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Abstract

Multi-modal learning from video data has seen increased
attention recently as it allows training of semantically mean-
ingful embeddings without human annotation, enabling tasks
like zero-shot retrieval and action localization. In this work,
we present a multi-modal, modality agnostic fusion trans-
former that learns to exchange information between multiple
modalities, such as video, audio, and text, and integrate
them into a fused representation in a joined multi-modal
embedding space. We propose to train the system with a
combinatorial loss on everything at once — any combina-
tion of input modalities, such as single modalities as well as
pairs of modalities, explicitly leaving out any add-ons such
as position or modality encoding. At test time, the resulting
model can process and fuse any number of input modalities.
Moreover, the implicit properties of the transformer allow to
process inputs of different lengths. To evaluate the proposed
approach, we train the model on the large scale HowTol00M
dataset and evaluate the resulting embedding space on four
challenging benchmark datasets obtaining state-of-the-art
results in zero-shot video retrieval and zero-shot video action
localization. Our code for this work is also available.!

1. Introduction

Humans capture their world in various ways, combin-
ing different sensory input modalities such as vision, sound,
touch, and more, to make sense of their environment. Video
data approximates this type of input by combining visual
and audio information as two coherent and complementary
signals that can be further enhanced with a text descrip-
tion. Recent research has therefore started to explore how
the information of those different modalities can be lever-
aged to learn meaningful representations from this kind of
content. Such systems can be used for representation learn-
ing, for example, to learn multi-modal embedding spaces
on video data [, 2], where the input of one modality such

Thttps://github.com/ninatu/everything_at_once

Fusion Transformer & Projection

( video
)

video-audio video
video- video-

Video

video

tokens Combinatorial Loss

audio audio text

% audio-text ﬁ/

text

%: audio text

audio-

video-text
=)o
«—> —contrasive loss

Figure 1. Overview of the proposed approach for self-supervised
learning of multi-modal embedding space. The fusion transformer
is able to process any combination of input modalities. Internally,
the transformer allows each modality to attend to each other. The
proposed architecture is trained with a combinatorial contrastive
loss considering each possible combination of input modalities.

as text, can be matched to one or more other modalities
such as video and audio, enabling tasks such as nearest-
neighbor based zero-shot classification or video retrieval
[20,37,44]. Our work in this paper focuses on the later
problem, namely the learning of meaningful multi-modal
embedding spaces. Current approaches in this area usually
learn encodings for different modalities by projecting inputs
to a common space and applying contrastive loss to bring
embeddings from co-occurred modalities together. Such ap-
proaches can be based on classical neural network elements
to learn those encodings [4, 12,35,37,44], i.e. convolutional
neural networks backbones and non-linear projections [37],
multiple instance learning [35], or clustering [12]. More
recently transformer based methods have also been pro-
posed [1, 10,20,32]. To generate the final embedding space,
they use multiple independent single-modality self-attention
transformer blocks [10,21,32], or a single transformer model
for all modalities [20], or a single modality-agnostic trans-
former [1]. In the last approach, modalities are still pro-
cessed independently and one-by-one forwarded to achieve
a single-modality embedding. But so far, none of these trans-
formers allow for adaption to any given number of input
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modalities. Although modality-agnostic transformers that
handle multiple input modalities such as PerceiverlO [26]
have been proposed, they have been constructed for learning
a latent space that can cover multiple tasks in different do-
mains. Compared to our work, the latent space in such cases
mainly serves the purpose of compressing multiple inputs
and tasks in one model.

In this work, we propose an approach that leverages self-
attention for multi-modal learning which jointly processes
any number of modalities and allows modalities to attend to
each other. A high level overview our architecture is shown
in Figure 1. Input tokens from one or more modalities are
passed through a fusion transformer that attends features
relevant for a combined input, followed by a projection to
a joint multi-modal embedding space. We design and train
the fusion transformer to cover three aspects of multi-modal
video learning: first, it should allow modalities to attend to
each other and learn multi-modal correlations; second, it
should be modality-agnostic and handle any possible modal-
ity input combination; and third, as different modalities and
samples can vary in length, it should be able to process input
of any length. To enable the fusion transformer to address all
those tasks, we follow the idea of a universal self-attention
in the transformer block and share key, query, and value
weights to all tokens, agnostic of their input modality. In
this way, self-attentions learns which input tokens to attend
from single modalities as well as from any combination of
modalities in a general way.

To train the model, we propose a combinatorial loss func-
tion which considers contrastive loss between all possible
and available input combinations. For example, in the case
of vision, text, and audio, the loss is based on each modality
embedding alone as well as based on pairwise vision-text,
audio-text, and text-audio combinations as shown in Fig-
ure 1. The resulting model is thus able to fuse any number
of input modalities at test time. Compared to other universal
self-attention methods, we omit any meta information en-
coding such as position or modality embedding. This further
allows us to process any input of different lengths, as we are
no longer bound to a maximum input size defined at training
time. Note that while we refer to this transformer as a fusion
transformer, we are not proposing a new transformer archi-
tecture, but rather refer to it as a transformer that is trained in
a way that enables fusion without any need for changes to the
self-attention mechanism. As a result, the final modal can be
used for any type of input, single modalities or combinations
of multiple ones, as well as for any input length.

We evaluate the proposed approach by training the model
on the HowTo100M dataset [37] and testing its zero-shot text-
to-video retrieval and step action localization on four down-
stream datasets, namely YouCook2 [55], MSR-VTT [52],
CrossTask [58] and Mining YouTube [29]. Our results show
that the proposed combination of a fusion transformer to-

gether with a combinatorial loss function improves perfor-
mance and leads to new state-of-the-art results. We summa-
rize the contributions of the paper as follows:

* We propose a multi-modal fusion transformer that pro-
cesses input of any combination of modalities and any
length and attends relevant features with respect to
cross-modal information.

* We propose a combinatorial contrastive loss that con-
siders all possible combinations of input modalities at
training time.

* We show that using such a multi-modal fusion trans-
former as an intermediate processing step can signif-
icantly improve performance for multi-modal embed-
ding space learning.

2. Related Work

Multi-modal learning. The idea of learning from more
than one modality can be seen as an integral part of machine
learning research, comprising areas such as vision-language
learning [42, 54], vision-audio learning [5-7, 13,23,47,50],
zero-shot learning [25, 34], cross-modal generation [33,43,

], as well as multi-modal multi-task learning [27]. Video
naturally combines multiple modalities, while at the same
time allowing to learn from large-scale data that would not be
annotatable in a reasonable time. In this context, Miech et al.
[37] proposed the HowTo100M dataset of narrated videos
and presented a system showing the potential of multi-modal
learning for learning a video-text embedding space via con-
trastive loss. The dataset contains YouTube instructional
videos that come with audio and respective subtitles as a
textual description obtained by Automatic Speech Recog-
nition (ASR). As this data can be considered more noisy
than curated vision-text datasets, Amrani et al. [4] proposed
a noise estimation for multi-modal data via multi-modal
density estimation. Miech et al. [35] proposed MIL-NCE,
combining the idea of noise-contrastive estimation with a
multiple instance learning formulation. Alwassel et al. [3]
used the audio and video information only and proposed
to leverage unsupervised clustering as a supervisory signal
across modalities. While those works [3,4,35,37] only use
two modalities to train their models, others have focused
on the problem of learning from vision, audio, and text
at once [2, 8, 12,19,44]. As perhaps one of the first, Ay-
tar et al. [8] proposed an architecture trained on image-text
and image-audio pairs that allows to connect text and audio
modalities. Later Alayrac et al. [2] followed the idea of dif-
ferent embedding spaces for different modality combinations
and proposed Multi-Modal Versatile Networks. A shared
embedding space was proposed by Rouditchenko et al. [44]
mapping all three modalities in one joint space. This idea
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has recently been extended by additional clustering and re-
construction loss by Chen et al. [12].

Multi-modal learning with transformers. Architectures
based on self-attention and transformers have been explored
to learn from multi-modal video data. Cheng et al. [15]
proposed a co-attention module to learn correspondences
between audio and video samples. Luo et al. [31] pick up
on that idea but proposed, similar to Uniter [14] for vision-
language tasks, a joint cross-modal encoding for video-text
pairs. Compared to that, Bain et al. [10] focused on the
problem of how to attend to temporal as well as spatial in-
formation in the video backbone. They therefore processed
both modalities, video and text, in two separate transformer
backbones and only added a linear mapping layer on top of
the backbones. In this context, recently, Nagrani et al. [39]
proposed a multi-modal bottleneck transformer for effec-
tive audio-visual fusion trained in the supervised setting.
A transformer-based approach that actually uses all three
modalities, and can therefore be considered closest to our
proposed work, has been proposed by Akbari et al. [1].
Here, a single backbone transformer is applied to any of
the modalities separately, but with shared attention. For
training, the model follows the idea of [2] and computes the
matching of video-audio first, followed by video-text match-
ing. It thus fuses those modalities in a pairwise way, which
can be compared to a subset of our proposed loss function.
Other approaches also leverage temporal aspects in context
of multi-modal transformer learning. Gabeur et al. [20]
used a combination of expert and temporal embeddings to
train a multi-modal transformer while Wang et al. [49] pro-
posed a local-global temporal alignment based on multi-
modal experts to guide the training. The idea of simply
using a pretrained vision-language transformer model has
also been explored by Lou et al. [32], using the pretrained
CLIP model [42] as a backbone with a transformer-based
similarity encoder on top of a vision and text backbone and
achieving good results on tasks such as video retrieval. As
most transformer-based method use various and sometimes
not-publicly available datasets for backbone pretraining or
have a need for resources that make it hard to repeat experi-
ments, it is difficult to directly compare performance across
different architectures and pretraining set. We therefore de-
cided to follow the setup used in majority of works here
and rely on pre-extracted features that are then processed by
the proposed architecture to allow a direct comparison with
previous works.

3. Method

Our goal is to learn a projection function of single modal-
ities or a set of modalities into a joint embedding space in a
way that semantically similar inputs would be close to each
other, e.g. the projection of the text description of a video
scene should be close to the projection of the video-audio

representation of this scene. In the following, we consider
three modalities, video, audio, and text (corresponding ASR
caption or linguistic narration); but the proposed method can
be extended to more modalities.

3.1. Problem Statement

Given a set of text-video-audio triplets {(t;,v;,a;)} Y, €
(T x V x A)N of N video clips obtained from the data dis-
tribution, we are learning a projection f (-, -, -) that can take
up to three inputs: text ¢, video v, and audio a and produce
d—dimensional embedding representation of the input. For
the simplicity of the notation, we will omit missing modal-
ities, so that f(¢,v) will stand for projection 7 x V — R4
and represent the joint embedding of text ¢ and video v. Our
goal is to maximize the dot-product similarities between
semantically related inputs f(t), f(v), f(a), f(t,a), f(t,v),
f(v,a) (such as when ¢, v, and a are from the same video
clip) and minimize otherwise.

3.2. Model Architecture
3.2.1 Token Creation

As illustrated in Figure 2, our architecture starts from fea-
tures extracted from modality-specific backbones. We trans-
form sets of extracted feature vectors into token space
by learnable modality-specific projections and modality-
specific normalization layers [9]. As a result, for the
(ti,v;,a;) input triplet, we obtain three sets of tokens:
[Tiys ey T4, from text t;, [vi,...,v;, | from video wv;,
[,y .y v, | from audio a;. As the number of tokens may
vary, e.g. depending on the length of the video clip, we nor-
malize the length of inputs per batch to allow batch process-
ing by padding and using attention masks [48]. Practically,
for comparability, we follow the protocol of [37,44] and
train the model on fixed-length video clips. Technically, the
model can handle clips of variable length, also with respect
to different modalities, at training and at test time if needed.

3.2.2 No Positional Embeddings

Unlike other transformer-based methods [, 10, 14,30,46],
we omit adding any positional or type embedding informa-
tion to the tokens. The reason for this is three-fold. With
respect to type embedding, it can be assumed that tokens
already encode this information based on the fact that they
are generated by different backbones, and hence each come
with their own “fingerprints.” Positional information has
been shown to be beneficial in the context of consistently
structured data such as sentences. But in the case of multi-
modal video learning, clips are sampled randomly from a
larger video sequence at training time, usually without con-
sidering shot boundaries or speech pauses. We therefore do
not expect a consistent temporal pattern in the sense that a
clip always starts at the beginning of an action. Thus leaving
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Figure 2. Schematic visualization the proposed method. While tokens from different modalities are processed in all possible combinations,
we exemplary consider the video-audio pair marked with green rectangles here. The input tokens are forwarded together through the fusion
transformer layer and attended by the respective weights, which are based on the combinations of keys and queries of input tokens in various
modalities. The resulting outputs of multiple heads are then concatenated and projected to the final token space, which is then used to
project each modality separately into the joint embedding space. During training, we apply the model six times to obtain six embeddings
corresponding to text, video, audio, text-video, text-audio, and video-audio modalities to compute the combinatorial loss.

out positional embedding might prevent adding noise during
training. At inference time, avoiding the positional embed-
ding allows us to process sequences longer than used in the
training.

3.2.3 Multi-modal Fusion Transformer

As our goal is to learn the representations of any number
and combination of input modalities, we want the projection
f to learn how to fuse information from multiple modal-
ities to enhance the joint embedding representation. For
this purpose, we propose a multi-modal, modality agnostic
transformer, where the keys, queries, and values of the input
tokens and all further transformations are computed indepen-
dently from the modality. To create our multi-modal fusion
transformer, we adopt regular transformer blocks [48]. Each
transformer block consist of a multiheaded self-attention and
a multilayer perceptron (MLP) with two LayerNorm (LN)
transforms before them along with two residual connections,
as illustrated in Figure 2. Note that the difference compared
to other methods is not in the architecture itself, but in the
way it is trained and the fact that the resulting fusion can
actually be learned by a vanilla transformer block, if it is
specifically trained for this task. Fusion transformer thus
refers to the way a transformer block can be used rather than
to a new architecture.

We train the system with a combinatorial input. Namely,
we apply it to joint sets of input tokens from all possible
combinations of modalities: singles - ¢, v, a and pairs -
(t,v), (v,a), (t,a), allowing tokens from one modality to
attend to tokens of other modalities. In this way, we can
obtain a fused representation from multiple modalities: the

combination (¢, v) will result in a fused representation of
text and video modalities denoted as tv, resp. for va - video
and audio, and ta - text and audio. Note that e.g. in case of
four modalities, we would consider all combinations up to a
triplet (¢, v, a) during training. As more modalities would be
added, the number of combinations would grow to the point
where it might be infeasible to consider all configurations.
In this case random modality dropout could be used during
training as done in AVSlowfast [50] or Perceiver [26].

Since we want the fusion transformer to be modality ag-
nostic, in each training iteration, we apply it six times to
obtain six representations for each sample :: ¢;, v;, a;, t;v;,
v;a4, t;a;. To obtain each representation, we create a joint
list of tokens, e.g. for v;a;: [Viy, ..., Vi, s Qiyy ooy 5, | We
apply the transformer to this input and obtain output tokens
ase.g. [07%, ..., 00%a7e, ..., &y¢] for v;a; (with superscript
va denoting that tokens were attended to both v and @ modal-
ities), where each token was attended with information from
another tokens. Note that, unlike the ViT model [18], we do
not prepend a learnable [cls] token, which usually serves as
a joint representation of all tokens. In our ablation studies
we show that this is beneficial for the model (Sec. 4.4).

3.2.4 Projection to Shared Embedding Space

With the resulting output tokens, we create the final embed-
dings for each modality. For each training sample, we get
six output sets of tokens and thus embeddings. As an exam-
ple, we consider the case of creating the representation for

v;a;. We divide output tokens [}, ..., /¢ &7¢, ..., &;] into

1 . VA Hva A0a AVa

groups based on modality: [27'%, ..., 7}¢] Tarllnd [a7e, ..., 677
. e J— Hva A0a J—

and then average them: 7;/¢ = = U et =
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Z?Zl dfj“. As a result, we obtain a vector representation
for each modality included in this computation. But since
modalities, even when enhanced with other modalities, are
still very different, we project them into the shared embed-
ding space by the learnable modality-specific projections g,
gu, Or g4 for projections for ¢, v, a respectively, normalize
them, and then combine into a final embedding vector:

f (s, a;) = norm(norm(g, (#7*)) + norm(g, (&{))). (1)

The normalization (“norm”) is used to align the magnitude
of vectors. When computing dot product similarity, we take
into account only the angle between vectors.

3.3. Combinatorial Loss

Contrastive loss can be used to learn representations such
that semantically similar inputs are mapped close to each
other. Unlike other methods [ 1,2, 12,44] that learn how to
bring modalities together by training with three pairwise
single-modality contrastive losses, L;_, between (¢,v), Ly 4
between (¢, a), and L,,_, between (v, a), we force tokens to
exchange information between modalities while enabling
additional contrastive losses: L;_,, between (t,va), Ly o
between (v, ta), and L, 4, between (a,tv), and introduce
our combinatorial loss:

L :)\t:uLt:U + )\v,aLv,a + )\t,aLt,a"_

)
+ )\t,vaLt,va + )\v,taLv,ta + Aa,tvLa,tin

where \,,_s denotes a weighting coefficient of (m, m).

Our combinatorial loss considers all possible and avail-
able modality combinations and can be generalized to any
set of modalities M = {my, ..., mn} as follows:

L= Z AxyLxy. 3)
X, YCM;XNY=92

where L yy is a contrastive loss between the fused represen-
tations of subsets X’ and ), Axy is a weighting coefficient.

To compute the contrastive losses for all combinations,
we use Noise Contrastive Estimation [40] with temperature
7 and batch size B:

exp(a” y/7) A
Zf:1 eXp(l‘iTyz‘/T)> - @

By combining both aspects, the processing of all possible
modality combinations and the training of the system with
the proposed combinatorial loss, we obtain a multi-modal
fusion transformer that learns how to attend tokens from one
modality to the tokens from all other modalities.

NCE(z,y) = —log (

4. Experimental Evaluation
4.1. Experimental Setup

If not stated otherwise, we use the following experimental
setup in all our experiments and ablation studies.

Backbones. To ensure comparability, we follow the setup
of previous works [4, 12,37,44] which is as follows: as vi-
sual backbone, we use a combination of ResNet-152 [24],
pretrained on Imagenet [16] and compute one 2D-feature
(2048-dimensional vector) per second, as well as ResNeXt-
101 [22] pretrained on Kinetics [1 1] to get 1.5 3D-feature
(2048 dim.) per second. We temporally upsample 2D-
features with nearest neighbors to have the same number of
features as 3D-features and concatenate them to obtain 4096-
dimensional vectors. As a text backbone, GoogleNews pre-
trained Word2vec model [38] is used with 300-dimensional
embedding per word. These backbones are fixed and not fine-
tuned during training. Following [12,44], we use a trainable
CNN with residual layers as an audio backbone and adapt
the last two residual blocks to extract 1.5 4096-dimensional
features per second (see Supplementary Material).

Data Sampling. We use a batch of 224 videos and randomly
sample ten 8-second clips per video. If the sampled clip con-
tains narration (95% of all clips), we use ASR time stamps to
select clip borders. To disentangle the very high text-audio
correlation in HowTo100M, and to avoid text being learned
just as an audio narration, we shift the audio clip randomly
by 4 seconds with respect to the video and text boundaries.
Projections. Following [12,37,44], we use a gated linear
projection [36] to project features into common token space,
as well as to project resulting tokens into shared embedding
space. We set the dimension of the common token space to
4096 and of the shared embedding space to 6144.
Transformer architecture. As a multi-modal fusion trans-
former, we use one transformer block with a hidden size of
4096, 64 heads, and an MLP size of 4096.

Loss computation. We use a temperature of 0.05 in NCE
and normalize vectors prior to computing dot products. Since
not every video clip has all three modalities, we computed
NCE only over non-empty embeddings. Following [2], we
set a larger weight for a text-visual loss in Equation 2, since
it was beneficial for training on HowTol00M: \;, = 1,
)\v,a = )\t,a = )\t,'ua = )\v,ta = )\a,tv =0.1.
Optimization. We train all models for 15 epochs using
an Adam optimizer [28] with a learning rate of Se-5 and
exponential decay of 0.9.

4.2. Datasets, Tasks, and Metrics

Pretraining Dataset. = We train our model on the
HowTo100M dataset [37], which contains over 1 million
instructional videos with automatically generated text narra-
tions. The text narrations can be assumed to be noisy and to
not always describe the video scene [37].

Zero-shot Text-to-video Retrieval. We use MSR-VTT [52]
and YouCook?2 [55] datasets to evaluate the zero-shot text-
to-video retrieval capability of our model. The YouCook?2
dataset contains instructional cooking videos from YouTube
with human-annotated clips (~ 2 — 200 seconds). For eval-
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Method Train. | Retrieval Train. Visual Trainable BB YouCook2 MSR-VTT
Mod. Dataset BB t v a ‘ R@1T R@51t R@10T MedR| ‘ R@1T R@5t R@10T MedR|
ACctBERT [57] tv t—wv HT100M Res3D+Faster R-CNN 9.6 26.7 38.0 19 8.6 23.4 33.1 36
Support Set [41] tv t—wv HT100M R152 + RQ2+1)D-34 | v - - - - 8.7 23.0 31.1 31
HT100M [37] tv t—v HT100M R152 + RX101 6.1 17.3 24.8 46 7.5 21.2 29.6 38
NoiseEstim. [4] tv t—v HT100M R152 + RX101 - - - - 8.4 22.0 304 36
Ours tv t—v HT100M R152 + RX101 11.2 28.5 39.7 19 9.6 26.1 36.1 23
Ours tva t—wv HT100M R152 + RX101 v 10.7 27.9 38.9 19 10.3 24.6 353 25
MMT [20] tva t — va HT100M 7 experts v - - - - - 144 - 66
AVLNet [44] tva | t—v+a HT100M R152+RX101 v 19.9 36.1 44.3 16 8.3 19.2 27.4 47
MCN [12] tva | t—=v+a HT100M R152+RX101 v 18.1 355 452 - 10.5 25.2 33.8 -
Ours tva t—wva HT100M R152+RX101 v 20.0 40.7 51.3 10 8.9 23.8 31.8 30
Models with a stronger visual backbone:

MMV [2] tva t—v HT100M+AudioSet TSM-50x2 v v 11.7 334 454 13 9.3 23.0 31.1 38
VATT [12] tva t—v AudioSet Transformer v v v - - 45.5 13 - - 29.7 49
MIL-NCE [35] tv t—wv HT100M S3D v 15.1 38.0 51.2 10 2.9 24.0 324 29.5
Ours tva t—wv HT100M S3D} v 19.8 429 55.1 8 9.9 24.0 32.6 28
Ours | tva | t—wva | HT100M | S3D} | v | 246 483 604 6 | 93 229 312 35
FrozenInTime [10] tv t—wv CC+WV+COCO Transformer v v - - - - 24.7 46.9 57.2 7
CLIP4Clip [4] tv t—ov WiT + HT100M CLIP v v - - - - 32.0 57.0 66.9 4

Table 1. Zero-shot text-to-video retrieval results on YouCook2/MSR-VTT. In

“Retrieval” column: v + a stands for averaging video

and audio embeddings for a video representation, va - our joint video-audio embedding where modalities attend to each other during

embedding computation, ¢ and v are single-modality embeddings. S3Dft is the S3D pretrained by MIL-NCE [

]. We include CLIP4CLIP

and FrozenInTime for completeness, but do directly compare because of different pre-training setups. Train Mod.=Training Modalities,

BB=Backbone, CC=Conceptual Captions [45], WV=WedVid-2M [10].
Method Train. Retrieval Pre-train. Visual Trainable BB YouCook2 MSR-VTT
Mod. Dataset BB t v a \ R@1T R@51t R@10T MedR| \ R@1t R@5t R@10T MedR|

ActBERT [57] tv t—=wv HT100M Res3D+Faster R-CNN - - - - 16.3 42.8 56.9 10
HT100M [37] tv t—wv HT100M R152 + RX101 8.2 24.5 353 24 14.9 40.2 52.8 9
NoiseEstim. [4] tv t—wv HT100M R152 + RX101 - - - - 17.4 41.6 53.6 8
Ours tv t—v HT100M R152 + RX101 13.7 353 48.4 12 21.0 49.3 60.1 5
Ours tva t—wv HT100M R152 + RX101 v 12.7 33.9 45.8 13 20.4 47.7 59.3 6
AVLNet [44] tva |t—v+a HT100M R152 + RX101 v | 302 55.5 66.5 4 225 50.5 64.1 5
MCN [12] tva |t—v+a HT100M R152 + RX101 v 282 53.0 63.7 5 - - - -
Ours tva t—wva HT100M R152 + RX101 v 321 59.1 70.9 3 23.7 52.1 63.7 4

Table 2. Text-to-video retrieval on YouCook2/MSR-VTT in the fine-tune setting. In “Retrieval” column: v + a stands for averaging
video and audio embeddings for a video representation, va - our joint video-audio embedding where modalities attend each other during
embedding computation, ¢ and v are single-modality embeddings. Train Mod.=Training Modalities, BB=Backbone.

uation we use at maximum first 48 seconds of video, since
most video are shorter than that. The MSR-VTT dataset con-
tains human-annotated video clips (~ 10 — 30 seconds) on
various topics and provides captions with natural language
sentences. Following [12,35,37,44], to evaluate our model
on MSR-VTT, we use the 1k set of test clips [53], and for
YouCook?2, we use 3,350 validation clips [37]. To perform
retrieval, we compute similarities by dot product between
a text query t and all videos in the dataset using a fused
va representation for each video. We report standard recall
metrics R@1, R@5, R@10 and the median rank (MedR).

Text-to-video Retrieval after Fine-tuning. We additionally
evaluate the retrieval performance of the models fine-tuned
on downstream tasks. Following [44], we used 9,586 training
clips to fine-tune the model on the YouCook?2 dataset, and
6,783 training clips that contain the audio (out of 7,000
proposed by [37]) to fine-tune model on the MSR-VTT.

Zero-shot Step Action Localization. We further evaluate
our model on zero-shot step action localization tasks on two

datasets: CrossTask [58] and Mining YouTube [29]. The
CrossTask dataset consist of 2.7k instructional videos over
18 different tasks. The Mining YouTube dataset provides 250
testing cooking video equipped with an ordered list of action
steps. To perform step localization, we use a sliding window
and compute the similarity between the current video seg-
ment and all step names of the task. Following the inference
procedure in [58], we obtain the final labeling by running
dynamic programming to find the best labeling with respect
to the given order of steps based on similarities. We report
average recall over all tasks as defined in [58]. For both
datasets, we use a 3-second sliding window with 1-second
step and predict the action for the central time-stamp using a
fused va representation.

4.3. Comparison with State-of-the-art

Zero-shot Text-to-video Retrieval. First, we assess the
performance of the learned multi-modal representation in
context of zero-shot text-to-video retrieval task on YouCook2
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and MSR-VTT datasets as shown in Table 1. In case of the
YouCook?2 dataset, our method achieves state-of-the-art re-
sults over all baselines, including methods with trainable
visual and text backbones or a stronger visual backbone
as well as methods that do not train the visual backbone.
Particularly, our approach improves the AVLnet [44] and
MCN [12] baselines that use the same visual, text, and audio
backbone and also train with three modalities by increasing
R@10 from 45.2% to 51.3%. For MSR-VTT however, it
shows that a fusion of video and audio modalities is not
so beneficial and best performance is reached when con-
sidering only text to video retrieval and leaving out audio
information. We attribute this behaviour to the domain shift
between HowTo100M and MSR-VTT datasets as audio of
the HowTo100M dataset mainly contains speech and text as
a transcription of speech, while in MSR-VTT, audio can be
much less related to the textual description. This assump-
tion is supported by the fact that best-performing methods
on MSR-VTT do not use HowTo100M for training at all,
such as FrozenInTime [10] or CLIP4ACLIP [32]. Notably,
we can further strengthen our model on YouCook?2 by lever-
aging a stronger backbone such as S3D [51], pre-trained
on HowTo100M by MIL-NCE [35], reaching R@10 over
60%. Again, these results show that this better adaptation to
HowTo100M does not necessarily translate to better results
on MSR-VTT. In the supplement we additionally include
experiments with a stronger CLIP [42] backbone.
Text-to-video Retrieval after Fine-tuning. We further eval-
uated the retrieval performance after fine-tuning on down-
stream tasks in Table 2. Note that, since several experimental
splits were proposed for the MSR-VTT dataset, we report
only baselines that used the same training split as us for a fair
comparison. Results demonstrate that the proposed method
clearly outperforms prior works on both datasets. More-
over, after finetuning on the MSR-VTT, the model greatly
improves performance by utilizing an audio channel.
Zero-shot Step Action Localization. We further evalu-
ate our methods on zero-shot step action localization on the
CrossTask and the MiningYouTube (MYT) datasets in Ta-
ble 3. As video representations we again use the fused video
and audio modalities. These results show that the proposed
approach clearly outperforms the directly comparable MCN
approach on both datasets, as well as a fully supervised
baseline CrossTask [58], HT100M [37] and MIL-NCE [35]
with a trainable I3D visual backbone [35]. Moreover, with a
stronger S3D backbone our model also gains improvement
over MIL-NCE and is comparable to UniVL (with a train-
able backbone) and ActBERT (with additional region-based
features from Faster-R-CNN).

4.4. Ablation Studies

Impact of fusion components. We first address the ques-
tion of how the proposed components: transformer layer,

Tr. Tr. BB Visual Recallt
Method Mod. v Backbone CrossTask  MYT
CrossTask [58] tv R152+13D 31.6 -
HT100M [37] tv R152 + RX101 33.6 15.0
MIL-NCE [35] tv v 13D 36.4
MCN [12] tva R152 + RX101 35.1 18.1
Ours tva R152 + RX101 39.3 194
Models with a stronger visual backbone:
MIL-NCE [35] tv v S3D 40.5
ActBERT [57] tv Res3D+Faster R-CNN 41.4
UniVL [31] tv v S3Dt 42.0
Ours | tva | | S3D} | 411 19.7
Table 3. Zero-shot action localization performance on

CrossTask/Mining YouTube(MYT). S3Df is the S3D pre-trained by
MIL-NCE [35]. Tr Mod=Training Modalities, Tr. BB v= Trainable
Backbone for video modality.

Configuration Retrieval YouCook2 MSR-VTT
& R@51 R@101 R@51 R@107
1) no transformers t—v+a 32.7 41.4 24.1 33.7

2) single-mod. transformer permod. ¢t —v+a 399 50.7 253 339
3) fusion transformer t—v+a 395 50.2 23.8 32.7

4) fusion transformer t — va 36.6 47.0 22.6 32.1
5) fusion transf. + comb. loss t—v+a 382 49.2 233 332
6) fusion transf. + comb. loss (ours) t— va 40.7 51.3 23.8 31.8

Table 4. Evaluation of the contribution of the proposed fusion
transformer and the combinatorial loss. In “Retrieval” column:
v + a stands for independently extracting video and audio embed-
dings and summing up both outputs, while va for forwarding both
modalities together allowing them to attend to each other.

transformer fusion, and combinatorial loss, impact the over-
all performance of our system. To this end, in Table 4 we
considered the following architectures: 1) no transform-
ers: our architecture without transformer and with three
pairwise contrastive losses; 2) single modality transformer:
using three separate modality-specific transformer layers to
learn three projection functions; 3) fusion transformer: us-
ing the proposed modality agnostic transformer but trained
with three pairwise contrastive losses without fused modality
components; 4) fusion transformer + comb. loss: using the
proposed modality agnostic transformer with combinatorial
input, trained with combinatorial loss to obtain the proposed
method. Schematic visualization of these four setups is in-
cluded in the supplement. We further consider two ways to
forward two modalities, first by forwarding them separately
and summing up both outputs (v + a) and, second, by for-
warding them together (va). Overall we observe that adding
a simple transformer to process each modality separately
already significantly improves performance compared to the
baseline, especially for the YouCook?2 dataset. We further
observe that the overall performance depends on the combi-
nation of model, loss function and fusion strategy at test time.
While token fusion with transformers is overall beneficial,
the best performance is achieved in the fusion transformer
+ comb. loss setup. When using fusion transformer alone,
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YouCook2 MSR-VTT
Configuration R@5t R@10T R@51 R@I0T
ours 40.7 51.3 23.8 31.8
ours + shared final proj. 37.2 48.7 23.1 29.4

ours + [cls] token + shared final proj. ~ 35.9 46.9 214 28.8

Table 5. Evaluation of different design choices for fusion
transformer (with/without [cls] token) and final projection
(shared/modality specific) into multi-modal embedding space.

YouCook2 MSR-VTT
Configuration R@57 R@101 R@57 R@I10T
positional emb. + uniform sampling 32.7 434 21.8 29.1
positional emb. + max polling 332 439 21.6 30.5
positional emb. + averaging over clips 35.6 46.9 23.0 29.2
no positional emb. + uniform sampling 345 45.1 22.1 30.2
no positional emb. + max polling 34.8 452 23.0 31.8
no positional emb. + averaging over clips ~ 36.9 47.9 227 31.3
no positional emb. + video at once 40.7 51.3 23.8 31.8

Table 6. Evaluation of different strategies to process long videos
(longer than clips used in the training), as well as impact of posi-
tional embeddings to encode positional information.

the performance drops a bit compared to the single modality
transformer. However, utilizing shared transformer with
combinatorial loss to fuse tokens from different modalities
outperforms modality summing in the single modality trans-
former setup.

Token Aggregation and Projection. We further evaluate
the impact of separate processing of output tokens compared
to aggregating information in the [cls] token. To this end, we
compare our model architecture to a setup with a shared final
projection, as well as a setup with an additional [cls] input
token (similarly to BERT [17]). In the last scenario, we use
the output [cls] of the multi-modal fusion transformer as an
aggregated representation of input tokens and apply the final
shared projection to map it into the shared embedding space.
At shown in Table 5, our modality-specific projections with
no [cls] token benefit over others options on both datasets.
Positional Embedding and Testing on Longer Clips. Fi-
nally, we address the question how the option of having
random length inputs impacts the overall performance of the
model at test time. We consider four different scenarios for
testing on longer clips as shown in Table 6: 1) uniform sam-
pling - after obtaining initial local features from backbones,
features are uniformly sampled to fit the maximum number
of tokens; 2) max-pooling - local features are merged via
adaptive max-pooling; 3) averaging over clips comprises
slicing a longer clip into train-time-length clips and aver-
aging obtained representations; 4) video at once considers
processing all features at once as proposed. We further
compare the first three settings in a scenario with positional
embedding to no positional embedding. As positional em-
bedding, we used vanilla trainable embeddings [|7] that are
summed up to the input tokens before being input to the
transformer. It shows that setups with positional embedding
perform almost consistently below the setups without po-

queries: v o a keys keys
. t v a t v a

keys: tvatvatva

t
v
a

queries

t v a t v oa

30 Attention Heads

t
v v
a

queries

Figure 3. Attention Analysis. Left: Average attentions of 30 heads
over 128 video clips for queries and keys from different modalities.
Right: average attention for random 4 heads presented in 3x3
matrix.

sitional embedding on both datasets. Looking at results of
different processing strategies, we find that our model ben-
efits from leveraging local temporal dependencies in data
via slicing a video clip into shorter clips or video at once
compared to max-pooling, uniform sampling. Moreover,
utilizing all input data at video at once further significantly
boosts performance.

Attention Analysis. Finally, we qualitatively analyze the
fusion capability of our multi-modal transformer. In Figure 3
we show the average attention for query-key pairs of tokens
from different modalities. We observe that some heads have
a strong attention for single-modality fusion, mostly for ¢ and
v modalities, and in between, some heads are responsible for
cross-modal attention.

5. Limitations and Conclusion

In this work, we propose a multi-modal, modality ag-
nostic fusion transformer approach that learns to exchange
information between multiple modalities, such as video, au-
dio, and text, and to integrate them into a joined multi-modal
representation. We show that training the system with a com-
binatorial loss on any possible combinations of modalities
allows the fusion transformer to learn a strong multi-modal
embedding space leaving out any add-ons such as position
encoding. A clear limitation of the system becomes evident
when looking at the performance difference on two down-
stream datasets, YouCook2 and MSR-VTT, showing that a
better fusion can result in a loss in generalizability to multi-
modal data that was acquired in a different way. A future
research direction to mitigate those effects might be to con-
sider techniques from domain adaptation or generalization
in context of multi-modal zero-shot recognition. We hope
that the proposed setup might inspire further research on this
topic as well as on self-attention based multi-modal video
processing in general.
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