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Abstract

Test-time adaptation approaches have recently emerged
as a practical solution for handling domain shift without
access to the source domain data. In this paper, we pro-
pose and explore a new multi-modal extension of test-time
adaptation for 3D semantic segmentation. We find that, di-
rectly applying existing methods usually results in perfor-
mance instability at test time, because multi-modal input
is not considered jointly. To design a framework that can
take full advantage of multi-modality, where each modal-
ity provides regularized self-supervisory signals to other
modalities, we propose two complementary modules within
and across the modalities. First, Intra-modal Pseudo-
label Generation (Intra-PG) is introduced to obtain reli-
able pseudo labels within each modality by aggregating
information from two models that are both pre-trained on
source data but updated with target data at different paces.
Second, Inter-modal Pseudo-label Refinement (Inter-PR)
adaptively selects more reliable pseudo labels from different
modalities based on a proposed consistency scheme. Exper-
iments demonstrate that our regularized pseudo labels pro-
duce stable self-learning signals in numerous multi-modal
test-time adaptation scenarios for 3D semantic segmenta-
tion. Visit our project website at https://www.nec-
labs.com/˜mas/MM-TTA

1. Introduction
3D semantic segmentation is a challenging task that re-

quires both geometric and semantic reasoning about the in-
put scene, but it can provide rich insights that enable appli-
cations like autonomous driving [32, 34], virtual reality and
robotics [5, 27]. With the advancement of sensor technol-
ogy, multi-modal sensors are considered as the key to ef-
fectively tackle this task [6, 16, 17]. In particular, to obtain
more accurate 3D point-level semantic understanding, con-
textual information in 2D RGB images can be reinforced by
the geometric property of 3D points from LiDAR sensors,
and vice versa. Therefore, it is of great interest to develop
multi-modal approaches for 3D semantic segmentation.

Figure 1. We propose a Multi-Modal Test-Time Adaptation (MM-
TTA) framework that enables a model to be quickly adapted to
multi-modal test data without access to the source domain train-
ing data. We introduce two modules: 1) Intra-PG to produce reli-
able pseudo labels within each modality via updating two models
(batch norm statistics) in different paces, i.e., slow and fast up-
dating schemes with a momentum, and 2) Inter-PR to adaptively
select pseudo-labels from the two modalities. These two modules
seamlessly collaborate with each other and co-produce final cross-
modal pseudo labels to help test-time adaptation.

However, multi-modal data is sensitive to a distribution
shift at test time when a domain gap exists to the training
data [1]. Therefore, it is critical for a model to quickly
adapt to the new multi-modal data during testing for ob-
taining better performance, i.e., through test-time adapta-
tion (TTA) [19,30]. This is different from the usual domain
adaptive semantic segmentation setting [13, 28, 35] that can
access both source and target data during training. In TTA,
we only have access to model parameters pre-trained on the
source data and the unlabeled test data for quick adaptation,
which typically (and also in this work) refers to one epoch
of training. This is practical for real-world scenarios, but it
is also challenging because only the target data is available
with a limited budget for adaptation.
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In this paper, we study multi-modal 3D semantic seg-
mentation in the setting of test-time adaptation, using both
image and point cloud as input. Prior works on general test-
time adaptation like TENT [30] propose entropy minimiza-
tion as a self-training loss to update batch norm parameters.
While TENT [30] is not designed for multi-modality, we
show a simple extension that updates parameters in indi-
vidual branches for each modality (2D image and 3D point
cloud). However, we find that this extension causes instabil-
ity during training. One reason is that, since entropy min-
imization tends to generate sharp output distributions, us-
ing it separately for 2D and 3D branches may increase the
cross-modal discrepancy. This would further lead to a sub-
optimal model ensemble for 2D and 3D outputs, which is
the common scheme for multi-modal semantic segmenta-
tion. One way to alleviate this cross-modal discrepancy is
to utilize a consistency loss [13] between predictions of 2D
and 3D branches, via KL divergence. However, since the
test data during adaptation is unlabeled, enforcing the con-
sistency across modalities may even worsen predictions if
the output of one branch is inaccurate.

To tackle the aforementioned issues and design bet-
ter test-time self-supervisory signals, we propose a cross-
modal regularized self-training framework that aims to gen-
erate reliable and adaptive pseudo labels (see Fig. 1). Our
method mainly consists of two modules: 1) Intra-modal
Pseudo-label Generation (Intra-PG), and 2) Inter-modal
Pseudo-label Refinement (Inter-PR). For the intra-modal
module, we aim to produce reliable pseudo labels in each
modality that alleviate the instability issue in test-time adap-
tation, i.e., only updating batch norm parameters by seeing
the test data once. To this end, we design a slow-fast mod-
eling strategy. Specifically, to maintain the model stability,
we initialize one batch norm statistics from the pre-trained
source model, and slowly update it with a momentum from
another fast-updated batch norm parameter, while this fast-
updated model is directly updated by the test data, which is
more aggressive but also provides up-to-date statistics. Our
model is thus able to fuse predictions from the slow-/fast-
updated statistics to enjoy their complementary benefits.

For the inter-modal module, we propose to adaptively
select reliable pseudo labels from the individual 2D and 3D
branches, because each modality brings its own advantage
for 3D semantic segmentation. To this end, we first leverage
the Intra-PG module to measure the prediction consisten-
cies of each modality separately, and then provide a fused
prediction from slow-fast models to the Inter-PR module
(Fig. 1). Based on these consistencies, our model adaptively
selects reliable pseudo labels from two modalities to form a
final cross-modal pseudo label as the self-training signal to
update 2D/3D batch norm parameters.

The proposed two modules collaborate with each other
for multi-modal test-time adaptation, and thus we name our

framework as MM-TTA. We conduct extensive experiments
to include several TTA state-of-the-art baselines and show
that our MM-TTA framework achieves favorable perfor-
mance over different benchmark settings, including cross-
dataset with different sensors, synthetic-to-real, and day-to-
night scenarios. Moreover, we provide comprehensive anal-
ysis to demonstrate the benefits of our two proposed mod-
ules (Intra-PG and Inter-PR) and the stability comparisons
with existing methods. Here are our main contributions:

1. We explore a new task, test-time adaptation for
multi-modal 3D semantic segmentation, and propose
a framework that effectively produces cross-modal
pseudo labels as self-training signals.

2. We introduce two modules that seamlessly work to-
gether: The Intra-PG module produces pseudo labels
for each modality separately and the Inter-PR module
adaptively selects pseudo labels across modalities.

3. We demonstrate our framework under different adap-
tation settings with extensive ablation studies and ex-
perimental comparisons against strong baselines and
state-of-the-art methods.

2. Related Work
Test-Time Adaptation (TTA) aims to enable quick adap-
tation of an existing model to new target data without hav-
ing access to the source domain data the model was trained
on. As an important challenge for dealing with dynamic do-
main shift in real-world, TTA is attracting more and more
attention in several tasks [4, 15, 19, 25, 30]. Among them,
Test-time Training (TTT) [25] updates model parameters in
an online manner by applying a self-supervised proxy task
on the test data. Since this proxy task is also required for
training samples, finding an optimal proxy task that works
well in both training and testing is challenging.

From that point of view, TENT [30], the first Test-Time
Adaptation (TTA) approach, proposes a simple yet effec-
tive entropy minimization method to optimize for test-time
batch norm parameters without requiring any proxy task
during training, which is demonstrated for image classifica-
tion and 2D semantic segmentation. However, entropy min-
imization tends to encourage the model to increase confi-
dence despite false predictions. To design a regularized self-
learning signal at test-time, a concurrent work, S4T [19],
proposes a selective self-training scheme for 2D seman-
tic segmentation by regularizing pseudo labels with aligned
predictive view generation. Nonetheless, this design is con-
sidered to be specific to an image-level task where spatial
augmentation can be performed. Compared to the afore-
mentioned work, we study a similar TTA setting but in the
different context of using multi-modality for 3D seman-
tic segmentation, i.e., Multi-Modal Test-Time Adaptation
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(MM-TTA), in which we develop intra-modal and inter-
modal modules that seamlessly work with each other to ob-
tain more reliable self-learning signals.

3D Semantic Segmentation has been recognized as an im-
portant 3D scene understanding task aimed at classifying
each LiDAR point into semantic categories. Therefore,
point clouds from LiDAR are deemed to be the dominant
modality to solve this task [5, 27, 31, 32, 34]. Range-based
methods [31, 32] adopt spherical projection to project 3D
points onto the 2D image plane and then pass this through
a 2D-based backbone [11]. Another effort is to utilize the
raw 3D point cloud by designing 3D segmentation mod-
els [5, 27]. KPConv [27] operates on point clouds without
any intermediate representation, while MinkowskiNet [5]
voxelizes the point cloud and utilizes SparseConvNet [9] for
processing. Despite these efforts, the LiDAR point cloud it-
self lacks 2D contextual information that is essential to un-
derstand the complex semantics of a scene.

To address this weakness, recent work [6, 17] explores
the use of multi-modal inputs (RGB images and LiDAR
point clouds) for 3D segmentation. These methods com-
monly separate the backbones for 2D and 3D modalities and
propose fusion techniques between the two outputs. Con-
sidering both contextual and geometric information from
each modality is shown to boost the performance in 3D se-
mantic segmentation. However, since each modality has
different dataset biases (e.g., style distribution in 2D and
point distribution in 3D), multi-modality based models are
harder to adapt to new data. In this work, different from su-
pervised training, we tackle multi-modal 3D semantic seg-
mentation in the test-time adaptation setting, which is prac-
tical as it incorporates test data statistics during inference,
thus improving results from multi-modal baselines.

Unsupervised Domain Adaptation (UDA) aims at bridg-
ing the gap between labeled source data and unlabeled tar-
get data. Methods for both 2D [14, 24, 28, 29, 36, 37] and
3D [20, 23, 33, 35] data have been proposed. Recently, few
works [13, 18] also introduced UDA approaches for 2D/3D
multi-modal data. Specifically, xMUDA [13] executes con-
sistency learning at training time between two modalities
both in source and target domains, while DsCML [18] fur-
ther utilizes adversarial learning with dynamic sparse-to-
dense cross-modal learning between modalities. All UDA
methods are allowed to access source data during adapta-
tion, while we tackle test-time adaptation, in which only the
source pre-trained model is available and a limited budget
is given to update test time statistics of the model.

3. Proposed Method
We start by introducing the preliminaries for test-time

adaptation in Sec. 3.1. Then, we explore several baselines
for multi-modal test-time adaptation in Sec. 3.2, using the

image (2D modality) and point cloud (3D modality) as in-
put for 3D semantic segmentation. Finally, we propose
our Multi-Modal Test-Time-Adaptation (MM-TTA) frame-
work, as shown in Fig. 2, with two newly designed modules:
1) Intra-PG to generate pseudo-labels within each modal-
ity (Sec. 3.3), and 2) Inter-PR to adaptively select reliable
pseudo-labels across modalities (Sec. 3.4).

Setup and notation. We follow the setting of test-time
adaptation [30], where we are not able to access the source
data but only the source pre-trained multi-modal segmenta-
tion model. This model consists of 2D and 3D branches,
F 2D and F 3D, each of which including the feature ex-
tractor G2D/G3D and a classifier. Here, we also denote
the multi-modal test-time target data (see Fig. 2), images
x2D
t ∈ RH×W×3 and point clouds x3D

t ∈ RN×3 (3D points
in the camera field of view). Note that the feature extracted
from the 2D branch, G2D(x2D

t ) ∈ RH×W×f , is sampled at
the N projected 3D points resulting in a feature shape of
N × f . Individual network predictions from 2D/3D are de-
noted as p(xM

t ) = FM (xM
t ) ∈ RN×|K|, where |K| is the

number of categories and M ∈ {2D, 3D}.

3.1. Preliminaries

Batch Normalization (BN) [12] has been widely used in
current DNNs for both 2D and 3D models. It generally in-
cludes normalization statistics and transformation parame-
ters in the j-th BN layer given the target mini-batch input
xM
t with M ∈ {2D, 3D}:

x̂M
tj =

xM
tj − µM

tj

σM
tj

and yMtj = γM
tj x̂

M
tj + βM

tj , (1)

where µM
tj = E[xM

tj ] and (σM
tj )

2 = E[(µM
tj − xM

tj )
2] are

normalization statistics, and γM
tj , β

M
tj are learnable trans-

formation parameters. To simplify notation, we use Ω2D
t =

(µ, σ, γ, β)2D
t for 2D and Ω3D

t = (µ, σ, γ, β)3D
t for 3D.

The number of parameters updated in Test-time Adap-
tation is constrained to be small for reasons of efficiency
and stability. Following TENT [30], we only estimate and
optimize (µ, σ, γ, β)t occupying <1% of parameters both
in 2D and 3D branches.

3.2. Baselines for MM-TTA

Since we propose the first attempt of multi-modal test-
time adaptation for 3D semantic segmentation, we first
study several self-learning baselines based on existing
methods that we extend to our MM-TTA setting.

Self-learning with Entropy is originally proposed by
TENT [30]. Its test-time objective L(xt) is to minimize
the entropy of model predictions p(xM

t ) = FM (xM
t ),

where FM is either the 2D or 3D branch (recall that M ∈

16930



Figure 2. Overview of the proposed Multi-Modal Test-Time Adaptation (MM-TTA) framework. Our MM-TTA consists of two
modules: Intra-modal Pseudo-label Generation (intra-PG) and Inter-modal Pseudo-label Refinement (inter-PR). For Intra-PG, we adopt
a slowly-updated model S that is gradually updated by a fast-updated model S with a momentum. Note that, statistics in the fast-updated
model S are directly updated by the data, which is more aggressive but up-to-date, while the model S slowly moves towards the target data
statistics and thus is more stable. By aggregating slow-fast models, each modality can generate robust pseudo labels (ŷ2D

t and ŷ3D
t ). For

Inter-PR, we measure the consistency map between slow-fast models and enable an adaptive selection process for finding confident pseudo
labels based on calculated ζ2D and ζ3D . After obtaining the cross-modal regularized pseudo label (ŷEns

t ) by jointly considering 2D and
3D confidences, we update the batch norm parameters for F in both modalities.

{2D, 3D}). The overall objective of entropy minimization
for this MM-TTA baseline is expressed as:

Lent(xt) = −
∑
k

p(x2D
t )(k) log p(x2D

t )(k)

−
∑
k

p(x3D
t )(k) log p(x3D

t )(k),
(2)

where k denotes the class. Despite its simplicity, this ob-
jective only encourages sharp output distributions, which
may reinforce wrong predictions, and may not lead to cross-
modal consistency.

Self-learning with Consistency aims to achieve multi-
modal test-time adaptation via a consistency loss between
predictions of 2D and 3D modalities:

Lcons(xt) = DKL(p(x
2D
t )||p(x3D

t ))

+ DKL(p(x
3D
t )||p(x2D

t )),
(3)

where DKL is the KL divergence. Different from
xMUDA [13], which operates in the standard domain adap-
tation setting with access to the source data, our MM-TTA
is not regularized by the source task loss and thereby this

objective may fail to capture the correct consistency when
one of the branches provides a wrong prediction.

Self-learning with Pseudo-labels is another common ap-
proach for test-time adaptation. Typically, pseudo-labels ŷt
can be obtained by:

ŷt = argmax
k∈K

1[ p(xt)
(k) > θ(k) ] p(xt)

(k), (4)

where 1[·] is an indicator function returning true if the con-
dition is satisfied, i.e., if prediction p(xt)

(k) for class k is
larger than the threshold θ(k). Note that the pseudo-label
ŷt can be obtained similarly for both 2D and 3D branches,
i.e., ŷ2D

t and ŷ3D
t . The objective for pseudo-labeling uses the

standard cross-entropy loss Lseg for semantic segmentation:

Lpseudo(xt) = Lseg(p(x
2D
t ), ŷ2D

t )

+ Lseg(p(x
3D
t ), ŷ3D

t ).
(5)

Although pseudo-labels provide supervisory signals to up-
date models, there are potential issues when it is applied to
our MM-TTA setting. First, only the batch norm statistics
are updated to replace the original source statistics during
adaptation, but the model to generate pseudo labels for tar-
get data still mainly consists of fixed parameters pre-trained
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on source data, which can lead to low-quality pseudo labels.
Second, the model still lacks information exchange across
modalities to refine pseudo labels, which can also result in
sub-optimal performance. In contrast, our proposed MM-
TTA framework provides simple yet effective solutions to
these limitations with the following two modules.

3.3. Intra-modal Pseudo-label Generation

We propose Intra-PG to generate reliable online pseudo
labels within each modality by having two models, SM and
FM , with different updating paces (see Fig. 2). First, we
define a fast-updated model FM that replaces and updates
batch norm statistics directly from the test data, which is
identical to baseline models in Section 3.2. Second, we
introduce an additional slowly-updated model SM that is
initially source pre-trained and has a momentum update
scheme from the fast-updated model FM . In short, we
denote these two models as slow/fast model as SM /FM .
That is, the statistics in the fast model are updated more ag-
gressively by the test data, while the slow model’s statistics
gradually move towards the target statistics, and thus pro-
vide a stable and complementary supervisory signal. Note
that only the slow model SM is used at inference time.
Here, we present the batch norm statistics for the slow
model SM as:

ΩS
ti = (1− λ)ΩF

ti + λΩS
ti−1

,

ΩS
t0 = Ωs,

(6)

where ΩS
ti = (µ, σ, γ, β)Sti is the moving averaged statistics

at iteration i with a momentum factor λ to aggregate fast
model’s statistics ΩF

ti and slow model’s statistics ΩS
ti−1

. The
initial statistics ΩS

t0 are from the source pre-trained model
denoted as Ωs. Note that, when we set a large value for λ
(0.99 in the paper), it will move slower towards the target
statistics, and otherwise it moves faster. To further leverage
both the slow-fast statistics in each modality, we fuse their
predictions as:

p(xM
t ) =

(SM (xM
t ) + FM (xM

t ))

2
. (7)

Then, we can obtain aggregated pseudo labels from slow-
fast models for each modality M ∈ {2D, 3D}:

ŷMt = argmax
k∈K

p(xM
t )(k). (8)

3.4. Inter-modal Pseudo-label Refinement

After obtaining initial aggregated pseudo labels for each
modality in (8), we propose the Inter-PR module to improve
pseudo labels via cross-modal fusion. To realize this, we
first calculate a consistency measure (ζM ) between slow and
fast models of Intra-PG for each modality separately:

ζM = Sim(SM (xM
t ), FM (xM

t )), (9)

where we define Sim(·) as the inverse of KL divergences
to express the similarity between two probabilities:

Sim(x, y) =

(
1

DKL(x||y) + ϵ
+

1

DKL(y||x) + ϵ

)
/2.

(10)
Here, ϵ is a small scalar constant to prevent division-by-
zero. This consistency measure helps us to fuse the per-
modality predictions and estimate more reliable pseudo la-
bels. We propose two variants: Hard Select and Soft Select.
The former takes each pseudo label exclusively from one of
the modalities, while the latter conducts a weighted sum of
pseudo labels from the two modalities using the consistency
measure. We define Hard Select as

ŷHt =

{
ŷ2D
t , ifζ2D ≥ ζ3D,

ŷ3D
t , otherwise.

(11)

and Soft Select as

ŷSt = argmax
k∈K

p
W (k)
t , (12)

with p
W (k)
t = ζ∗2D p(x2D

t )(k) + ζ∗3D p(x3D
t )(k) and where

ζ∗2D = ζ2D/(ζ2D + ζ3D), and ζ∗3D = 1 − ζ∗2D are normalized
consistency measures. In addition, we ignore pseudo labels
whose maximum consistency measure over the two modal-
ities, i.e., max(ζ2D, ζ3D), is below a threshold θ(k). For-
mally, our MM-TTA objective to use the generated pseudo
label ŷEns

t (ŷHt or ŷSt ) for updating batch norm statistics is:

Lmm-tta(xt) = Lseg(p(x
2D
t ), ŷEns

t ) + Lseg(p(x
3D
t ), ŷEns

t ).
(13)

4. Experimental Results
4.1. Datasets and Settings

We evaluate our proposed MM-TTA on several scenar-
ios where test-time adaptation is necessary. First, sensor
setups of camera and LiDAR are different between training
and test data in real-world, where we adopt the benchmark
A2D2-to-SemanticKITTI. In particular, A2D2 [7] provides
a 2.3 MegaPixels (MP) camera and 16 channels of Li-
DAR, while SemanticKITTI [2] uses a 0.7MP camera and
64 channels of LiDAR. This difference in hardware spec-
ification can cause unpredictable domain shift in the real-
world so that the pre-trained model on source needs to be
quickly adapted to the incoming test data. Second, another
real-world case is nuScenes Day-to-Night, where we use
nuScenes [3] for this adaptation scenario. LiDAR is an ac-
tive sensor that emits laser beams that are mostly invariant
to lighting conditions. However, images captured by day
and night are obviously different in color distribution, lead-
ing to a performance degradation without any adaptation.
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A2D2 → SemanticKITTI Synthia → SemanticKITTI nuScenes Day → Night
Method Adapt 2D 3D Softmax avg 2D 3D Softmax avg 2D 3D Softmax avg

Source-only - 37.4 35.3 41.5 21.1 25.9 28.2 42.2 41.2 47.8

xMUDA [13] UDA 36.8 43.3 42.9 25.6 30.3 33.4 46.2 44.2 50.0
xMUDAPL offline [13] 43.7 48.5 49.1 25.4 33.9 35.3 47.1 46.7 50.8

TENT [30] - Eq.(2)

TTA

39.2 36.6 40.8 25.3 23.8 27.8 39.0 43.6 43.0
TENTEns - Eq.(2) 39.6 36.6 41.1 27.7 23.8 29.7 39.5 43.7 43.5
xMUDA - Eq.(3) 37.5 38.0 40.2 24.0 24.1 28.0 41.7 43.9 47.0
xMUDA+TENT - Eq.(2),(3) 38.1 37.5 40.5 24.4 24.0 28.0 41.8 44.0 43.5
xMUDA+TENTEns - Eq.(2),(3) 37.5 38.0 40.2 24.1 24.1 28.0 40.9 43.9 43.0
xMUDAPL - Eq.(3),(5) 36.5 39.5 42.9 24.2 25.0 29.0 40.8 43.6 45.2
xMUDAPL+TENTEns - Eq.(2),(3),(5) 37.0 40.0 43.0 24.3 25.0 29.0 41.3 43.6 46.0

MM-TTA (Hard Select - Eq.(11)) TTA 43.3 42.4 47.0 31.4 29.9 35.2 42.6 43.6 51.1
MM-TTA (Soft Select - Eq.(12))) 43.7 42.5 47.1 31.5 30.0 35.1 44.2 43.7 51.8

Table 1. Quantitative comparisons with UDA methods and TTA baselines for multi-modal 3D semantic segmentation.

Finally, we evaluate test-time adaptation between syn-
thetic and real data using Synthia-to-SemanticKITTI,
which is a challenging benchmark that needs to handle a
significant domain shift not only in camera (style gap due
to the lack of photorealism in synthetic data) but also in Li-
DAR (point distribution and depth accuracy).

For A2D2-to-SemanticKITTI and nuScenes Day-to-
Night, we follow the dataset setting in xMUDA [13].
For Synthia-to-SemanticKITTI, we newly organize Syn-
thia [22] by constructing point clouds with provided im-
age and depth ground truth. Since depth maps are dense,
we randomly sample pixels to obtain corresponding point
clouds. Details are provided in the supplementary material.

4.2. Implementation Details

Multi-modal model: we follow xMUDA [13] to construct
the two-stream multi-modal framework. For the 2D branch,
we adopt U-Net [21] with a ResNet34 [10] encoder. For
the 3D branch, we use a U-Net (downsampling 6-times)
that utilizes sparse convolution [9] on the voxelized point
cloud input, where we use either SparseConvNet [8] or
MinkowskiNet [5] for our settings1. For each setting, all the
baseline comparisons are evaluated using the same frame-
work and backbone models.

Pre-training with source data: we directly utilize the
source pre-trained model from the xMUDA official code
for fair comparisons when we use the SparseConvnet. On
the other hand, we train the MinkowskiNet on source data
from scratch. To reproduce similar performance only using
the source as in xMUDA, we use the Adam optimizer with
learning rate of 1x10−3 for the 2D model, and SGD mo-
mentum with learning rate of 2.4x10−1 for the 3D model.

1For the A2D2-to-SemanticKITTI and Synthia-to-SemanticKITTI set-
tings, we find that there is a reported implementation issue of SparseCon-
vnet in xMUDA, and thus we use MinkowskiNet in other 3D segmentation
repostitory [26] for stability. For nuScenes Day-to-Night, we use SparseC-
onvNet as in xMUDA [13].

Test-time adaptation on target data: TTA [30] only opti-
mizes for batch norm affine parameters during training and
then reports performance after 1 epoch of adaptation. We
adopt the same setting for all the baselines and our method,
where we use batch statistics to compute the normalization
parameters at test time. To implement our slow-fast model-
ing strategy in Intra-PG, we first copy the source pre-trained
model and then gradually update batch norm statistics dur-
ing adaptation with a momentum from the fast model.

4.3. Main Results

In this section, we show quantitative evaluations on
the aforementioned three benchmark settings by reporting
mIoU on predictions of 2D, 3D and ensembling between
their predicted probabilities (see Table 1). For each bench-
mark setting, we mainly compare our method with Test-
Time Adaptation (TTA) baselines, while also reporting re-
sults for xMUDA that uses Unsupervised Domain Adapta-
tion (UDA) as references, which can access both source and
target data without the budget constraint during training.

Baselines. For UDA, we compare with the multi-
modal xMUDA framework that utilizes consistency loss
(xMUDA) and self-training using offline pseudo-labels
(xMUDAPL offline). For TTA baselines, we evaluate
TENT, xMUDA, xMUDAPL, as introduced in Sec. 3.2.
Then, we extend TENT to multiple modalities (TENTEns),
where we do entropy minimization on the ensemble of
2D and 3D logits. We also include the combinations of
these methods, xMUDA+TENT, xMUDA+TENTEns, and
xMUDAPL+TENTEns. For all methods, we do a hyperpa-
rameter search and report best results.

Results. In Table 1, we show that our MM-TTA methods
(both Hard Select and Soft Select) perform favorably against
all the TTA baselines in three benchmark settings. For
TTA baselines on A2D2-to-SemanticKITTI and Synthia-to-
SemanticKITTI, we find that entropy and pseudo-labeling
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Figure 3. Example results of our MM-TTA during test-time adaptation for gradual improvement. While TENT [30] shows little
improvements during adaptation, our method can effectively suppress the noise and achieve visually similar results to the ground truth,
especially within the area of dotted white boxes.

Method Intra-PG Inter-PR Thres. on pseudo-label 2D 3D Softmax avg
Fast Slow Fusion Select

Pseudo

(1) ✓ 39.2 36.7 40.8
(2) ✓ ✓ 40.1 37.6 41.9
(3) ✓ ✓ Consensus 40.8 39 41.8
(4) ✓ ✓ Consensus ✓ 40.8 37.5 43.8
(5) ✓ ✓ Merge ✓ 43.1 37.4 45.3
(6) ✓ Merge ✓ 39.3 36.7 41.6
(7) ✓ ✓ Entropy ✓ 40.2 39.6 43.4

MM-TTA ✓ ✓ Consistency (Hard) ✓ 43.3 42.4 47.0
MM-TTA ✓ ✓ Consistency (Soft) ✓ 43.7 42.5 47.1

Table 2. Ablation study on effects of Intra-PG and Inter-PR in the A2D2 → SemanticKITTI benchmark. We provide two variants
with different fusion: 1) Consensus: using pseudo-labels that are consistent between 2D and 3D, and 2) Merge: taking the mean of two
output probabilities. For the selection process, “Entropy” calculates and compares the entropy of 2D and 3D predictions.

based methods (e.g., TENT, xMUDAPL) perform better
than the consistency loss (e.g., xMUDA), due to the diffi-
culty of capturing the correct consistency across modalities.
In addition, although some TTA baselines (e.g., TENTEns,
xMUDAPL) improve the performance of individual 2D and
3D predictions, the ensemble results are all worse than the
“Source-only” model. This is because these methods do
not have a well-designed module to jointly consider multi-
modal outputs, where we use our Inter-PR to adaptively
generate cross-modal pseudo-labels.

For nuScenes Day-to-Night, different from the other set-
tings, the domain gap is larger for RGB than for LiDAR,
and thereby the challenge mainly lies in how to improve
the 2D branch and obtain effective ensemble results. For
all the baselines and our methods, IoU for the 3D branch
is competitive, while our results in the 2D branch and the
ensemble are significantly improved, which shows the ben-
efits of our designed Intra-PG and Inter-PR modules. Sur-
prisingly, the ensemble results of our MM-TTA methods are
better than the ones in the xMUDA approaches that use the
UDA setting. This shows the effectiveness of our proposed
MM-TTA framework for fast test-time adaptation. Fig. 3

show example results of 3D semantic segmentation on Se-
manticKITTI. Our MM-TTA method gradually improves
the initial prediction throughout adaptation, and produces
more complete and accurate outputs compared to TENT.

4.4. Ablation Study

4.4.1 Analysis on MM-TTA

Inter-PR for pseudo-label refinement. We show different
pseudo-label refinement methods for Inter-PR, and compare
them with our Hard Select and Soft Select schemes. First, in
Method (4) and (5) of Table 2 respectively, we use two sim-
ple fusion techniques: 1) only using points that are consis-
tent between pseudo-labels of 2D and 3D (Consensus), and
2) taking the mean of two output probabilities for pseudo-
labeling (Merge). Second, for selecting pseudo-labels from
either the 2D or 3D branch, one alternative is to calculate
and compare the entropy of 2D and 3D predictions (En-
tropy) as in Method (7). Overall, our MM-TTA methods
perform better than these model variants. In addition, we
show that using the threshold on pseduo-labels is a good
choice, e.g., comparing Method (3) with (4).

16934



Method Threshold 2D 3D Softmax avg

Hard

0.1 40.3 41.3 45.2
0.3 43.3 42.4 47.0
0.5 43.2 42.5 46.7
0.7 43 42.3 46.2

Soft

0.1 41.2 41.5 45.7
0.3 43.7 42.5 47.1
0.5 43.9 42.6 46.9
0.7 43.7 42.3 46.3

(a) Pseudo-label threshold ratio θ(k)

Method Momentum 2D 3D Softmax avg

Hard
1.00 42.8 42.0 46.3
0.99 43.3 42.4 47.0
0.95 42.0 42.2 46.1

Soft
1.00 43.2 42.1 46.5
0.99 43.7 42.5 47.1
0.95 42.6 42.4 46.3

(b) Momentum factor λ
Table 3. Sensitivity analysis in A2D2 → SemanticKITTI.

Intra-PG with slow-fast modeling. We design model vari-
ants to validate the effectiveness of Intra-PG. In Method
(2)/(5) of Table 2, using the slowly-updated model improves
Method (1)/(6), respectively. This shows that Intra-PG is
useful with different pseudo-labeling schemes, e.g., without
fusion in Method (2) or “Merge” in Method (5). Note that
our Inter-PR module requires slow-fast modeling and thus
these two modules are coupled together as our final model,
which shows performance gains compared to other variants.

4.4.2 Sensitivity Analysis

Threshold θ(k). This threshold is critical for pseudo-
labeling, where low values filter more points in a class-wise
manner, and vice versa. Table 3a shows the robustness of
our method to θ(k), and a value of 0.3 performs best.

Momentum factor λ. We use a slow-fast modeling strategy
to slowly update the source pre-trained batch norm statistics
with a momentum λ from the fast-updated model. Table 3b
shows the effect of changing λ. Setting it as 1.0 would sim-
ply keep the source statistics and is not optimal.

Stability during TTA. Since TTA only sees the test data
once during adaptation, the stability can be largely affected
by hyperparameters like the learning rate. In Fig. 4, we run
different methods with various learning rates, and find that
our MM-TTA methods perform robustly and show a good
stability during adaptation with the result of higher mean
(44.2/44.3) and lower standard deviation (2.45/2.55).

4.4.3 Analysis on Pseudo-labeling Accuracy

We measure the pseudo-label accuracy at different itera-
tions during adaptation for our proposed modules. We test

[1] [2] [3] [4]

20

40

Learning rate

m
Io

U
(%

)

Mean Std
TENT 36.9 3.45
xMUDA 25.8 14.1
Ours-Hard 44.2 2.45
Ours-Soft 44.3 2.55

Figure 4. Stability on using different learning rates in A2D2
→ SemanticKITTI. For the 2D/3D branch, we use four sets of
learning rates: [1] 1.0x10−5/2.4x10−5, [2] 1.0x10−5/2.4x10−4,
[3] 1.0x10−4/2.4x10−4, [4] 1.0x10−4/2.4x10−3.
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Figure 5. Pseudo-label accuracy during adaptation in A2D2 →
SemanticKITTI.

6 phases from the iterations of 100 to 600. In each phase,
we collect pseudo-labels for valid points and calculate the
average accuracy over all categories. In Fig. 5, we first ob-
serve that using slow-fast modeling in Intra-PG improves
the accuracy from the baseline (only using the fast model)
by 2%. Then, combining our proposed two modules consis-
tently shows improvement in all iterations, with a 5% gain.

5. Conclusions
In this paper, we present a new problem setting, Multi-

Modal Test-Time Adaptation (MM-TTA) for 3D seman-
tic segmentation. We first identify several baselines and
their limitations, and then propose a simple yet effective
self-training framework consisting of two modules, Intra-
PG and Inter-PR, to produce reliable cross-modal pseudo-
labels. In experiments, we demonstrate our MM-TTA
framework in several benchmark settings. In addition, we
provide extensive ablation studies and analysis to show the
benefits of our proposed modules.
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