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Abstract

This paper investigates crowd counting in the frequency
domain, which is a novel direction compared to the tradi-
tional view in the spatial domain. By transforming the den-
sity map into the frequency domain and using the properties
of the characteristic function, we propose a novel method
that is simple, effective, and efficient. The solid theoret-
ical analysis ends up as an implementation-friendly loss
function, which requires only standard tensor operations
in the training process. We prove that our loss function
is an upper bound of the pseudo sup norm metric between
the ground truth and the prediction density map (over all
of their sub-regions), and demonstrate its efficacy and effi-
ciency versus other loss functions. The experimental results
also show its competitiveness to the state-of-the-art on five
benchmark data sets: ShanghaiTech A & B, UCF-QNRF,
JHU++, and NWPU. Our codes will be available at: wb-
shu/Crowd Counting in the Frequency Domain

1. Introduction
The research field of image-based crowd counting has

been flourishing since the density map based method is
proposed [12]. After the Multi-Column Neural Network
(MCNN) shows the power of using the deep Convolution
Neural Network (CNN) to generate the density map [46],
the combination of deep learning and density map learning
has led the state-of-the-art. Among current state-of-the-art,
the Bayesian Loss (BL) distinguishes itself by only chang-
ing the loss function in the whole pipeline [21]. The BL
used the ground truth dot map to calculate class conditional
distributions (CCD) for each position rather than generating
a discrete density map as supervision. This elegant method
showed that how to exploit the ground truth to offer proper
supervisory information (i.e., the loss function) has a large
impact on the final performance.

The ground truth dot map in itself has a large amount
of useful information. Therefore, how to fully utilize the
ground truth to provide high-quality supervisory informa-

tion becomes one of the active issues in crowd counting.
This issue has yielded a number of prominent research
works recently. Among them, the Distribution Matching
(DMCount) [37] and the Generalized Loss (GL) [35] used
the optimal transport (OT) distance as the loss function
between predicted density maps and the ground truth dot
maps. When the DNN adjusts one predicted pixel value
according to the pixel-wise L2 loss, it only considers the in-
fluence on the same pixel in the ground truth. In contrast,
when the DNN adjusts one predicted pixel value according
to the OT loss, it must consider the influence of all nearby
pixels in the ground-truth according to their distances – the
OT problem is a global optimization problem that jointly
considers the transport of all pixels. Therefore, the family
of OT losses is able to better exploit the position informa-
tion of the ground truth to provide high-quality supervision.

Another approach that better used the groundtruth’s po-
sition information is the Purely Point-Based Framework
(P2PNet) [31], which directly taught the network to predict
people’s head positions in the ground truth. The exact posi-
tion information in the ground truth was used in training by
calculating a one vs. one match between the prediction and
the ground truth.

However, these SOTA methods also have some flaws.
Firstly, both the OT loss [35, 37] and the P2PNet [31] re-
quire inefficient external algorithms to extract the spatial
information from the ground truth in each training step.
For the OT loss, the Sinkhorn algorithm [22] is executed to
obtain the optimal transport matrix, while for P2PNet, the
Hungarian algorithm [11] is required to get the one vs. one
point matches. Both of these algorithms require a number
of iterations and are carried out in each training step, which
makes the OT/P2PNet training less efficient. Furthermore,
the complex logic of the Hungarian algorithm makes it hard
to use the advantage of parallelization in GPU. Indeed the
official codes of P2PNet implemented it in CPU, which fur-
ther decreases the efficiency compared with methods whose
pipelines are fully implemented in GPU.

Secondly, although the position information is fully used
in OT/P2PNet, the counting information of the ground truth
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Figure 1. Our framework for crowd counting in the frequency
domain. The dispersed spatial information in the predicted and
ground-truth density maps is converted to compact information in
the frequency domain by computing their characteristic functions.
Then our loss is the L1-norm between the characteristic functions.
We prove that our loss is an upper-bound to a pseudo sup norm
metric between density maps (over all sub-regions), which makes
it provide high-quality supervision for training crowd counting
models, and consequently outperform other SOTA loss functions
on crowd counting.

is underexploited. Hence, OT/P2PNet used different meth-
ods to remedy this issue: OT loss introduced extra loss
terms; P2PNet required setting the maximum number of
points in each patch of images, but this information is actu-
ally unknown in the test image. These additional remedies
also created additional hyperparameters, which need to be
tuned or balanced.

To address these problems in the current SOTA, we in-
vestigate a new method that fully harnesses both the po-
sition information and counting information of the ground
truth. We hope the new method both provides the high-
quality spatial supervisory information for training, and eas-
ily extracts it from the ground truth. Such properties may
be hard to fulfill in the spatial domain, so instead we turn
to an analysis in the frequency domain. Our solution is to
use the characteristic functions of finite measures (i.e., un-
normalized probability densities). It is intuitive that a den-
sity map is a finite measure on the 2D plane, and the po-
sition information and counting information are all in the
finite measure. However, in the spatial domain, that infor-
mation is spread out everywhere, and thus the global spa-
tial information is hard to use without some external algo-
rithms to extract it (e.g., the Sinkhorn algorithm [22] for
the OT loss [35, 37], the Hungarian algorithm [11] for the
P2PNet [11]). In contrast, if the finite measure is trans-
formed into the frequency domain, then the spatial informa-
tion is hierarchically organized in a compact range around
the origin in the frequency domain. Values closer to the
origin contain a larger proportion of global spatial informa-
tion, while values further from the origin contain a larger
proportion of local position information. Hence, a proper
loss function on the frequency domain will adequately de-

liver all the information to the DNN for training (see Fig. 1).
The characteristic function is exactly a representation of

the finite measure on the frequency domain. Although it
is originally defined for probability distributions, here we
extend the definition to the finite measure so that some vital
properties of the original definition are carried over. These
properties play an important role throughout the analysis in
the paper, and we will show their effects later. In summary,
the contributions in the paper are:

• We extend the definition of the characteristic function
from probability distributions to finite measures, as well
as prove or intensify some of its vital properties. Thus, we
transfer the learning problem from supervision with spa-
tial density maps to supervision with frequency-domain
characteristic functions, where the latter compactly sum-
marizes the dispersed spatial information, which is more
suitable for supervision. To the best of our knowledge,
this is the first work investigating crowd counting in the
frequency domain.

• Using properties of the characteristic function, we pro-
pose a simple, effective, and efficient loss function that
provides high-quality supervisory information for train-
ing, and, in contrast to previous works, does not require
external algorithms for extracting spatial information.

• We prove that minimizing our loss function will decrease
the upper bound of a pseudo sup norm metric between
the predicted and the ground truth density map (over all
sub-regions), which is effective for crowd counting.

• The experimental results on five benchmark datasets show
our method’s competitiveness, and our loss function out-
performs a large number of baseline and SOTA loss func-
tions, while also being more efficient.

2. Related works
Image-based crowd counting. Research on image-

based crowd counting can be divided into several stages.
The early methods used various features to detect the
heads/people in the image [8, 13, 15, 32, 41, 45, 47], and
then the counting was based on the detection results. The
second stage is based on “image to count”, where meth-
ods directly regressed the people count from the input im-
age [5–7,16,23,25,38]. The current prevalent methodology
is regressing the density map from the image, which forms
the basis of most recent works due to its effectiveness as an
intermediate representation.

Density map regression. The density map method was
first proposed in [12]. Afterwards, [46] reached a milestone
by using the CNN to predict the density map from the im-
age, and then the combination of deep learning and den-
sity map regression has led the trend in the crowd counting.
The recent supervised learning methods can be roughly di-
vided into two categories: improving network architecture
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design [2, 4, 14, 17, 18, 26, 43, 44]; and improving loss func-
tions for training [21,31,34,35,37]. Our method belongs to
the second category.

Improving training and loss functions. Recent meth-
ods [21, 31, 34, 35, 37] aim to extract high-quality super-
visory information from the ground truth to make train-
ing more effective (e.g., robust to spatial annotation noise
or more accurate in position match). The representative
works [31, 35, 37] achieved remarkable results, but they re-
quire inefficient external algorithms to extract spatial infor-
mation from the ground truth on each training image. On
the other hand, they lack the exploitation of the counting
information, while they focus on the local position infor-
mation of the ground truth. In contrast, by transforming the
dispersed spatial information to compact frequency-domain
information, our method can naturally use the counting in-
formation and position information simultaneously for su-
pervision. Furthermore, our method does not require exter-
nal algorithms for extracting this information.

3. Crowd counting in the frequency domain

In this section, we introduce our framework of crowd
counting in the frequency domain, i.e., the crowd counting
based on characteristic functions of density maps. First, we
introduce the mathematical concepts of measure and char-
acteristic function, and then extend the definition of the
characteristic function from distribution to the density map.
Second, we prove some useful properties of the character-
istic function of density maps. Third, we elaborate on our
loss function based on the characteristic function, and an-
alyze its properties. Fourth, we discuss how to implement
our method based on empirical and theoretical supports.

3.1. Characteristic function of the density map

In mathematics, the measure is a non-negative set func-
tion defined on a σ-algebra, which possesses the property
of σ-additivity. The formal definition is as follows.

Definition 1 (Measure [33]) A measure is a set functionm
defined on a measurable space (Ω,F), where Ω is the total
space and the family of sets F is a σ-algebra (comprising
subsets of Ω that are closed under union, intersection, and
complement), that satisfies:

(i) non-negativity: m(A) ≥ 0, ∀A ∈ F .
(ii) σ-additivity: m(∅) = 0, where ∅ is the empty set,

and m(
⋃∞
i=1Ai) =

∑∞
i=1m(Ai) for a countable set

{Ai|Ai ∈ F , Ai ∩Aj = ∅ if i 6= j}.
If m(Ω) < ∞, i.e., the total measure is finite, then it is a
finite measure.

Thus, the density map is a finite measure on the 2D plane
– Ω is the 2D Euclidean space R2 and F are all Borel sets.

Definition 2 (Density Map) A density map in crowd
counting is a finite measure defined on (R2,BR2), where
R2 is the 2D Euclidean space and BR2 is all the Borel sets
on R2. The density map’s total measure on R2 equals the
total people count.

A discrete density map is a density map whose measure
is only distributed on a set of finite points, i.e., if the density
map m satisfies the following property:

m(A) =
n∑
i=1

m({xi} ∩A),∀A ∈ BR2 , (1)

where xi ∈ R2 are those points with non-zero measure, then
m is a discrete density map.

Next, we introduce the definition of the characteristic
function for probability distributions, which is a class of
special finite measures with total measure of 1.

Definition 3 (Characteristic Function for Distributions [3])
Given a distribution d defined on Rn, its characteristic
function ϕd is a complex-valued function defined on Rn:

ϕd(t) = EX∼d[e
i〈t,X〉], (2)

where t ∈ Rn is the independent variable of the frequency
domain, EX∼d is expectation under X with distribution d,
and i is the imaginary unit.

Since the probability distribution is just the finite mea-
sure with the total measure of 1, we can naturally extend
the definition of characteristic functions to finite measures
(i.e., density maps).

Definition 4 (Characteristic Function for Measures)
Given a finite measure m defined on Rn, its characteristic
function ϕm is a complex-valued function defined on Rn:

ϕm(t) =

∫
Rn
ei〈t,x〉dm(x), (3)

where dm(x) means the integral is calculated based on
measure m.

Thus, the characteristic function of a density map can be
calculated by Def. 2 and Def. 4.

3.2. Properties of the characteristic function

Next we derive several vital properties of characteristic
functions of finite measures. For clarity, we will directly
present these properties for density maps, rather than finite
measures. Thus, in the remaining, the terminology “density
map” refers the finite measure defined on (R2,BR2) (see
Def. 2). All proofs appear in the supplemental.
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Property 1 (Uniqueness) The characteristic function
uniquely determines the density map and vice versa.

Suppose that ϕm1 and ϕm2 are two characteristic func-
tions derived from two density maps m1 and m2 respec-
tively. Then, we have

ϕm1(t) = ϕm2(t) a.e. (4)

if and only if

m1(A) = m2(A), ∀A ∈ BR2 . (5)

We denote this as m1 = m2. In (4), a.e. means L({t ∈
R2|ϕm1(t) 6= ϕm2(t)}) = 0, where L is the Lebesgue
measure.

Remark Intuitively, this property states that if two density
maps’ characteristic functions are the same, then the density
maps are the same, and vice versa. This property mainly
removes the problem of non-unique optimal solutions in
the loss function, which is pointed out by [37] as a potential
drawback of the BL [21].

Property 2 (Linearity) Suppose that m3 is a linear com-
bination of two density maps m1 and m2,

m3 = αm1 + βm2, α, β ≥ 0 (6)

then
ϕm3

(t) = αϕm1
(t) + βϕm2

(t). (7)

Remark This property helps to simplify the derivation
of the characteristic functions of predicted and ground
truth density maps, since they are actually the linear
combinations of simple singleton measures or Gaussian
distributions.

Property 3 (Inversion Formula) For a density map m,
suppose there is a box area A = [a1, b1] × [a2, b2] in R2

with zero measure boundary, i.e.,

m(∂A) = 0 (8)

where ∂A means the boundary of A, then we have

m(A) = lim
T→∞

1

(2π)2

∫
[−T,T ]2

∫
A

ϕm(t)e−i〈t,x〉dxdt

(9)
where dx and dt mean both the first and second integral are
calculated based on Lebesgue measure.1

1Note that when dx or dt appears in the next context, it also means the
integral is calculated based on Lebesgue measure.

Remark This is a crucial property bridging the density
map and its characteristic function. This property illustrates
how the spatial domain’s counting information and position
information are together absorbed into the characteristic
function. Although the integral in (9) is on the whole
frequency domain R2, Fig. 2 shows that most information
is concentrated on a very compact range in the frequency
domain. Thus, the characteristic function of the density
map has near-zero value outside this range, which makes
little contributions to the integral. With only the informa-
tion concentrated on a small range in the frequency domain,
every area’s people count and population distribution can
be known by Property 3. Compared with the dispersed
information in the spatial domain, the compact information
in the frequency domain is more suitable to use for training.

Property 4 (Lipschitz Continuity) If a density mapm is a
discrete density map (see Def. 2) or a discrete density map
convolved with a Gaussian kernel, then the characteristic
function ϕm(t) is Lipschitz continuous.

Remark This property plays an important role in the
implementation of our method. Since there is no analytical
solution to our method, we use an approximation method
based on this property to calculate the loss.

3.3. Characteristic function loss

In this subsection, we propose our loss function based on
characteristic functions and analyze it theoretically. Fig. 1
shows the flow chart of our method. Given the ground truth
density map mg and the predicted density maps mp, our
loss function is the L1-norm metric between their charac-
teristic functions ϕmg and ϕmp , i.e.,2

lchf(mg,mp) =

∫
R2

|ϕmg (t)− ϕmp(t)|dt (10)

We denote our loss lchf as the chf loss.
To prove its effectiveness, we first show that the chf

loss is not underdetermined, which is proposed in [37]
to describe the case when the loss l can be zero when
two density maps m1 and m2 are not equal, i.e., ∃m1 6=
m2, s.t. l(m1,m2) = 0. If a loss is underdetermined, than
minimizing the loss may not make the prediction close to
the ground truth [37]. Hence a good loss function should
not be underdetermined, which is the case for our chf loss.
(All proofs are in the supplemental.)

2Note here that we directly use the Lebesgue integral on R2, but in (9)
we use a limit formula rather than the direct Lebesgue integral. As they are
not always identical, some care is needed and we provide the mathematical
details in the supplementary.
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Figure 2. Comparison between the information distribution in the spatial domain and the frequency domain. (a) the density map m in the
spatial domain [0, 512]× [0, 749]; (b) the real part of the characteristic function ϕm of m, in range [−1, 1]2; (c) the imaginary part of the
characteristic function ϕm in range [−1, 1]2; (d) the spectrum of the characteristic function, i.e., |ϕm| in range [−1, 1]2. The information
is distributed everywhere in the spatial domain, while the information in the frequency domain is concentrated on a small compact range
near the origin. By Property 3, that compact frequency information can recover the information anywhere in the spatial domain.

Proposition 1 The chf loss lchf is not underdetermined.

Next we show what will happen to the predicted density
map when the chf loss decreases w.r.t. the ground-truth.

Proposition 2 For the ground truth density map mg and
the predicted density map mp,

|mg(A)−mp(A)| ≤ (2π)−2lchf(mg,mp)L(A), (11)

for any open set A ∈ BR2 . Here L means the Lebesgue
measure, i.e., area of A.

This proposition reveals why the chf loss is effective. Re-
arranging the terms in (11), we obtain

(2π)2
|mg(A)−mp(A)|

L(A) ≤ lchf(mg,mp),∀A ∈ BR2 . (12)

and thus the chf loss is an upper-bound to the normalized
counting errors of all sub-regions A in the density map,
|mg(A)−mp(A)|

L(A) , where the normalization is based on the
sub-region area L(A).

Next, we define the “sup norm” metric between two den-
sity maps, which is the largest normalized error over all sub-
regions, as

∆(mg,mp) = sup
∂A=∅ ∧ L(A)6=0

|mg(A)−mp(A)|
L(A)

, (13)

where ∂A = ∅ means A has an empty boundary (i.e., it
is an open set), and L(A) 6= 0 means it has non-trivial
Lebesgue measure. Our sup norm in (13) has similar fla-
vor to the MESA (Maximum Excess over SubArrays) loss
from [12], except that MESA is defined using rectangular
regions and is unnormalized, whereas ours is defined over
all sub-regions and is normalized.

Finally, we obtain

(2π)2∆(mg,mp) ≤ lchf(mg,mp), (14)

and thus minimizing the chf loss is equivalent to minimiz-
ing the upper bound of our sup norm metric ∆(mg,mp) be-
tween the prediction and the ground truth, i.e., minimizing

the largest normalized error over all sub-regions. Using the
chf loss for training will apply supervision more evenly on
all region counts, which avoids individual pixel-wise fluctu-
ations in the spatial domain (e.g., inherent with pixel-wise
losses like L2). Specifically, (12-14) show that decreasing
the chf loss will ensure the closeness of the prediction to the
ground-truth for all areas in the spatial domain, i.e., both lo-
cal and global counts are considered for supervision.

3.4. Implementation of the chf loss

Since the integral in (10) for the chf loss is not analyt-
ically solvable, we next propose an approximation to the
chf loss in this subsection. The integral in the chf loss is
approximated using two steps: 1) truncating the infinite in-
tegral range on a finite range; 2) using the Riemann sum to
approximate the integral in this finite range.

Truncating the integral. As illustrated in Fig. 2, the
characteristic function values outside a compact central
range are typically very small. The empirical and theoret-
ical evidence also support that the integral on the compact
range has small difference from the integral on the whole
domain. In theory, considering a discrete density map ob-
tained by convolving a dot map with a Gaussian kernel, then
the following proposition gives an upper bound to the aver-
age error between the original density map and the recon-
structed density map.

Proposition 3 Suppose the density map m is obtained by
convolving a discrete dot map with a Gaussian kernel whose
bandwidth is σ, and the reconstructed density map from its
characteristic function ϕm restricted on the disk B(0, r) is
m̃. Let T be the total measure ofm. Then on any non-empty
box areaA with trivial boundary, i.e., m(∂A) = 0, we have

|m(A)−m̃(A)|
L(A) ≤ T exp{−σ2r2

2 }
2πσ2 . (15)

Proposition 3 indicates that the the error between the
original and the reconstructed ground truth density map can
be well bounded by an exponentially decaying term if we
take the dot map convolved with a Gaussian kernel as the
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ground truth. In the concrete implementation, we use the
Gaussian kernel with bandwidth 8 which is the conventional
setting. If we confine the integral range from R2 to the disk
{||x||2 < 0.5} and suppose the total people count is at most
0.1 million people in a training image, then by Proposition
3 the error upper bound is approximately 0.08.

The above upper bound is loose and in practical situ-
ation the approximation is even better. Fig. 3 shows the
comparison between the original density map and the recon-
structed density map from the truncated characteristic func-
tion. They are nearly the same, which suggests not much
information is lost when truncating the integral.

Approximating the integral. Although the integral is
confined to a small range, the integral of chf loss still needs
to be approximated with the Riemann sum. Property 4
shows the nice continuity of the characteristic function,
which gives a firm theoretical guarantee for the Riemann
sum approximation. Furthermore, some empirical results
will be shown in Subsection 4.4.

The approximation introduces two hyperparameters in
our method: 1) the granularity of the grid in the Riemann
sum; 2) the integral range. One of the important functions
of Property 4 is to decouple the two hyperparameters. Prop-
erty 4 demonstrates a uniform continuity of the character-
istic function, which means the intensity of the continu-
ity is similar everywhere in the domain. Therefore, if the
granularity of the Riemann sum approximation works fine
on some integral range, then it also works on any integral
range. Hence, the granularity of the Riemann sum approx-
imation is independent of the integral range. Then the hy-
perparameter search is converted from a two-dimensional
grid search to two one-dimensional linear searches, which
are more efficient.

Implementation. Finally, the implementation of our chf
loss is illustrated in Fig. 4. For a given image, let there be
M people in the ground truth with locations {µj}Mj=1. Con-
volving each person j with a Gaussian kernel with covari-
ance matrix Σj yields a Gaussian distribution N (µj ,Σj).
Then, the ground truth density map mg is the stack of all of
the M Gaussian distribution, i.e.,

mg =
M∑
j=1

N (µj ,Σj), (16)

and by Property 2, we have

ϕmg (t) =
M∑
j=1

ϕN (µj ,Σj)(t) =
M∑
j=1

exp
(
iµTj t− tTΣjt

2

)
.

(17)
Note that ϕmg can be calculated directly from the positions
and covariances (µj ,Σj) without computing the ground-
truth density map with convolution.

Let P (x) be the values in 2D matrix corresponding to the
predicted density map at spatial locations x. The prediction

density map mp is also a stack of singleton measures, and
by Property 2 again we have

ϕmp(t) =
∑
x

P (x)ϕδ(x) =
∑
x

exp(ixT t)P (x), (18)

where δ(x) is the impulse function located at x.
Suppose that we truncate the integral range in (10) to R̃,

and use the Riemann sum approximation. Then R̃ is divided
evenly into small square grids. Suppose the center points of
all the grids construct the set R, and the edge size of the
square grid is c, then the approximation to the integral in
(10) is

l̂chf(mg,mp) = c2
∑
t∈R

∣∣ϕmg (t)− ϕmp(t)
∣∣ . (19)

Finally, substituting (17) and (18) into (19) gives the final
form of our chf loss:

l̂chf(mg,mp) (20)

= c2
∑
t∈R

∣∣∣ M∑
j=1

exp(iµTj t− tTΣjt
2 )−

∑
x

exp(ixT t)P (x)
∣∣∣.

4. Experiments
In this section we present the experiment results validat-

ing the efficacy of our chf loss function, including compar-
isons with SOTA and ablation studies.

4.1. Experiment setup

The experiments are carried out on five benchmark data
sets: ShanghaiTech A & B [46], UCF-QNRF [9], JHU++
[29, 30], and NWPU [39]. For UCF-QNRF, we resize the
images such that the image’s shortest length does not exceed
1536. For JHU++ and NWPU, similar resizing is performed
for length 2048. The image crop window size is 384 for
UCF-QNRF, JHU++, and NWPU, 128 for ShanghaiTech
A, and 512 for ShanghaiTech B.

The density map regression network consists of the fea-
ture extraction layers of VGG19 [27] connected to a regres-
sion module composed of three convolution layers, which is
the same architecture used in [21, 34, 35, 37]. Training uses
our proposed chf loss in (20), denoted as “ChfL”, and the
optimizer is Adam [10] with the learning rate 1e-5 and the
weight decay 1e-4.

For the ground-truth density map, we use a Gaussian ker-
nel with the conventional bandwidth 8 pixels. Note that we
do not need to calculate the ground-truth density map in the
implementation, since its characteristic function can be di-
rectly obtained in closed-form from the annotated positions
(see Eq. 17). For the other two hyperparameters of our chf
loss: 1) the integral range is set to [−0.3, 0.3]2 for all data
sets; 2) the grid granularity in the Riemann sum approxima-
tion is set to 0.01 for all datasets.
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Figure 3. Comparison between the original density map and the reconstructed density map from the characteristic function confined on a
small range. (a) the original density map; (b) the reconstructed density map from its characteristic function truncated on [−0.3, 0.3]2, and
on (c) [−0.5, 0.5]2; (d) the difference between (a) and (b); (e) the difference between (a) and (c). The reconstructed density map and the
original density map are nearly the same. Note the range of difference values in (d) and (e) is much smaller than the range of the density
values. This indicates that the characteristic function confined in a small range carries nearly all the information in the spatial domain.
Hence, it is appropriate to restrict the integral to a small range when we calculate the chf loss.
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Figure 4. The implementation of our chf loss. The DNN’s output is
a density map represented as a 2D matrix, where each value P (x)
in the matrix corresponds to the singleton measure at a spatial
position x. The characteristic functions of the predicted density
map is calculated numerically, while the characteristic function of
the ground truth density map with Gaussian kernels is directly ob-
tained in closed-form from the annotated positions. The L1 norm
between characteristic functions is approximated using a Riemann
sum over region R̃, which is based on the point set R.

The evaluation metrics follow the standard convention:
the Mean Absolute Error (MAE) and the Root Mean Square
Error (MSE) are adopted.

4.2. Comparison of loss functions

First we compare our chf loss with state-of-the-art loss
functions in crowd counting in Table 1. All of the loss func-
tions use the same network architecture proposed in [21].
Our chf loss outperforms the other losses on all datasets.
Moreover, [37] and [35] require an external Sinkhorn algo-
rithm [22] running dozens of even hundreds of iterations in
each training batch, while [34] needs to invert large matri-
ces in each training batch. Nevertheless, the chf loss does
not require any other external algorithm, and the calculation
can be quickly completed using standard tensor operations.

NWPU JHU++ UCF-QNRF SHTC A SHTC B
MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

BL [21] ICCV’19 105.4 454.2 75.0 299.9 88.7 154.8 62.8 101.8 7.7 12.7
NoiseCC [34] NeurIPS’20 96.9 534.2 67.7 258.5 85.8 150.6 61.9 99.6 7.4 11.3
DM count [37]NeurIPS’20 88.4 388.6 68.4 283.3 85.6 148.3 59.7 95.7 7.4 11.8
GL [35] CVPR’21 79.3 346.1 59.9 259.5 84.3 147.5 61.3 95.4 7.3 11.7
ChfL (ours) 76.8 343.0 57.0 235.7 80.3 137.6 57.5 94.3 6.9 11.0

Table 1. Comparison with state-of-the-art loss functions. All
losses use the same network architecture from [21].

Loss
time /

per epoch
time /

500 epochs
number of related
hyperparameters

BL [21] 15.2 s 2h 7m 2
NoiseCC [34] 16.4 s 2h 17m 6
DM count [37] 19.0 s 2h 38m 4

GL [35] 17.4 s 2h 25m 7
ChfL (ours) 15.4 s 2h 9m 3

Table 2. Efficiency and number of hyperparameters for different
loss functions. The training time is measured using the training set
(300 images) of ShanghaiTech A (with batch size 1 and crop size
512). Our implementation uses with PyTorch on an RTX2080 TI.

Table 2 shows the efficiency comparison among these
loss functions. Since they use the same network architecture
and the losses are only calculated in the training phase, the
identical inference time is omitted here. From the table,
BL [21] is the most efficient loss function among them,

but BL also has the poorest performance. Our chf loss has
2nd highest efficiency, as well as the 2nd lowest number of
hyperparameters, while also achieving best MAE. Note that
there are only 300 training images in the timing test, and
the efficiency advantage will increase as the training size
and number of epochs increase.

4.3. Comparison with SOTA

Table 3 shows the comparison between our chf loss
and the current SOTA. For fairness, this comparison only
considers methods using a single model and trained on
the individual datasets. Although our method is simple,
our chf loss is competitive against current SOTA on large-
scale datasets, obtaining lowest MAE/MSE on UCF-QNRF,
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NWPU JHU++ UCF-QNRF SHTC A SHTC B
MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

MCNN [46] CVPR’16 232.5 714.6 188.9 483.4 277.0 426.0 110.2 173.2 26.4 41.3
SwitchCNN [1] CVPR’17 - - - - 228.0 445.0 90.4 135.0 21.6 33.4
CSRNet [14] CVPR’18 121.3 387.8 85.9 309.2 110.6 190.1 68.2 115.0 10.6 16.0
SANet [4] ECCV’18 190.6 491.4 91.1 320.4 - - 67.0 104.5 8.4 13.6
CAN [18] CVPR’19 106.3 386.5 100.1 314.0 107 183 62.3 100.0 7.8 12.2
SFCN [40] CVPR’19 105.7 424.1 77.5 297.6 102.0 171.4 64.8 107.5 7.6 13.0
MBTTBF [28] ICCV’19 - - 81.8 299.1 97.5 165.2 60.2 94.1 8.0 15.5
BL [21] ICCV’19 105.4 454.2 75.0 299.9 88.7 154.8 62.8 101.8 7.7 12.7
KDMG [36] TPAMI’20 100.5 415.5 69.7 268.3 99.5 173.0 63.8 99.2 7.8 12.7
LSCCNN [24] TPAMI’20 - - 112.7 454.4 120.5 218.2 66.5 101.8 7.7 12.7
RPNet [43] CVPR’20 - - - - - - 61.2 96.9 8.1 11.6
AMRNet [19] ECCV’20 - - - - 86.6 152.2 61.6 98.4 7.0 11.0
NoiseCC [34] NeurIPS’20 96.9 534.2 67.7 258.5 85.8 150.6 61.9 99.6 7.4 11.3
DM count [37] NeurIPS’20 88.4 388.6 68.4 283.3 85.6 148.3 59.7 95.7 7.4 11.8
LA-Batch [48] TPAMI’21 - - - - 113.0 210.0 65.8 103.6 8.6 14.0
AutoScale [42] IJCV’21 94.1 388.2 65.9 264.8 104.4 174.2 65.8 112.1 8.6 13.9
GL [35] CVPR’21 79.3 346.1 59.9 259.5 84.3 147.5 61.3 95.4 7.3 11.7
P2PNet [31] ICCV’21 77.4 362.0 - - 85.3 154.5 52.7 85.1 6.2 9.9
SDA+BL [20] ICCV’21 - - 62.6 264.1 83.3 143.1 58.4 95.7 - -
ChfL (ours) 76.8 343.0 57.0 235.7 80.3 137.6 57.5 94.3 6.9 11.0

Table 3. Comparison with state-of-the-art single-model methods
trained on individual data sets.

Algorithm training time /
per epoch

inference time /
per epoch

crop size of images
in training

KDMG [36] 83.0 s 6.9 s 512
P2PNet [34] 60.8 s 11.8 s 128
ChfL (ours) 15.4 s 6.9 s 512

Table 4. Running time of recent algorithms. The inference time is
measured using the test set (182 original images) of ShanghaiTech
A. Other settings are the same as in Table 2.

JHU++, and NWPU. Our method also obtains 2nd lowest
MAE on ShanghaiTech A and B (behind P2PNet), but these
two datasets are smaller and less representative of genearl-
ization ability. These comparative results demonstrate the
potential of supervising crowd counting in the frequency
domain. We believe that there is also room for improvement
for facilitating the development of the crowd counting.

We also compare the efficiency of our method with other
recent algorithms in Table 3. Our method is 4x faster than
P2PNet (despite P2PNet using smaller image sizes) and
5.4x faster than KDMG in training. For inference, our
method has the same running time as KDMG since they use
the same architecture, and is ∼41% faster than P2PNet.

4.4. Ablation study

The approximation of the integral in the chf loss intro-
duces two extra hyperparameters: the integral range and the
grid granularity in the Riemann sum approximation. As
mentioned in Section 3.4, Property 4 decouples these two
hyperparameters, and thus the ablation study is carried out
individually for each hyperparameter on ShanghaiTech A.

Fig. 5a shows the results for different integral ranges.
Generally, the counting performance is robust to differ-
ent integral ranges. When the range is above [−0.3, 0.3]2,
the performance gradually degenerates, which suggests that
the frequency information beyond this range may make the
model overfit. In practice, we fix the range at [−0.3, 0.3]2.

Fig. 5b shows the counting result for different grid gran-
ularity. When the granularity is too coarse, i.e., 0.1 granu-
larity, then the error increases significantly. When the gran-
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Figure 5. Ablation study on (a) the integral range [−α, α]2 where
α is the value in the x-axis; (b) the grid granularity in the Riemann
sum approximation, where the granularity is the side length of the
square grid and the integral range is fixed at [−0.2, 0.2]2.

ularity is below 0.04, the performance is not too sensitive to
the granularity change. Since small granularity means more
grids, which corresponds to more memory/computation, we
set the granularity as 0.01 in practice.

5. Limitations

By convention the density map is computed as the convo-
lution between the dot map and the Gaussian kernel. Other
works have shown that transforming the dot map into a
smooth representation is also helpful to make training ro-
bust for counting [9, 21, 36, 46]. Indeed, in our framework,
the Gaussian kernel acts like a low-pass filter to diminish
high-frequency content, which allows for truncation of the
integral for implementation. Therefore, convolving the dot
map with the Gaussian kernel or other low-pass filter kernel
is required in our framework.

6. Conclusions

In this paper, we have studied crowd counting using su-
pervision in the frequency domain. By extending the def-
inition of characteristic function to the density map (finite
measures) and proving a series of key properties, we build
the foundation of a new paradigm in supervision for training
crowd counting models. Based on this foundation, we pro-
pose a simple, effective, and efficient method in the form
of the chf loss function. The theoretical analysis plays an
important role across the spectrum of the method’s design,
implementation, and hyperparameter selection. We eluci-
date why our chf loss is effective, through proving that it
is an upper-bound to a sup-norm metric between two den-
sity maps (over all sub-regions). Experiment results demon-
strate its superiority to other SOTA loss functions. We hope
that our work will inspire future work on designing loss
functions for crowd counting in the frequency domain so
as to better exploit the ground-truth information.
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