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Abstract

In this paper, we present novel synthetic training data
called self-blended images (SBIs) to detect deepfakes. SBIs
are generated by blending pseudo source and target images
from single pristine images, reproducing common forgery
artifacts (e.g., blending boundaries and statistical inconsis-
tencies between source and target images). The key idea
behind SBIs is that more general and hardly recognizable
fake samples encourage classifiers to learn generic and
robust representations without overfitting to manipulation-
specific artifacts. We compare our approach with state-of-
the-art methods on FF++, CDF, DFD, DFDC, DFDCP,
and FFIW datasets by following the standard cross-dataset
and cross-manipulation protocols. Extensive experiments
show that our method improves the model generalization
to unknown manipulations and scenes. In particular, on
DFDC and DFDCP where existing methods suffer from
the domain gap between the training and test sets, our
approach outperforms the baseline by 4.90% and 11.78%
points in the cross-dataset evaluation, respectively. Code
is available at https://github.com/mapooon/
SelfBlendedImages.

1. Introduction
The recent rapid advancement of generative adversarial

networks [10, 25, 31, 32, 45, 51, 63] (GAN) in computer vi-
sion has made it possible to generate realistic facial im-
ages. In particular, techniques called deepfake manipulat-
ing the identity, expression, or attributes of a subject are
used for entertainment purposes, e.g., smartphone applica-
tions or movies; however, they can also be used for mali-
cious purposes, e.g., to create fake news or to falsify evi-
dence. Therefore, the vision community is keenly working
on deepfake detection techniques.

Most previous detection methods [8,16,26,30,36,48,53,
64] perform well on the in-dataset scenario where they de-
tect forgeries they learned in training; however, some stud-
ies [15,21,33,61] have found that the detection performance
significantly drops in the cross-dataset scenario where fake
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Figure 1. Overview of fake sample synthesis. Previous methods
blend two distinct faces and generate artifacts based on a gap be-
tween selected source and target images. By contrast, our method
blends slightly changed faces from a single image and generate
artifacts actively by transformations. In this example, we apply a
color jitter, sharpening, resize, and translation to the source image
and no transformations to the target image.

samples are forged by unknown manipulations.
One of the most effective solutions to this problem is to

train models with synthetic data, which encourages mod-
els to learn generic representations for deepfake detection.
For example, facial regions are blurred to reproduce a qual-
ity degradation of GAN-synthesized source images [41],
blended images are generated from pairs of two pristine im-
ages to reproduce blending artifacts [39, 65]. However, the
quality of deepfakes has improved over the years, which
has caused the former method to fail on recent bench-
marks [42, 52]. Although the latter methods perform well
on some datasets [2, 42], low-quality videos in more chal-
lenging datasets [19, 20] where artifacts are hardly recog-
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Figure 2. Typical artifacts on forged faces. We classify artifacts
into four types, (a) landmark mismatch, (b) blending boundary, (c)
color mismatch, and (d) frequency inconsistency.

nizable owing to the high compression or extreme exposure
lead them to unacceptable detection performance.

In this paper, we propose novel synthetic training data
called self-blended images (SBIs) to detect deepfakes. The
overviews of our method and previous methods [39,65] are
shown in Fig. 1. The key idea is that more hardly recogniz-
able fake samples that contain common face forgery traces
encourage models to learn more general and robust repre-
sentations for face forgery detection. We analyze forged
faces and define four typical artifacts motivated from pre-
vious works (e.g., blending boundaries [39], source feature
inconsistencies [65], and statistical anomalies in frequency
domain [13]) as shown in Fig. 2. To synthesize these ar-
tifacts based on our key idea, we develop a source-target
generator (STG) and mask generator (MG). STG generates
pairs of pseudo source and target images from single pris-
tine images using simple image processing, and MG gen-
erates various blending masks from facial landmarks of the
input images. By blending the source and target images
with the masks, we obtain SBIs. Training with SBIs en-
courages the models to learn generic representations be-
cause models learn the forgery traces we actively generate
in STG. Moreover, our method improves training efficiency
in terms of computational cost. Whereas successful previ-
ous works [39, 65] use landmark nearest search for source-
target pair selection, which is computationally expensive,
SBIs are generated without this process. Therefore, our
method does not suffer from the large dataset size problem.

We evaluate our approach following the two evaluation
protocols, cross-dataset evaluation and cross-manipulation
evaluation. In the cross-dataset evaluation, we train our
model on FF++ [52] and evaluate it on CDF [42], DFD [2],
DFDC [19], DFDCP [20], and FFIW [67]. This experimen-
tal setting is similar to that in real detection scenarios where
defenders are exposed to unseen domains. Our approach
surpasses or is at least comparable to the state-of-the-art
methods on all test sets despite its simplicity. Especially,
on DFDC and DFDCP where previous methods suffer from
domain gaps between the training and test sets, our method
outperforms the state-of-the-art unsupervised baseline [65]
by 4.90% and 11.78% points, respectively. In the cross-
manipulation evaluation, we evaluate the generality of our
model on unseen manipulation methods of FF++; DF [4],
F2F [56], FS [5], and NT [55]. Our approach achieves

the AUC of 99.99%, 99.88%, 99.91%, and 98.79% on DF,
F2F, FS, and NT, respectively. Although the performance
on FF++ becomes saturated, our method still outperforms
the state of the art on whole FF++ (99.64% vs. 99.11%).

2. Related Work

Deepfake Detection. Although many detection methods
have been introduced, the development of optimal convo-
lutional neural networks (CNNs) has been a primary topic
of research (e.g., an efficient shallow network [8], multi-
task autoencoders [21, 48], capsule network [49], recur-
rent convolutional networks [26, 53], and attentional net-
works [16, 64]). Some studies [23, 37, 43, 44, 50] focus on
the frequency domain to capture forgery traces more effec-
tively. These methods achieve impressive performance on
highly compressed videos. Another notable direction is fo-
cusing on specific representations (e.g., head pose [62], eye
blinking [30, 40], mouth movements [27], neuron behav-
iors [60], optical flow [9], and steganalysis features [24]).
Face X-ray [39] introduces a facial representation based on
boundaries between altered faces and background images.
PCL [65] measures patch-wise similarities of input images
to detect inconsistencies between source and target images.

Training Data Synthesis. Although most existing meth-
ods perform well in detecting known manipulations, some
studies [15, 21, 33, 61] have found that the methods cannot
be generalized to fake faces forged by unknown manipula-
tions because they tend to overfit to method-specific arti-
facts seen in training. One of the most effective approaches
to address this problem is training models with synthetic
data; this encourages models to learn generic features for
face forgery detection. FWA [41] focuses on a quality gap
between GAN-synthesized faces and natural faces, and re-
produces it on real images by blurring facial regions. How-
ever, deepfake techniques have improved over the years and
this method fails in detecting forgeries on the recent bench-
marks [2,52]. BI [39] and I2G [65] are introduced to gener-
ate blended faces which reproduce blending artifacts from
pairs of two pristine images with similar facial landmarks.

These blended images work well as fake samples to train
more general detection models; however, some concerns
remain. First, because these blending artifacts depend on
pairs of source and target images selected by the landmark
matching, irregular swaps [57] are sometimes seen in the
generated images. It is possible that these easy samples
prevent models from learning robust representations. Sec-
ond, because these methods are introduced to learn the ori-
ented representations i.e., the blending boundary in BI and
the source feature consistency in I2G, it is possible that ar-
tifacts to be learned for robust deepfake detection are not
sufficient only for the artifacts in the blended images.
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Figure 3. Overview of generating an SBI. A base image I is input into the source-target generator (STG) and mask generator (MG).
STG generates pseudo source and target images from the base image using some image transformations, whereas MG generates a blending
mask from the facial landmarks and deforms it to increase the diversity of the mask. Finally, the source and target images are blended with
the mask.

3. Self-Blended Images (SBIs)

Our goal is to detect statistical inconsistencies between
altered faces and background images on deepfakes. To train
more general and robust detectors, we generate synthetic
fake samples that consist of common forgery traces, and
are difficult to recognize. Our key observation is that, if
deepfake generation techniques continue to improve, GAN-
synthesized source images will be even closer to pristine
target images in their properties, e.g., facial landmarks and
pixel statistics. Therefore, we develop a synthetic data gen-
eration pipeline where a fake image is generated by blend-
ing pseudo source and target images from a single image
to give models a more general and difficult task for face
forgery detection.

To achieve this, we introduce self-blended images
(SBIs). As shown in Fig. 3, an SBI is generated by three
steps; (1) A source-target generator generates pseudo
source and target images for blending. The source and
target images are augmented to generate statistical incon-
sistencies (e.g., color and frequency) between them. The
source image is also resized and translated to reproduce
blending boundaries and landmark mismatches. (2) A mask
generator generates a gray-scale mask image with some
deformations. (3) We blend the source and target images
with the mask to obtain an SBI. Although the general flow
of an SBI generation is illustrated in Fig. 3, we show the
pseudocode in Alg. 1 where the procedure is slightly dif-
ferent from that in Fig. 3 for training efficiency (e.g., facial
landmarks are extracted in preprocess but not in training).
Our pipeline to generate an fake sample has a constant run-
ning time regardless of the dataset size while previous meth-
ods [39, 65] have a running time of O(NK) in the prepro-
cess due to the pair selection for source and target images,

Algorithm 1 Pseudocode for SBIs Generation
Input: Base image I of size (H,W, 3), facial landmarks L
of size (81, 2)
Output: Self-blended image ISB of size (H,W, 3)

1: def T (I) : ▷ Source-Target Augmentation
2: I ← ColorTransform(I)
3: I ← FrequencyTransform(I)
4: return I
5: if Uniform(min = 0,max = 1) < 0.5 :
6: Is, It ← T (I), I
7: else :
8: Is, It ← I, T (I)
9: Is, p← RandomResizeTranslate(Is) ▷ p : Parameter

10: L← LandmarkTransform(L)
11: M ← ConvexHull(L)
12: M ← ParameterizedResizeTranslate(M,p)
13: M ← MaskDeform(M)
14: r ← Uniform({0.25, 0.5, 0.75, 1, 1, 1})
15: M ← rM
16: ISB ← Is ⊙M + It ⊙ (1−M)

where N and K are the number of videos and the number
of frames of each, respectively 1.

3.1. Source-Target Generator (STG)

Given an input image I , STG initializes pseudo source
and target images by copying I . To generate statistical
inconsistencies between source and target images, STG
randomly applies some image transformations to either of
them. Here, we randomly shift the values of rgb chan-
nels, hue, saturation, value, brightness, and contrast of input

1Because the official source code of [39, 65] is not publicly available,
we only discuss qualitatively.
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Figure 4. Samples of pristine images (top row) and their SBIs
(bottom row).

images as color transformations. Then we downsample or
sharpen input images as frequency transformations.

To reproduce blending boundaries and landmark mis-
matches, STG resizes the source image. Let the height
and width of I be H and W , respectively. We define the
height Hr and width Wr of the resized image as Hr = uhH
and Wr = uwW , where uh and uw are sampled indepen-
dently from a continuous uniform distribution U[umin, umax] in
the range [umin, umax]. The resized image is zero-padded
or center-cropped to have the same size as the original.
Then, STG translates the resized source image. We de-
fine a translation vector t = [th, tw] as th = vhH and
tw = vwW , where vh and vw are sampled independently
from U[vmin, vmax].

3.2. Mask Generator (MG)

MG provides a gray scale mask image to blend source
and target images. To perform this, MG applies a landmark
detector to the input image to predict a facial region and
initializes a mask by calculating convex hull from predicted
facial landmarks. Then the mask is deformed with the land-
mark transformation as used in BI [39]. To increase the di-
versity of blending masks, the shape of masks and blending
ratio are randomly changed. First, the mask is deformed by
elastic deformation as adopted in [65]. Second, the mask
is smoothed by two Gaussian filters with different param-
eters. After the first smoothing, the pixel values less than
1 are changed to 0. This means that the mask is eroded
if the kernel size of the first Gaussian filter is larger than
that of the second one and is dilated in the opposite case.
Finally, MG varies the blending ratio of the source image.
This can be achieved by multiplying the mask image by a
constant r ∈ (0, 1]. Here, we uniformly sample r from
{0.25, 0.5, 0.75, 1, 1, 1}.

3.3. Blending

By blending the source image Is and the target image
It with the blending mask M , we obtain the self-blended
image ISB as

ISB = Is ⊙M + It ⊙ (1−M). (1)

We show some representative examples of SBIs in Fig. 4.
Although the purpose of SBIs is not for counterfeiting, they
contain artifacts seen in forged faces.

3.4. Training with SBIs

Once SBIs are generated, we can train any binary classi-
fier, regardless of whether it is designed for deepfake detec-
tion or not. Given input images X = [x0, x1, · · · , xN−1]
of size (N,H,W, 3) and the corresponding binary labels
T = [t0, t1, · · · , tN−1] of size N , a classifier F is opti-
mized on the binary cross-entropy loss L as follows:

L=− 1

N

N−1∑
i=0

{ti logF (xi)+(1+ti) log(1−F (xi))}, (2)

where F (x) is the probability of x being “Fake”. We input
target images as “Real” instead of using the base images to
encourage the models to focus only on artifacts on SBIs.
Because MG provides blending masks, we can also adopt
mask-based multi-task learning [39, 48, 65].

4. Experiments
4.1. Implementation Details

Preprocess. We adopt Dlib [34] and RetinaFace [18] to
extract facial landmarks and bounding boxes from each
video frame, respectively. We use an 81 facial landmarks
shape predictor [1] in Dlib. For the width and height of the
face calculated from the bounding box, the face region is
cropped with a random margin of 4–20% for training and
a fixed value of 12.5% for inference. Note that the land-
marks are not needed during inference; hence we only use
RetinaFace at the inference time.

Source-Target Augmentation. For the color and frequency
transformations, we adopt RGBShift, HueSaturationValue,
RandomBrightnessContrast, Downscale, and Sharpen from
a widely used image processing toolbox [11].

Training. We adopt the state-of-the-art convolutional net-
work architecture EfficientNet-b4 [54] (EFNB4) pre-trained
on ImageNet [17] as the classifier and train it for 100 epochs
with the SAM [22] optimizer. The batch size and learning
rate are set to 32 and 0.001, respectively. We sample only
eight frames per video for training. If two or more faces are
detected in a frame, the face with the largest area of the face
bounding box is extracted. Each batch consists of real im-
ages and their SBIs, and the same augmentation is applied
to each real image and its SBI. We also use some data aug-
mentations, i.e., ImageCompression, RGBShift, HueSatu-
rationValue, and RandomBrightnessContrast.

Model Validation. Considering practical situations, it is
important to validate the model without additional evalu-
ation datasets. We use a validation set that consists of real
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Method Input Type
Training Set Test Set AUC (%)

Real Fake CDF DFD DFDC DFDCP FFIW

DSP-FWA [41] Frame ✓ ✓ 69.30 - - - -
Face X-ray + BI [39] Frame ✓ - 93.47 - 71.15 -
Face X-ray + BI [39] Frame ✓ ✓ - 95.40 - 80.92 -
LRL [13] Frame ✓ ✓ 78.26 89.24 - 76.53 -
FRDM [44] Frame ✓ ✓ 79.4 91.9 - 79.7 -
PCL + I2G [65] Frame ✓ 90.03 99.07 67.52 74.37 -

Two-branch [47] Video ✓ ✓ 76.65 - - - -
DAM [67] Video ✓ ✓ 75.3 - - 72.8 -
LipForensics [27] Video ✓ ✓ 82.4 - - - -
FTCN [66] Video ✓ ✓ 86.9 94.40∗ 71.00∗ 74.0 74.47∗

EFNB4 + SBIs (Ours) Frame ✓ 93.18 97.56 72.42 86.15 84.83

Table 1. Cross-dataset evaluation on CDF, DFD, DFDC, DFDCP, and FFIW. The results of prior methods are directly cited from the
original paper and their subsequences for fair comparison. Bold and underlined values correspond to the best and the second-best value,
respectively. * denotes our experiments with the official code. Our method outperforms state-of-the-art methods on CDF, DFDC, DFDCP,
and FFIW, and achieves the second best on DFD without any special network architecture for deepfake detection.

videos and their SBIs after each epoch, and select the weight
with the highest number of epochs among the five weights
with the highest AUC. Therefore, no manipulated images
are used even for the model validation in our approach.

Inference Strategy. We sample 32 frames per video for
inference. If two or more faces are detected in a frame,
the classifier is applied to all faces and the highest fake-
ness confidence is used as the predicted confidence for the
frame. Once the predictions for all frames are obtained, we
average them to get the prediction for the video. For fair
comparison, we use all videos of all test sets for evaluation
by setting the confidences to 0.5 for the videos where no
face is detected in all frames.

4.2. Experimental Setting

Datasets. We adopt the widely used benchmark Face-
Forensics++ [52] (FF++) for training, following the con-
vention. It contains 1,000 original videos and 4,000 fake
videos forged by four manipulation methods, i.e., Deep-
fakes [4] (DF), Face2Face [56] (F2F), FaceSwap [5] (FS),
and NeuralTextures [55] (NT). For our cross-dataset eval-
uation, we use five recent deepfake datasets. Celeb-DF-
v2 [42] (CDF) applies a more advanced deepfake technique
to celebrity videos downloaded from YouTube. Deep-
FakeDetection [2] (DFD) provides thousands of deepfake
videos generated with consenting actors. DeepFake De-
tection Challenge Preview [20] (DFDCP) and DeepFake
Detection Challenge public test set [19] (DFDC), that are
released along with the competition [3], contain a lot of
disturbed videos, e.g., compression, downsampling, and
noise. We further provide a novel cross-dataset baseline
on a more recent large scale benchmark FFIW-10K [67]

(FFIW) which focuses on multi-person scenario. We fol-
low the official train/test splits for all datasets except FFIW
where we use the original validation set as our test set be-
cause the official test set has not been released yet. Al-
though FaceShifter [38] and DeeperForensics-1.0 [29] pro-
vide sophisticated deepfake videos, we do not adopt them
in our cross-dataset evaluation because they generate deep-
fakes from the real videos of FF++ that is the same domain
as used in training. See the supplementary material for more
statistical details.

Frame-Level Baselines. We refer to five state-of-the-
art frame-level detection methods, including: (1) DSP-
FWA [41] proposed a training data generation method
based on the degradation of the GAN-synthesized source
image quality. (2) Face X-ray [39] detects deepfakes via
segmenting blending boundaries between source and target
images. The model is trained with synthetic fake samples
called BI generated by blending two images from different
videos. (3) Local relation learning [13] (LRL) and (4) Fu-
sion + RSA + DCMA + Multi-scale [44] (FRDM) fuse two
different representations from RGB and frequency domains.
(5) Pair-wise self-consistency learning [65] (PCL) detects
deepfakes via measuring consistencies between patches of
input images. The model is trained with inconsistency im-
age generator (I2G) that is similar to BI [39].

Video-Level Baselines. We further compare our method
with video-level methods that output a single scalar fake-
ness for some video frames. Unlike frame-level methods,
video-level methods can detect incoherence across frames,
although they require multiple frames of the subject at reg-
ular intervals. We refer to four state-of-the-art methods, in-
cluding: (1) Two-branch [47] proposes Laplacian of Gaus-
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Method Test Set AUC (%)

DF F2F FS NT FF++

Face X-ray + BI [39] 99.17 98.57 98.21 98.13 98.52
PCL + I2G [65] 100 98.97 99.86 97.63 99.11

EFNB4 + SBIs (Ours) 99.99 99.88 99.91 98.79 99.64

Table 2. Cross-manipulation evaluation on FF++. Our method
achieves state-of-the-art results on F2F, FS, NT, and whole FF++.

sian kernels to enhance the frequency component of the
input image. (2) Discriminative attention model [67]
(DAM) proposes an attention [59]-based network for multi-
person scenarios. (3) LipForensics [27] detects temporal
inconsistencies of mouth movements using a pretrained lip-
reading model [46]. (4) Fully temporal convolution net-
work [66] (FTCN) enhances temporal representations by
reducing spatial kernel size of CNN to 1.

Evaluation Metrics. We report the video-level area under
the receiver operating characteristic curve (AUC) to com-
pare with prior works. Typically, frame-level predictions
are averaged over video frames. We additionally provide
average precision (AP) in the supplementary material.

4.3. Cross-Dataset Evaluation

To show the generality of our method, we conduct a
cross-dataset evaluation where models are trained on FF++
and evaluated on other datasets. Although many researchers
have considered this task, the test sets used by each of them
in their experiments vary from work to work, making com-
prehensive comparisons difficult. We, therefore, examine
the experimental settings in previous works carefully and
compile them into Table 1.

Comparison with Frame-Level Methods. Here, we com-
pare our method with other frame-level methods [13, 39,
41, 44, 65]. Our approach outperforms the state-of-the-art
methods on CDF, DFDC, and DFDCP by 6.08%, 5.17%,
and 5.23% points, respectively, and improves the baseline
by 4.58% points on average (87.33% vs. 82.75%). Our re-
sult is comparable with PCL + I2G [65] on DFD (97.56%
vs. 99.07%), where a forged face is sometimes placed with
some other pristine faces in a manipulated frame, and the
percentage of frames that subject is throughout manipulated
videos is smaller than other test sets. Therefore, our method
can be improved by incorporating any object tracking pro-
cess into our inference strategy as in PCL + I2G [65], in-
stead of extracting frames from the video at equal intervals
as in our simple strategy.

Comparison with Video-Level Methods. We then com-
pare our method with video-level methods [27, 47, 66, 67].
For more comprehensive comparison, we conduct addi-
tional experiments for FTCN [66] on unconsidered test
sets, i.e., DFD, DFDC, and FFIW with officially released

Method Test Set AUC (%)

DF F2F FS NT FF++

Xception + BI [39] 98.95 97.86 89.29 97.29 95.85

Xception + SBIs (Ours) 99.99 99.90 98.79 98.20 99.22

Table 3. AUC comparison with BI [39].

Method Test Set AUC (%)

CDF DFDC DFDCP Avg

ResNet-34 + I2G [65] 78.18 51.72 69.93 66.61

ResNet-34 + SBIs (Ours) 87.04 66.41 82.16 78.54

Table 4. AUC comparison with I2G [65].

code [6]. The results are denoted as * in Table 1. Our
method still outperforms the state of the art by 6.28%,
3.16%, 1.42%, 12.15%, and 10.36% points on CDF, DFD,
DFDC, DFDCP, and FFIW, respectively, and improves the
baseline by 6.68% points on average (86.83% vs. 80.15%).
We also evaluate our method on a subset of DFDC which
is used in an experiment for LipForensics [27], outperform-
ing the competitor (76.78% vs. 73.5%). The video list is
available at the author’s repository [7].

4.4. Cross-Manipulation Evaluation

In real detection situations, the defenders generally are
not aware of the attacker’s forgery methods. For this rea-
son, it is important to verify the model generalization to
various forgery methods. Following the evaluation protocol
used in [39, 65], we evaluate our model on four manipula-
tion methods of FF++, i.e., DF, F2F, FS, and NT. We use the
raw version for evaluation as well as the competitors.

Table 2 presents our cross-manipulation evaluation re-
sult on FF++. Our method outperforms or nearly equals
the existing methods on four manipulations (99.99% on DF,
99.88% on F2F, 99.91% on FS, and 98.79% on NT) and
achieves the best performance on the whole FF++ (99.64%
vs. 99.11%). This result shows that our method works well
not only on deepfakes but also on other face manipulations.

4.5. Data Quality Assessment

Here, we compare our method with state-of-the-art syn-
thetic training data [39, 65], removing influences of the dif-
ference of the classifiers. To achieve this, we train the
same models and optimizer as the ones competitors use in
their original papers. Table 3 presents the comparison with
BI [39]. We train Xception [14] with Adam [35] optimizer.
Our method outperforms BI [39] on all the manipulation
methods of FF++ in terms of AUC. In particular, the base-
line on FS is improved from 89.29% to 98.79%. Next,
the result of the comparison with I2G [65] is given in Ta-
ble 4. We train ResNet-34 [28] with Adam optimizer. Our
method outperforms I2G [65] on CDF, DFDC, and DFDCP
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Process Test Set AUC (%)

FF++ CDF DFDCP FFIW Avg

w/o Source aug. 98.58 93.59 78.06 61.11 82.84
w/o Target aug. 99.35 76.61 83.84 82.87 85.67
w/o S-T aug. 89.18 70.68 85.16 88.31 83.33
w/o Res.&Trans. 99.58 85.28 81.04 74.69 85.15

SBIs (Ours) 99.64 93.18 86.15 84.83 90.95

Table 5. Effect of each process of STG. The skipping of any
process causes a fatal performance degradation.

Training Set Test Set AUC (%)

Database #Real FF++ CDF DFDCP FFIW Avg

FF++ 720 99.64 93.18 86.15 84.83 90.95
CDF 622 98.10 93.74 81.10 77.82 87.69

DFDCP 737 98.76 90.79 88.70 81.31 89.89
FFIW 7090 99.72 95.57 78.91 88.07 90.57

Table 6. Performance of different training datasets. Our
method achieves good results on each training dataset. “#Real”
presents the number of real videos of the training set, excluding
that of the validation set.

and their average by 8.86%, 14.69%, 12.23%, and 11.93%
points, respectively. These results clearly show our method
is superior to the competitors as synthetic training data, re-
gardless of the network architecture.

4.6. Ablations

Effect of Each Process of STG. In STG, we use some im-
age processing to generate pseudo source and target images.
Conversely, because learned representations are based on
the artifacts we actively provide in STG, ablation experi-
ments of the generation process enable the exploration of
effective clues on the deepfake benchmarks. Here, we train
our model without some processes, i.e., the source augmen-
tation, target augmentation, source-target augmentation, or
resize and translation, and evaluate them on FF++, CDF,
DFDCP, and FFIW. As shown in Table 5, source and tar-
get augmentation is indeed effective in detecting deepfakes,
and both of them are necessary for better performance. We
also observe that the resize and translation reproduce im-
portant artifacts because of the poor performance without
them. Through the ablation, it can be concluded that dif-
ferent clues are useful to detectors on different datasets be-
cause they have different deepfake generation processes.

Generality to Training Datasets. It is important from a
practical standpoint to show that our method can perform
well on various real face datasets. We here train models
with SBIs from the pristine videos of FF++, CDF, DFDCP,
and FFIW. Then we evaluate them on the test sets. On CDF
and FFIW, we split the original training sets into the alter-
native training/validation sets. Table 6 presents the result.

Architecture Test Set AUC (%)

FF++ CDF DFDCP FFIW Avg

ResNet-50 97.77 90.66 82.88 79.30 87.65
ResNet-152 98.33 90.71 85.01 76.43 87.62
Xception 99.26 90.27 78.85 76.72 86.28
EfficientNet-b1 99.10 91.16 84.58 80.23 88.77
EfficientNet-b4 99.64 93.18 86.15 84.83 90.95

Table 7. Performance of different network architectures. An
architecture with larger capacity tends to result in better generality.

Our method is generalized to all datasets without a criti-
cal performance drop. We observe the large dataset size
of FFIW contributes to the model generality. However, the
difference of video scene between FFIW and DFDCP leads
to a slight performance drop on DFDCP; FFIW consists of
videos collected from YouTube, whereas DFDCP consists
of videos made by filming recruited subjects. The result
also indicates that learning pristine videos can help detect
forged faces in the same domain as that in training, even if
models did not learn manipulated videos, as indicated by the
scores highlighted in brown in Table 6, which supports our
not adopting FaceShifter [38] and DeeperForensics-1.0 [29]
in the cross-dataset evaluation, as mentioned in Section 4.2.

Choice of Network Architecture. Although we adopt
EfficientNet-b4 [54] as our standard classifier, our method
can be applied to other network architectures. Here, we
investigate the performance of different state-of-the-art ar-
chitectures, i.e., ResNet-50, -152 [28], Xception [14],
EfficientNet-b1, and -b4 [54] trained with SBIs. As shown
in Table 7, all architectures achieve good results on FF++,
CDF, DFDCP, and FFIW without critical performance
degradation. Remarkably, even our method with a vanilla
ResNet-50 outperforms all the previous methods on CDF,
DFDCP, and FFIW as shown in Tables 1 and 7. We ob-
serve larger networks tend to result in greater generality,
which indicates SBIs provide a variety of training samples.

4.7. Qualitative Analysis

To obtain qualitative insights, we visualize model
saliency maps and feature spaces. Through the analysis, we
use two models; one is trained on FF++ (baseline) and the
other is trained on SBIs (our model).

Saliency Map. To visualize where the models are pay-
ing their attention on the forged faces, we apply Grad-
CAM++ [12] to the models on manipulated frames of FF++,
i.e., DF, F2F, FS, and NT, as shown in Fig. 5. It can be
observed that our method encourages the model to make
its attentions sparser than the baseline. This is because
our model detects minor artifacts independent of manipula-
tions, e.g., blending boundaries, while the baseline captures
method-specific pixel distributions that are widely spread in
the forged faces.
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Figure 5. Saliency map visualization of the baseline and our model. The baseline captures method-specific artifacts that are widely
present across forged faces while our model detects minor artifacts independent of manipulations. Best viewed in color.

(a) Trained on FF++

(b) Trained on SBIs

Figure 6. Feature space visualization of the baseline (a) and
our model (b). The baseline cannot distinguish real images from
SBIs (because the feature vectors fall into the same feature space)
while our model succeeds in distinguishing real images from not
only SBIs but also forged images. Best viewed in color.

Feature Space. We then apply t-SNE [58] visualization to
feature vectors from the last layers of the models. We em-
phasize again that it is easy for the baseline to recognize the
forged faces because they are seen in its training, and that
our goal is to separate real faces from others, not to classify
types of manipulations. As shown in Fig. 6, the baseline
cannot distinguish SBIs from real images although it clus-

ters four manipulations seen in training. On the other hand,
our model distinguishes not only SBIs but also forged faces
from real ones. We also observe that SBIs are distributed
all over the four manipulations in the feature space. These
results indicate that SBIs are general synthetic data to train
face forgery detectors.

5. Limitations
Although our results in cross-dataset and cross-

manipulation evaluations are expected to be beneficial, we
observe some limitations of our method. First, similar to
other frame-level methods, our model cannot capture tem-
poral inconsistencies across video frames. Therefore, so-
phisticated deepfake generation techniques with fewer spa-
tial artifacts may pass our detector. Moreover, our method
does not perform well on whole-image synthesis because
we define a “fake image” as an image where the face re-
gion or background is manipulated. We evaluate our model
on a 20k image set sampled from FFHQ dataset and Style-
GAN [32] synthesis, and its AUC is only 69.11%.

6. Conclusion
In this paper, we proposed a novel synthetic training

data, self-blended images (SBIs), based on the idea that
more general and hardly recognizable fake samples encour-
age classifiers to learn more generic and robust representa-
tions. SBIs are generated by blending pseudo source and
target images that are slightly transformed from single real
images to reproduce forgery artifacts. Using SBIs, we could
train detectors without forged face images. Extensive exper-
iments show that our method is superior to state-of-the-art
methods for unseen manipulations and scenes, and general-
ized to different network architectures and training datasets.
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