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Figure 1. Head swapping results generated by HeadSwapper. The first line is the source image. The second line is the target image.
The head swapping results are shown in the third line, where the source head is seamlessly transferred to the target in the wild.

Abstract

The head swapping task aims at flawlessly placing a
source head onto a target body, which is of great impor-
tance to various entertainment scenarios. While face swap-
ping has drawn much attention, the task of head swapping
has rarely been explored, particularly under the few-shot
setting. It is inherently challenging due to its unique needs
in head modeling and background blending. In this paper,
we present the Head Swapper (HeSer), which achieves few-
shot head swapping in the wild through two delicately de-
signed modules. Firstly, a Head2Head Aligner is devised to
holistically migrate pose and expression information from
the target to the source head by examining multi-scale in-
formation. Secondly, to tackle the challenges of skin color
variations and head-background mismatches in the swap-
ping procedure, a Head2Scene Blender is introduced to si-
multaneously modify facial skin color and fill mismatched
gaps on the background around the head. Particularly,
seamless blending is achieved with the help of a Semantic-
Guided Color Reference Creation procedure and a Blend-
ing UNet. Extensive experiments demonstrate that the pro-

*Corresponding authors.

posed method produces superior head swapping results on
a variety of scenes.

1. Introduction
Human cognition of identity appearance is profoundly

affected by not only facial structures but also head shapes
and hairstyles. Head swapping, the ability to seamlessly
replace the head in a target image with a source one (as
shown in Fig. 1) would be of great importance to a variety
of scenarios such as movie and advertisement composition,
virtual humans creation, and deepfake video detection, etc.

While face swapping has long been a topic of inter-
est [3,17,21,23], only a few studies have been carried out on
the task of head swapping. DeepFaceLab [23] requires large
manual intervention to generate head swapping results, and
they are totally incapable of handling mismatched regions.
StylePoseGAN [24] tends to change the color of body skin
and background in the target image in an undesired man-
ner. Moreover, both methods fail to address few-shot head
swapping, particualrly for in-the-wild scenes.

We identify several properties that make few-shot head
swapping more challenging than face swapping: 1) Head
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swapping requires not only perfect facial identity and ex-
pression modeling, but also capturing the structural infor-
mation of a whole head and the non-rigid hair. Thus previ-
ous identity extraction strategies for face swapping [3, 21]
cannot be directly applied to head swapping. 2) There
would be a huge region mismatch between swapped head
edges and backgrounds caused by the editing of head shapes
and hairstyles. Such a problem does not exist in the face
swapping setting. 3) Moreover, similar to face swapping,
the color difference between source and target skins needs
to be handled carefully.

In this paper, we propose a framework called Head
Swapper (HeSer), which generates high fidelity head
swapping results in the wild based on a few frames. Our key
insight is to positionally and emotionally align the source
head with the target in a unified blender that seamlessly
handles both color and background mismatches. Two mod-
ules, namely the Head2Head Aligner and the Head2Scene
Blender are devised. The Head2Head Aligner is responsible
for finding a latent representation of a whole head as well as
the facial details. It aligns the source head to the same pose
and expression as the target image in a holistic manner. The
identity, expression, and pose information are prominently
balanced in a style-based generator by encoding multi-scale
local and global information from both images. Moreover,
a subject-specific fine-tuning procedure could further im-
prove identity preservation and pose consistency.

To further blend the aligned head into the target scene,
we devise a module named Head2Scene Blender, which
provides both 1) color guidance for facial skins and 2)
padding priors for inpainting the gaps on the background
around the head. Thus both the skin color and edge-
backgrounds mismatches between source and target can be
handled within one unified sub-module. It efficiently cre-
ates colored references by building the correlations between
pixels of the same semantic regions. Then with a blending
UNet, seamless and realistic head swapping results can be
rendered.

We summarize our main contributions as follows: 1) We
introduce a Head2Head Aligner that holistically migrates
position and expression information from the target to the
source head by examining multi-scale information. 2) We
design a Head2Scene Blender to simultaneously handle fa-
cial skin color and background texture mismatches. 3) Our
proposed Head Swapper (HeSer) produces photo-realistic
head swapping results on different scenes. To the best of
our knowledge, this is one of the earliest methods to achieve
few-shot head swapping in the wild.

2. Related Work
The proposed two-stage Head Swapper is closely related

to the topics of face swapping, head reenactment and image
blending, which will be discussed below.

Face and Head Swapping. Many methods have been
proposed for face swapping [1, 3, 18, 21, 22, 33, 34, 44].
While few studies tackle the task in a source-oriented man-
ner [21, 22] that aims at reenacting and blending the source
into the target, most methods are performed in a target-
oriented manner [1, 3, 18, 34, 44]. They extract identity rep-
resentation from the source image and inject it into the tar-
get image in a generative model. Face swapping approaches
produce immutable hairstyles and head shapes, which lim-
its the overall similarity between the generated results and
the source.

The task of head swapping has been rarely studied.
Deepfacelab [23] is the first work to tackle head swap-
ping. However, it suffers from the following issues: 1)
huge amounts of source data are required; 2) color trans-
fer can only be poorly performed; and 3) the regions that
require inpainting the fusion look unnatural. Later Style-
PoseGAN [24], which is specially designed for re-rendering
using pose-/appearance-conditioned StyleGAN [29], poten-
tially has the capability of head swapping. However, it
tends to perform poorly for in-the-wild scenarios. Our pro-
posed head swapping pipeline is the first work committed
to achieving few-shot head swapping in the wild.
Few-Shot Head Reenactment. Head swapping requires
placing the source head at the target head’s position with
the same pose and expression, which is similar to the task
of talking head generation and head reenactment [4,6,7,14,
16,19,20,26–28,30,38,41,43]. Here we will briefly discuss
the visual-driven few-shot reenactment methods.

Recent few-shot methods can be roughly divided
into warping-based and reconstruction-based methods.
Warping-based approaches [26–28] deform the source im-
ages to imitate the motion of driving ones, they tend to
work poorly for the case with a big range of motion.
Reconstruction-based approaches mostly leverage genera-
tive adversarial networks (GANs) [8]. A great number
of studies use intermediate representations such as land-
marks [4,36] and 3D models [41]. However, the inaccuracy
of the structural information might lead to error accumula-
tion. Certain recent studies focuses on the extraction and
disentanglement of pose and identity information in the la-
tent space [6, 19, 42, 43]. Particularly, LPD [6] verifies that
a style-based generator can explicitly handles such infor-
mation in latent vectors. Inspired by this type of work, we
introduce the Head2Head Aligner to find the latent repre-
sentation of the whole head as well as the facial details in a
reconstruction-based learning pipeline.
Color Transfer. As we need to transfer the skin color of
the source face to the target one, it is similar to the task
of makeup transfer. Early makeup transfer methods utilize
facial landmarks or parsing results as prior information [2,9,
12,13,31], however, they cannot keep the facial expressions
unchanged. The subsequently PSGAN [15,25] and SCGAN
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Figure 2. The overall architecture of our proposed pipeline for testing. First stage: the Head2Head Aligner GA (detailed in Fig. 3)
generates the animated portrait IA, depicts the K-shot source image IIDk (k = 1, ...,K) at the same pose and expression of the target
image IT . Second stage: we concatenate grayscale head IGH , head mask MH , inpainting mask MI , reference source IT and background
IBG to go through the Head2Scene blender GB (detailed in Fig. 5) to generate the blending output IB (i.e., the head swapping result) in
photo-realistic quality.

[10] solve the pose misalignment problem above. However,
they tend to change the background color after the color
transfer, making them unsuitable for head swapping where
the background of the target must not be changed.

3. Method
In this work, we introduce the Head Swapper (HeSer),

which is illustrated in Fig. 2. Let IS = {ISk
|k ∈ [1,K]}

denote the set of source images, and let IT be the image of
the target person. We aim to create a new blending output
(i.e., head swapped result) IB , with the head of S on the
body and background of IT . Notably, the pose, expression,
and skin color of IB should remain consistent with IT , but
the identity, head structure and hairstyle should be the same
as S.

In this section, we first design a Head2Head Aligner
(Sec. 3.1) to produce an animated portrait image IA as an
intermediate representation. Then IB is derived by blending
IA with IT in the Head2Scene Blender (Sec. 3.2).

3.1. Head2Head Aligner

Instead of directly building IB , our first step is to
produce an image which is positionally and emotionally
aligned with IT , but with the same identity as S. We name
this intermediate animated portrait image IA. We identify
that all desired information required for IA can be extracted
from multi-scale perspectives on both the source and target,
including: 1) the global head and hair structure information
of IS ; 2) the identity details on the faces of IS ; 3) the global
pose of IT ; and 4) the detailed expressions of IT .

To this end, we design the Head2Head Aligner as illus-
trated in Fig. 3. The Head2Head Aligner consists of a por-
trait encoder Epor, an identity encoder Eid, a pose encoder
Epose, an expression encoder Eexp , and a generator G.

Fixed Identity
encoder

Portrait
encoder

Pose
encoder

Expression
encoder

A(IT)

C(A(IT))

Generator Average
operator

IA
Animated portrait

Epor

Eid

Epose

Eexp

G

AdaIN

Epor Eid

Epose Eexp

G

IS , … , IS1 K

C(IS ), … , C(IS )1 K

ISk IT
Target
image

Source
image

fid : Identity vector(1×dpor)

fpor : Portrait vector(1×did)

fid: Average identity vector(1×dpor)

fpor: Average portrait vector(1×did)

fexp : Expression vector(1×dexp)

fpose: Pose vector(1×dpose)
_

_
k

k

Figure 3. Overview of the proposed Head2Head Aligner for train-
ing. The average portrait vector f̄por , average identity vector f̄id ,
pose vector fpose and expression vector fexp are obtained from the
portrait encoder, identity encoder, pose encoder and expression en-
coder respectively. Then the vectors above are sent into the ani-
mated portrait generation.

It is worth noting that during training, the source image
and target image are obtained from the same video of a par-
ticular person (illustrated in Fig. 3), and they are derived
from videos of different people during testing. Thus the
information disentanglement should be taken into consid-
eration. In the training stage, we randomly select K + 1
frames from the same video sequence of an individual per-
son, where K frames are set as the K-shot source images
IS , while the remaining frame is set as the target image IT .
Source Encoding. Both the coarse and fine scales are lever-
aged for information encoding from the source and target.
As for the source image, global portrait information includ-
ing the head and hair, is directly extracted by an encoder
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Figure 4. Illustration of data preprocessing for head2scene
blender.

Epor to a dpor-dimensional vector fpork = Epor(ISk
).

On the other hand, the identity encoder is adopted from
a pretrained state-of-the-art face recognition model [5],
which can provide more representative identity embedding
[3, 17, 43]. More specifically, for each source image ISk

,
it first undergoes a central cropping transformation C, after
which C(ISk

) is passed through the identity encoder Eid

to generate a did-dimensional identity embedding fidk =
Eid(C(ISk

)).
For randomly fetched K frames of source images

IS1 , IS2 , ..., ISK
, a total of K portrait vectors fpork and

K identity embeddings fidk are produced; we acquire f̄por
and f̄id by taking the average of {fpor1, ..., fporK} and
{fid1, ..., fidK} respectively.
Target Encoding. To obtain both facial expression details
and the global head pose, as shown at the bottom-left of
Fig. 3, we apply the pose encoder Epose and the expression
encoder Eexp to extract the pose and detailed facial expres-
sion information respectively from the target image IT . It
first undergoes a series of augmentations [6] A before be-
ing sent into the pose encoder Epose . An identity-agnostic
dpose -dimensional pose descriptor fpose = Epose(A(IT ))
is thus encoded. Then the augmented image is also pro-
cessed with central cropping C mentioned above. The re-
sult C(A(IT )) is fed into the expression encoder Eexp to
produce a dexp-dimensional expression vector fexp.
Animated Portrait Generation. The feature descriptors
containing information regarding the body, identity, pose
and expression are then composed together to produce the
animated portrait. Specifically, the features f̄por , f̄id , fpose
and fexp are concatenated and processed by a generator via
AdaIN [11] to produce the desired output IA:

IA = G(f̄por , f̄id , fpose, fexp) (1)

The loss functions used are basically the reconstruction loss,
perceptual loss, adversarial loss and identity loss, which are
the same as [6]. Please refer to supplementary material for
more details.

3.2. Head2Scene Blender

With the animated portrait image IA above, our second
step is to produce the blending output IB . It should be a
seamless combination of the head from IA and the back-
ground and body in IT . The challenges are 1) the head

shape on IA could be significantly different from that of IT ,
thus the blending procedure requires amending the “outlin-
ers”, i.e., masking out the areas of the original head and fill
in the gaps led by head shape mismatches; and 2) the color
of the IB should be consistent with IT .

To this end, we design the Head2Scene Blender, which
simultaneously solves both challenges as illustrated in Fig.
5. The key is to build “color references” which serve as
guidance for both skin color transfer and background gap
inpainting with a Semantic-Guided Color Reference Cre-
ation sub-module. Then the final results are generated
through a Blending UNet. Below we will first introduce
the necessary Data preprocessing steps for producing the
color references and then introduces the sub-modules re-
spectively.
Data preprocessing. The data preprocessing procedure
prepares the materials for performing the color transfer and
inpainting, which are binary masks that identifies the areas
in need and the cropped images. Particularly, instead of di-
rectly modifying the animated head in IA, we argue that it
would be easier to reconfigure the color transfer problem
into the problem of re-coloring its grey-scale version of the
head IGH

A only.
Detailedly, given the animated portrait IA, we employ a

parsing tool to obtain the segmentation masks MA, which
indicates the semantic areas of the portrait image. Then the
head mask MH

A of the target image is obtained by combin-
ing the masks belonging to the head area. Similarly, the
segmentation masks MT and head mask MH

T of the target
image IT are obtained in the same way. The greyscale head
can be computed as IGH

A = Gray(IA ∗MH
A ).

Furthermore, the head mask MH
T is dilated to an en-

larged version M̂H
T , then the target inpainting mask M I

T =

M̂H
T −MH

T which will be further used for creating the color
reference for inpainting. Different from the target inpaint-
ing mask above, the animated inpainting mask M I

A is ob-
tained via both MH

A and MH
T . More especially, the union

set of MH
A and MH

T is dilated to an enlarged mask M̂H
A . Let

the animated inpainting mask M I
A = M̂H

A − MH
A denotes

the area that needs inpainting when blending IA with IT .
IBG
T = IT ∗ (1.0− M̂H

A ) is the background image without
the target head.
Semantic-Guided Color Reference Creation. After the
data processing steps, we need to re-color the greyscale
head IGH

A and fill the animated inpainting mask M I
A. As

stated before, our intuition is to provide a color reference
for both of them, namely the head-color reference IHR

T→A

and the inpainting reference IIRT→A, respectively.
Inspired by previous work [15, 37, 39], we identify that

each color reference should spatially match the target region
and provide pixel-wise color guidance. As the desired color
should be consistent with the target image IT , the color of
the references could be derived by querying the coherent
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Figure 5. Illustration of our proposed Head2Scene Blender in the testing setting. The head-color reference IHR
T→A and inpainting reference

IIRT→A are first obtained using the Reference Creation sub-module. Then IHR
T→A, I

IR
T→A,M

H
A , IBG

T ,MI
A, and IGH

A are fed into the blending
UNet to produce the final result IB . In the training phase, the same image is used for IA, IT and IB .

color from IT through correlation learning. This is achieved
in the Reference Creation sub-module RC.

Due to the lack of paired data, the Reference Creation
sub-module is still trained in a self-driven manner with IA
and IT sourcing from the same image. As shown in the
left-hand diagram of Fig. 5, in the training phase, the ani-
mated portrait IA and target image IT first undergo a ran-
dom color augmentation C ′ and a random horizontal flip
augmentation F respectively, which prevents the networks
from directly leveraging the pixels from the same position.
The augmented animated portrait C ′(IA) and the random
flipped target image F (IT ) are then both sent into a fea-
ture pyramid network FPN [39] to produce the following
semantic representation:

fA = FPN(C ′(IA)). (2)
fT = FPN(F (IT )). (3)

The next step to colorization is to compute the correla-
tions between extracted features on each spatial location,
and resample pixel colors from the target image to the color
references. Previous approaches [15, 37, 39] produce a pro-
hibitively large memory footprint when estimating the cor-
respondence due to the fact that the pairwise similarities are
computed among all locations of the feature maps, despite
their semantic independence. As the pixels in the image
pairs with different semantic labels make little contribution
to the correspondence matrix, we only compute the correla-
tions among the same semantic regions individually. Our
practice not only alleviates memory consumption but also
avoids mismatched correlations.

Concretely, as shown in Fig. 6, for each semantic re-
gion r ∈ {face, hair, eye, nose, lip, tooth, inpainting},
we compute a correlation matrix Γ r ∈ RN r

A×N r
T , of which

each element Γ r (u, v) is a pairwise feature correlation cal-

Γr, correlation matrix, NA×NT

sk
in
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ir

Target
image
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mask
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g
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se

Color
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headcolor
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Select feature by mask
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IA, selected RGB pixel from IA, 3×NA
r r

r r

r r

r r

_

_

Figure 6. The illustration of our Semantic-Guided Color Refer-
ence Creation module, best viewed in color.

culated as:

Γ r (u, v) =
f̄ rA(u)

T f̄ rT (v)

∥f̄ rA(u)∥ ∥f̄ rT (v)∥
, u ∈ M r

A, v ∈ M r
T , (4)

where f̄r
A(u) and f̄r

T (v) ∈ RC represent the channel-
wise centralized feature of f rA and f rT in positions u and
v respectively, i.e., f̄r

A(u) = f rA(u) − mean(f rA(u)) and
f̄r
T (v) = fr

T (v) − mean(fr
T (v)), and the dimensions N r

A

and N r
T are the pixel number of the semantic region r in

the animated portrait image and target image respectively.
Compared to the original correlation maps in prior works
[15, 39], our approach reduces the computational complex-
ity from O(wh ∗wh) to O(N r

S ∗N r
R), where w and h denote

the spatial size of the original feature map.
As Γ r (u, v) indicates the similarity between MA(u) and

MT (v), we normalize the Γ r (u, v) via softmax and com-
pute their weighted contribution of these variables from the
target image to the head and inpainting regions of the ani-
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mated portrait image, as follows:

IrT→A(u) =
∑

v∈Mr
T

softmaxv(Γ
r(u, v)/τ)·IT (v), u ∈ Mr

A.

(5)
where τ is the temperature coefficient. Finally, as shown
in Fig. 6, the created inpainting reference IIRT→A is derived
from IT and M I

T , while the warped head-color reference
IHR
T→A is obtained from IT and the combination of Mr

T ,
where r ∈ {face, hair, eye, nose, lip, tooth}. We denote
the overall estimation procedure as:

IHR
T→A = RC(fA,MA, fT ,MT , IT ∗MH

T ). (6)

IIRT→A = RC(fA,M
I
A, fT ,M

I
T , IT ∗M I

T ). (7)

Blending UNet. After acquiring the created head-
color/inpainting reference IHR

T→A/IIRT→A, the head mask
MH

A , background IBG
T , inpainting mask M I

A and gray-scale
head IGH

A produced by the data processing, we concatenate
them all channel-wisely, and pass them to a Blending UNet.
Our goal is that: 1) the head-color distilled from the target
image is transferred to the gray-scale head IGH

A , where the
identity is retained while the color is kept consistent with
the remaining skin (such as neck) exposed in the rest of the
reference body; 2) the missing region masked by the in-
painting mask can be estimated. Consequently, the overall
process of the Blending UNet B can be formulated as fol-
lows:

IB = B(IHR
T→A, I

IR
T→A,M

H
A , IBG

T ,M I
A, I

GH
A ). (8)

Cycle Loss: The training relies on the reconstruction loss,
perceptual loss, adversarial loss. Additionally, in order to
guarantee that the warped headcolor/inpainting exemplars
could learn a meaningful correspondence matrix, we intro-
duce the cycle consistent loss.

Lc = λc ∥IT→A→T − IT ∥1 , (9)

where IT→A→T is the color reference after cycled,
and IkT→A→T (u) =

∑
v∈Mk

A
softmaxv(Γ

k(u, v)/τ) ·
IT→A(v), u ∈ Mk

T . Besides, the additional target image
I ′T coming from different image compared to IA is also uti-
lized to ensure the meaningful of warped exemplar:

Lc′ = λc ∥IT ′→A→T ′ − IT ∥1 . (10)

Please refer to the supplementary materials for more details.

4. Experiments
Detailed descriptions of the data collection, along with

more experimental details, are elaborated in the supplemen-
tary material.

Table 1. Average score from the user study, rating from 0 to 2.

Method ID ↑ Exp ↑ Skin Color ↑ Inpainting ↑ Holistic ↑

FaceSwap [3] 0.488 1.208 1.264 – 0.492
Deepfacelab [23] 0.864 0.588 0.612 0.028 0.784
Ours 1.648 1.204 1.044 2.972 1.724

4.1. Headswap Results

We first evaluate our head swapping result. We compare
our proposed HeSer with the state-of-the-art face swapping
model [3] and Deepfacelab [23] as follows.

Qualitative comparison. The results in Fig. 7 demonstrate
that our method can outperform other methods in multi-
ple aspects, e.g., identity preservation, pose and expression
consistency, skin color alignment, head-background coher-
ence, and fidelity. The source image for face swapping
is one of the 32-shot images, while the source images for
Deepfacelab and our head swapping model are the same 32
frames. The face swapping method can swap the facial el-
ements from source image to target image, and the mus-
tache can be slightly transferred; however, the immutable
face shape and hairstyle restrict the identity similarity in hu-
man cognition. Deepfacelab tends to animate poorly when
there is no source image with a similar pose to target im-
age; furthermore, it is incapable of inpainting the missing
pixel and the performance of head-color alignment is sig-
nificantly inferior to ours. For more vividly head swapping
results generated by our method please refer to supplemen-
tary video.

Quantitative Comparison. We conduct a user study for
quantitative comparison of our HeSer with the face swap-
ping method [3] and Deepfacelab [23]. We ask the users to
rank 1) how well the ID information is preserved in each
method. 2) The emotion and pose similarity with the target
image, we denote the results as Exp. 3) The consistency of
the Skin Color between generated examples and the target
torso. 4) The Inpainting smoothness between generated
head and the background. 5) The Holistic quality of the
generated frames.

We randomly select 25 groups of source images and 10
target images from the voxceleb2 test set, and a totally 250
results are obtained for each method. Then 15 different
workers are asked to rate the randomly selected 25 results
for every dimension on a scale of zero to two, where worst is
zero and best is two. Table 1 shows the average score result
from the user study. Our HeSer outperforms other methods
by a large margin, except for the expression consistency and
skin color alignment. Face swapping [3] directly injects the
identity information to the target image thus naturally keeps
better facial structures and skin colors.
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Figure 7. Our head swapping results compared with other methods.

Table 2. Quantitative comparison on face reenactment.

Method EID ↓ EP ↓ SSIM ↑ LPIPS ↓ PSNR ↑

FOMM [27] 0.49 0.275 0.76 0.18 30.92
LPD [6] 0.71 0.063 0.52 0.50 28.84
Siarohin et al [28] 0.71 0.137 0.73 0.20 30.01
Ours 0.53 0.026 0.77 0.19 31.33
LPD (32-shot + ft) 0.23 0.024 0.62 0.36 29.46
Ours (32-shot + ft) 0.22 0.024 0.89 0.12 33.26

4.2. Superiority of the Head2Head Aligner

In this subsection, we evaluate Head2Head Aligner in-
dependently. As the Head2Head Aligner is devised to ani-
mate the source image with the pose and expression of the
target image, which is similar to the task of reenactment,
different reenactment strategies are compared. The perfor-
mance is discussed from two perspectives: K-shot inputs,
and fine-tuning or not. As some of our 2D-based animated
competitors (FOMM [27] and Siarohin et al. [28]) do not
support few-shot inputs and fine-tuning, we split our evalu-
ations into 1) a one-shot setting, where all competitors are
compared; 2) otherwise, only LPD is compared.
Evaluation Metrics. Five metrics are included in terms
of head reenactment evaluation: (1) Identity error (EID)

32-shot, ft600, cross-id
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ur
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et

L
PD

[6
]
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ur

Figure 8. Qualitative cross-id animated results of 32-shot fine-
tuned model with 600 iterations. Source, target, and our animated
result are re-aligned following the instruction of LPD.

using the cosine similarity between face embeddings. (2)
Pose reconstruction error (EP ), measuring the pose error
between the synthesized and ground truth images as per-
formed in [6, 35]. (3) Pixel-wise Reconstruction fidelity
using PSNR. (4) Semantic perceptual similarity via the
AlexNet-based LPIPS metric [40]. (5) The perceived qual-
ity via the structural similarity index measure (SSIM) [32].
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Source Animated portrait Inpainting mask Reference Inpainting reference Head-color reference Blending result

Figure 9. Illustration of head-color/inpainting reference in our Head2Scene Blender. Best viewed in color.

One-shot setting Evaluation. We first compare the perfor-
mance of our animated method with four competitors via
five evaluation metrics under the one-shot face reenactment
setting. The quantitative results are shown in Table. 2. Our
method substantially outperforms all other animated mod-
els on every metric, except for the identity error and LPIPS,
which is slightly lower than FOMM. For more qualitative
comparison results please refer to supplementary material.

Impact of K-shot and fine-tuning. We further analyze the
effect of increasing the K-shot number with subject-specific
fine-tuning or a meta-learned model, which is the setting il-
lustrated in Fig. 1. Specifically, we set the model that takes
32 frames as input and leverage 600 iterations of finetun-
ing as the standard setting. The quantitative comparisons
are illustrated in Table 2. More quantitative evaluations
on the influences of shot number and finetuning iterations
are plotted in supplementary material. It shows that our
method almost outperforms other methods on all metrics
with various settings. The performances of all metrics tend
to improve as the k-shot number increases and fine-tuning is
added respectively, while the identity error and pose recon-
struction error of our animated method exhibit prominent
improvement relative to LPD, demonstrating that our pro-
posed scheme is capable of generating animated portraits
with smaller identity gap and higher pose consistency.

It is further noteworthy that our animated scheme outper-
forms LPD with only about one-fifth amounts of the training
data in LPD. Though the identity error of our method and
LPD is almost equal when the number of tuning steps is suf-
ficiently large (such as 600), the facial expressions and emo-
tions of our animated portraits are significantly better than
those of LPD, as illustrated in Fig. 8. Please refer to supple-
mentary material for more detailed qualitative results.

4.3. Effectiveness of Head2Scene Blender

The representative blending results are shown in the last
column of Fig. 9. Our Head2Scene Blender can pro-
duce head swapping portraits of photo-realistic quality. The
head-color reference (sixth column in Fig. 9) is created
from the target image, while the head structure is consis-
tent with the animated head. Similar behavior is observed
in the inpainting reference (fifth column in Fig. 9), where
the estimated region style is faithful to the reference back-
ground. It is noteworthy that the hat region of the inpainting
reference in the second row is constructed from the source
background, which further demonstrates the inpainting ef-
fectiveness of our blending module.

5. Conclusion and Discussion

Conclusion. In this paper, we propose the Head Swapper
(Heser), which achieves few-shot head swapping for in-the-
wild scenarios. Specifically, our Head2Head Aligner gener-
ates high-fidelity reenact results with high pose and expres-
sion consistency, and the Head2Scene Blender seamlessly
blends the aligned source head to the target image while
maintaining the color of the target person. Extensive ex-
periments demonstrate that the HeSer can achieve superior
head swapping results on a variety of scenes.
Broader Impact. Vivid video synthesis technologies create
possibilities for immoral behaviors. Recent generative mod-
els have greatly influenced identity safe, image authenticity,
etc. We will share the results of HeSer to the face/head
forgery detection community for the healthy development
of the AI technology.
Acknowledgement. This work is supported by the CCF-
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