIoU score
drops by 19.8. As comparisons, we further implement two
weakly supervised methods for 3D point cloud segmenta-
tion, i.e., naive pseudo label generation (Baseline-B) and
an existing method OTOC† [18]. OTOC is originally a
weakly supervised method for indoor point cloud segmen-
tation. The pseudo label generation of Baseline-B is to di-
rectly update the points with high confidence scores as the
pseudo labels for the model training. Baseline-B performs
almost comparable with OTOC† [18], improving Baseline-
A by less than ∼2 points. This validates our claim that di-

Supervision mIoU
PointNet [21] 100% 14.6
PointNet++ [22] 100% 20.1
SqueezeSegV2 [31] 100% 39.7
DarkNet21Seg [1] 100% 47.4
KPconv [25] 100% 58.8
MinkowskiUNet [4] 100% 56.2
Baseline-100f(MinkowskiUNet) 0.001% 39.4
Ours-100f 0.001% 44.8
Baseline-20f(MinkowskiUNet) 0.005% 46.4
Ours-20f 0.005% 52.3

Table 2. Our test results on the semantic segmentation task of
SemanticKITTI. Here, we show two results with different initial
annotations. For Baseline-100f and Ours-100f, we sample 0.1%
points in the first frame per 100 frames(0.001% points in total).
With only 0.001% initial annotations, our model achieves compa-
rable results with some fully supervised results [31]. For Baseline-
20f and Ours-20f, we sample 0.1% points in the first frame per 20
frames(0.005% points in total). The performance of Ours-20f is
only 2.9% than our fully supervised baseline.

Supervision mIoU
PointNet++ [22] 100% 20.1
RandLA-Net [11] 100% 53.5
KPConv [25] 100% 55.2
JS3C-Net [34] 100% 60.2
Backbone 100% 56.3
Backbone 0.001% 39.5
Backbone+SPP(Ours) 0.001% 49.4
Backbone+SPP+DSP(Ours) 0.001% 52.2

Table 3. The results on the data part 3 of SemanticPOSS. Su-
pervision indicates the percentage of annotations in training.

rectly applying weakly supervised methods developed for
indoor scenes to outdoor point cloud segmentation can not
perform well. In contrast to OTOC, Model-B with Temp-
OT achieves an absolute mIoU boost of 7.4 over Baseline-
A. Our full model (Model-E) increases the mIoU score by
9.4, which is significantly better than OTOC.

We also compare our temporal matching module with
greedy matching (Model-A) and an optimal transport
matching (Model-B). We can see that Model-B performs
slightly better than Model-A. The reason is that the propor-
tion of generated pseudo labels is only 0.8%, and the low
proportion limits the advantage of optimal transport. Fur-
ther comparing Model-E with Model-D, we can see that the
optimal transport matching again outperforms the greedy
matching used in the DSP stage by a margin of 1.1. In
DSP, the proportion of generated pseudo labels increases
to around 20.0%. With more pseudo labels, Temp-OT
achieves a substantial improvement of 1.1 in DSP stage.

Next we validate the two stage design of our method.
The performance of our full model (Model-E) achieves an
improvement of 2.4 over Model-B, which validates the ef-
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Figure 7. Qualitative results of generated pseudo labels in stage 1 and stage 2.

fectiveness of our DSP stage. Comparing Model-C (without
SPP stage) with Model-E, we can see that adding the SPP
stage leads to an mIoU boost of 4.9. This demonstrates the
effectiveness of our SPP stage.

Results on the test set of SemanticKITTI Table 2 reports
the results on SemanticKITTI test set. There are several
representative works in fully supervised 3D semantic seg-
mentation. These methods are the upper bounds of our
weakly supervised methods and backbone network. Our
baseline network is a MinkowskiUNet [4] with 42 layers,
which is the same as our backbone network. Compared
to the MinkowskiUNet with 100% supervision, the base-
line model with 0.001% initial annotations results in an ab-
solute mIoU drop of 16.8. While our framework outper-
forms the baseline with a considerable margin,bringing an
absolute mIoU boost of 5.4%. Then, we evaluate the same
model with 0.005% initial annotation. The performance
of our baseline model with more initial annotation is 9.8%
lower than fully supervised MinkowskiUNet. Our frame-
work outperforms the our baseline model with 5.9%, and
reaches the same level of performance as the fully super-
vised MinkowskiUNet.

The qualitative results of pseudo label. We randomly se-
lect the pseudo labels in different positions of sequences,
which is shown in Figure 7. In both Sseed and Sdense, with
the propagation, the number of pseudo labels in t = 50 is
significantly lower than the number in t = 1, especially for
Sseed. The frames far from the first frame do not share many
annotated regions with the first frame. Therefore, building
the long range connection between the annotated areas and
distance frames remains a big challenge.

4.2. Evaluation on SemanticPOSS

We also evaluate our annotation and training approach
on SemanticPOSS. Note that there are several target objects
without any instance-level annotations. We sample 10% of
the super-voxel amounts as the initial annotation of Seman-
ticPOSS. As a result, the annotation in SemanticPOSS is
denser than the annotation in SemanticKITTI. The propor-
tion of initial annotation is still around 0.001%. As shown
in Table 3, our framework achieves 52.2% on area 3 of Se-
manticPOSS while the model trained by the initial 0.001%
annotations achieves only 39.5%.

5. Conclusion
We propose a two-stage framework to train a usable

model with extremely sparse annotations (0.001% anno-
tated points) for outdoor 3D point cloud sequences. Exper-
imental results demonstrate that our method significantly
outperforms the baseline and achieves comparable results
with some fully supervised methods.
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