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Abstract

Visual degradations caused by motion blur, raindrop,
rain, snow, illumination, and fog deteriorate image qual-
ity and, subsequently, the performance of perception algo-
rithms deployed in outdoor conditions. While degradation-
specific image restoration techniques have been extensively
studied, such algorithms are domain sensitive and fail in
real scenarios where multiple degradations exist simulta-
neously. This makes a case for blind image restoration and
reconstruction algorithms as practically relevant. However,
the absence of a dataset diverse enough to encapsulate all
variations hinders development for such an algorithm. In
this paper, we utilize a synthetic degradation model that
recursively applies sets of random degradations to gener-
ate naturalistic degradation images of varying complexity,
which are used as input. Furthermore, as the degradation
intensity can vary across an image, the spatially invariant
convolutional filter cannot be applied for all degradations.
Hence to enable spatial variance during image restoration
and reconstruction, we design a transformer-based archi-
tecture to benefit from the long-range dependencies. In ad-
dition, to reduce the computational cost of transformers,
we propose a multi-branch structure coupled with modifi-
cations such as a complimentary feature selection mecha-
nism and the replacement of a feed-forward network with
lightweight multiscale convolutions. Finally, to improve
restoration and reconstruction, we integrate an auxiliary
decoder branch to predict the degradation mask to ensure
the underlying network can localize the degradation infor-
mation. From empirical analysis on 10 datasets covering
rain drop removal, deraining, dehazing, image enhance-
ment, and deblurring, we demonstrate the efficacy of the
proposed approach while obtaining SoTA performance.

1. Introduction
Image quality plays an important role in the performance

of vision-based algorithms designed for tasks such as object
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(a) (b) (c) (d) (e)
Figure 1. Images generated by proposed Nth order degradation
(top) along with corresponding spatial distortion masks (bottom)
for a given input having (a) natural rainy droplets and synthetic (b)
motion blur, (c) snow, (d) rain, and (e) rain with snow.

detection, semantic segmentation, depth estimation, etc.
Hence, an image affected by environmental degradations
such as motion blur, illumination variations, rain, fog, snow,
and water droplets results in an undesirable performance
drop [22, 31]. Despite the nature of degradations, they can
be modeled using a common mask-based approach consid-
ering that they affect the spatial properties of an image to
reduce its quality. However, since the intensity and com-
binations of degradations co-occurring can be non-uniform,
some regions are bound to be affected more than others.
Hence, a generic image restoration algorithm should be able
to localize and be robust towards spatially varying degra-
dations. While perception algorithms can be made robust
to diverse weather conditions either by extending the train-
ing dataset [25,37,43,46] or utilizing restoration algorithms
as preprocessing step [15, 24, 40] to generate clean images.
However, these approaches have their shortcomings as con-
structing a labeled dataset for high-level perception, diverse
enough to account for all variations, is time-consuming and
expensive. In contrast, image restoration algorithms are
presently degradation-specific (dehazing, deraining, rain-
drop removal, desnowing, etc.) and do not perform well
outside the distribution of training set [11, 16, 42, 44]. Fur-
thermore, as SoTA image restoration algorithms are built
upon convolutional neural networks (CNNs), utilization of
the same convolution filter for the complete feature would
result in weak restoration owing to the co-occurrence of
multiple spatially-varying degradations across the image.
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Yet, from a practical standpoint, having an generic image
restoration algorithm would be highly desirable as it would
avert extending the dataset for all perception tasks to make
them robust to environment variations. Thus in this paper,
we focus on blind image restoration as a preprocessing step
to ensure the robust performance of perception algorithms
in varying environmental conditions.

Due to the inability of CNNs to capture long-range de-
pendencies and their fixed convolutional filters being inap-
propriate for varying degradations, standard convolutional
filters cannot be utilized. Recently, Swin transformers [28]
were proposed that can use the advantages of both CNNs
and Transformers. Categorically their ability to handle large
image resolutions and capture long-range dependencies via
a shifted window scheme respectively presents an oppor-
tunity to utilize such a mechanism for developing generic
image restoration and reconstruction algorithm. However,
naively replacing convolutional blocks with transformer
modules would result in a substantial increase in redundant
computations. Hence in its current form, they cannot be
utilized for processing a degraded image. Thus to lower
computational cost without reducing performance efficacy,
we propose a multiscale architecture that extracts features
from different scales representing different feature granular-
ity and subsequently uses transformer modules with various
repetitions on each scale. Specifically, we use CSWin [8]
wherein the computations of self-attention is decreased by
using horizontal and vertical stripes. During experiments,
we observe simply concatenating the features extracted by
horizontal and vertical filters to be inefficient. Instead, we
propose a feature selection module (FSM) that aggregates
relevant features and suppresses irrelevant ones. As we deal
with image restoration, we observe a self-attention mech-
anism to result in a high computational cost that isn’t ob-
served for high-level perception tasks due to the absence of
decoder blocks or utilization of spatially large feature maps.
To overcome this, we propose a spatial compression mech-
anism to replace the multi-head attention.

While image restoration is an extensively studied topic,
prior works under-utilize the paired samples by proposing
an end-to-end architecture. Concretely, a spatial distortion
mask that represents the location of affected pixels isn’t uti-
lized. We highlight that designing the restoration algorithm
that also predicts the spatial distortion mask as auxiliary
output during training would aid the network in identify-
ing locations that are affected. One of the challenges faced
in training and evaluating practical image restoration algo-
rithms is the absence of paired datasets having multiple co-
occurring degradations involving motion blur, illumination
variations, fog, rain, and water droplets. Thus, we utilize
the Cityscapes [7] and its synthetic variants containing fog
[39], and rain [17] degradation for training and evaluating
restoration quality as well as its effect on downstream tasks

such as semantic segmentation. We utilize Pix2PixHD [48]
to consider distortions caused by water droplets. We sum-
marize our contributions as follows,

• We propose an image restoration and reconstruction
architecture that is able to recover images affected by
blind distortion combination.

• To ensure degradation is accurately localized, we in-
tegrate an auxiliary degradation prediction branch to
enhance the restoration performance.

• To enable realistic distortions we propose a Nth or-
der degradation model that recursively applies a set of
degradations.

• We propose a Feature Selection Module and Spatial
Compression Mechanism to reduce the computations
of the CSWin Transformer module.

• We examine the effect of image restoration vis-a-
vis extended training on downstream tasks towards
achieving robust performance.

2. Related Works
2.1. Image Restoration and Enhancement

Image restoration and enhancement are extremely re-
searched areas with different methods being developed
to independently recover images affected by degradations
such as varying illumination conditions [19, 47], motion
blur [23, 26, 54, 55], rain [14, 36], fog [9, 20, 35, 42, 51]
and raindrop [34]. Current SoTA assumes prior information
about the degradation and thus restores a degraded image by
following either a model-based multi-stage approach [2,57]
or an end-to-end approach [1, 4, 13] to directly generate a
restored image. However, in real scenarios, an unknown
combination of such degradations might affect an image,
adversely affecting the performance of the restoration al-
gorithm. Furthermore, as vision-based algorithms are be-
ing increasingly used for high-level perception tasks, a de-
graded image results in a significant performance drop of
such algorithms and is highly undesirable.

The current approach of designing a unique algorithm
for each algorithm is inefficient and thus encourages re-
searchers to examine the possibility of having a common
restoration architecture. Towards this goal, [53] proposed
multiscale cascaded CNNs and demonstrated the perfor-
mance of the same architecture for multiple restoration and
reconstruction tasks such as image enhancement, super-
resolution, and image denoising. However, it is still trained
for limited scenarios and thus does not perform well when
the distribution of the test set is different from the training
set or when test degradation is not covered in the training
set. Following similar motivation [11] proposed an unsu-
pervised approach for restoring images by disentangling the
image into clean and noisy latent spaces to generate noisy
images and subsequently restore them.
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Figure 2. Overview of the proposed restoration and reconstruction architecture with Nth order iterative degradation mechanism and Spatial
Compression Mechanism for Multi-Head Self-Attention within the Transformer.

Recently different transformer-based algorithms were
proposed for performing high-level vision tasks such as ob-
ject detection [3], image classification [10, 28] and seman-
tic segmentation [50]. These works achieved SoTA perfor-
mance, benefiting from the ability of the transformer mech-
anism to model long-range dependencies. Aiming to lever-
age these characteristics, different works [5, 49] were pro-
posed. IPT [5] proposed a multi-head and multi-tail ap-
proach wherein each head and tail performs a specific task,
however, such an assumption doesn’t hold for real images.
Uformer [49] proposed replacing the convolutional blocks
within the UNet [38] architecture with transformer modules
and achieved SoTA performance in rain removal and image
denoising tasks.

2.2. Reducing Computational Complexity of a
Transformer

While transformers have demonstrated superior results
due to their capability to model long-range dependen-
cies, their high computational requirement due to the self-
attention mechanism is undesired. As computational com-
plexity of the self-attention mechanism is quadratic to the
size of the input feature map. Hence for images, naively
applying self-attention would result in excessive redundant
computations. To overcome such computational bottle-
necks, Swin Transformer [28] proposed a shifted window
approach to compute self-attention in a localized region and
increase the receptive field via shifted windows. CSWin [8]
devised a more efficient approach by using cross-shaped
windows that divides the feature map into horizontal and
vertical stripes and subsequently performed self-attention in
parallel. This approach outperformed prior transformer ar-
chitectures in terms of both computations and performance.

2.3. Generic Image Restoration and Reconstruction

Owing to its desired characteristics, different works have
proposed methodologies that could be used for generic im-
age restoration and reconstruction. Notably, Dual Resid-
ual Networks [27] proposed different residual architectures
that could be tweaked to perform different restoration tasks.
Building upon it [45] examined a strategy to perform mul-
tiple operations in parallel to restore various degradations.
However, since these approaches assume a known degrada-
tion model, they cannot be directly applied to images with
multiple degradations with unknown mix ratios found in
natural conditions.

3. Methodology

3.1. Architecture Overview

We summarize the proposed framework in Fig. 2 and
refer to it as GIQE. Importantly we emphasize two mech-
anisms to achieve a generic image restoration and recon-
struction network i.e. (1) Nth Order Degradation to gener-
ate synthetic training samples mimicking natural conditions
and (2) multi-scale transformer-based image restoration and
reconstruction pipeline.

3.2. Optimizing Transformer Mechanism

As transformer architectures involve huge computational
complexity on account of self-attention mechanisms, we
first propose two tricks to improve the performance, while
reducing the computational complexity. First, we reduce
the spatial resolution of features used for the self-attention
mechanism. Second, replacing the MLP layers after the
self-attention mechanism with a multi-scale feature extrac-
tion module to improve local information content.
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Figure 3. Schematic of Multi-Scale Feature Extraction Mechanism

Spatial Compression Mechanism : Multi-Head Self-
Attention within the transformer encoder works on an input
feature (X ∈ RC×h×w) with height (h), width (w) and chan-
nels (C) respectively. Hence we first summarize the com-
putational complexity for global multi-head self-attention
(GMSA) along with recent window-based self-attention
mechanisms that ensure reduced computations i.e. Swin
Transformer (wherein each window has M×M patches) and
CSWin Transformer (where the local self-attention is based
on horizontal and vertical stripes with a width of sw),

Ω(GMSA) = whC(4C+2wh) (1)

Ω(Swin) = whC(4C+2M2) (2)
Ω(CSWin) = whC(4C+ sw∗h+ sw∗w) (3)

As the spatial resolution of input feature space directly
affects the computational complexity, reducing it before the
projection layer to obtain Key (K), Query (Q) and Value
(V ) vectors would result in reduced computations. Hence
we propose two approaches i.e. either using average pool-
ing (with size s) or simply reshaping the feature map (by a
factor s) to increase the number of channels that are subse-
quently reduced using the projection layer in MSA. Hence
the complexity reduction achieved after downsampling the
feature map (Rs) can be calculated as,

Ω(βGMSA) = whC
(

4CR2
s +

2wh
R2

s

)
(4)

Ω(βSwin) = whC(4CR2
s +2M2) (5)

Ω(βCSWin) = whC
(

4CR2
s +

sw∗h+ sw∗w
Rs

)
(6)

It should be highlighted that using pooling operation to
reduce the feature maps results in computations becoming
linear, instead of quadratic. Furthermore, since we down-
sample the input feature map only for keys and values, both
Swin and CSWin transformer architectures can be subse-
quently used to ensure greater computational efficacy.

Multi-Scale Feature Extraction (MSFE) : Standard
transformer architecture contains a feed-forward network
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Figure 4. Schematic of Feature Selection Module

(FFN) that is not able to fully extract the local informa-
tion content which is necessary for image restoration tasks.
This affects the performance since information of neighbor-
ing pixels can guide the restoration and reconstruction of
affected pixels. Hence we replace the FFN block with a
Multi-Scale Feature Extraction mechanism that comprises
Depth-wise Separable Convolutions [6] with filter size of 3
and 5, following [49]. When replacing the FFN with the
proposed MSFE, we first increase the feature dimension of
the input, by a factor r, using a projection layer which is
subsequently split into 2 parts, corresponding to filters of
sizes 3 and 5. GELU activation function is subsequently
used after each convolutional layer. The complete mecha-
nism is summarized in Fig. 3.

3.3. Multi-Scale Image Restoration

The proposed image reconstruction and restoration net-
work is designed following a multi-scale approach to enable
high-quality reconstructed images. Unlike UFormer that
down-samples the encoded transformer features at stage l to
be used as inputs for transformer at stage l − 1, we design
the same common backbone and modify the hyperparame-
ters of the architecture such as the number of transformer
blocks, channels, heads, and window size. Features from
high-scaled images would be rich in global image seman-
tics, wherein features from low-scaled images would have
rich local image semantics. Fusion of these features would
ensure restored images are both globally and locally coher-
ent. To merge these features effectively, we propose the
feature selection module.

Feature Selection Module : Only the pixels requiring
restoration should be considered for joint restoration and re-
construction, while irrelevant ones should be reconstructed.
Thus, the multi-scale architecture should be able to aggre-
gate features following this notion. However, element-wise
summation or concatenation doesn’t ensure such efficient
feature merging. Hence an adaptive mechanism is required
that can perform these tasks without the significant compu-
tational overhead. We propose a feature selection module
that first matches the feature dimensions using a 1x1 con-
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volution and transposed convolution of size 2 with stride
2. Subsequently, features are aggregated via element-wise
summation, followed by global max and average pooling
operations, enhanced using 1x1 convolutions. A sigmoid
operation is subsequently performed to generate a channel-
wise attention map to identify channels containing impor-
tant features. The overall architecture of the feature selec-
tion module is summarized in Fig. 4. With this mecha-
nism, we focus on capturing the relevant features for image
restoration, whereas regions that don’t require any restora-
tion can be passed using skip connections.

Auxiliary Decoder Branch : As SOTA restoration al-
gorithms aim to generate a restored and reconstructed im-
age directly, they have to localize, identify the quantum of
degradation jointly, and predict the approximation of re-
stored pixels. Hence during optimization, the network is
tasked to perform these tasks simultaneously, resulting in
sub-optimal optimization. As we use a paired dataset to re-
store and reconstruct a degraded image, we can integrate
a secondary decoder that estimates the degraded regions in
binary classification to aid the training process. Since the
spatial location of the degraded pixels would be the same for
both decoders, the auxiliary decoder branch can follow the
same architecture as the feature selection module and would
thus complement the main restoration and reconstruction
branch. We obtain such a mask (IMask) by simply subtract-
ing the input degraded image (INoisy ∈ RW×H×3) with clean
output image (IGT ∈ RW×H×3) having a width (W ) and (H).
We then perform max pooling operation along the channel
dimension to result in a map of spatial resolution W ×H.
The resultant difference map is subsequently thresholded
based on pixel intensity at location (x, y) following,

Imask = IGT − INoisy where

{
0 i f I(x,y) = 0
1 i f otherwise

(7)

3.4. Nth Order Degradation

Since a natural image can contain a variety of degrada-
tions with varying intensity, e.g., a rainy driving scene con-
tains both dynamic rain and motion blur. To ensure the con-
sistent performance of a generic restoration and reconstruc-
tion algorithm, we require a paired training dataset that con-
tains a large degradation space covering a range of degrada-
tion combinations. However, capturing such a dataset can
be excruciating and impossible, as commonly used paired
datasets focus on a specific degradation. Thus we present
a synthetic degradation model that could be coupled with
a real degraded image to generate a variety of non-linear
combinations of degradations. Hence, we propose an iter-
ative degradation mechanism that generates synthetic non-
linear degraded image (INoisy) by introducing deformations
(D(x); x ∈ motion blur, noise, fog, snow, rain, illumination
variations or None) recursively (r times) onto a clean image

(IGT ). While these degradations deform the complete train-
ing sample, we additionally introduce localized degradation
(LD(.)) using randomly selected Cut-Mix [52] and Copy-
Blend [41] or None operations with probability 0.2, 0.2, and
0.6. The pipeline can be mathematically represented as,

INoisy = [ LD( D(x, IGT ))]
r (8)

We summarize the pipeline in Fig. 2 with qualitative
samples included in Fig. 1 with additional details included
in supplementary. As an additional enhancement mecha-
nism, we observe that sharpening the ground truth images
following a random gaussian blur filter to improve edge in-
formation. Subsequently, when this information is used as
ground truth, restored images have higher edge information.
The mechanism to generate sharper ground truth images can
be summarized as,

ISharp−GT = IGT +α ∗ (IGT − IBlurred) (9)

where α represents the weighted addition and blurred
images are generated using gaussian blur with filter size ran-
domly chosen between ∈ [3,13].

3.5. Loss Formulation

Following prior works [27, 49], we use a combination of
pixel-wise (L1) and structural similarity loss (SSIM) for the
image reconstruction and restoration branch, whereas, for
the auxiliary decoder branch, we use binary cross-entropy
loss. To ensure stability during training we use an additive
term ε within L1 loss and set it as 10−6.

L = λ1 ∗
√
||IGT − IRestored ||2 + ε +SSIM(IGT − IRestored)

+λ2 ∗BCE(IMask−GT , IMask−Restored) (10)

During our experiments, we fix λ1 and λ2 to 1.

3.6. Training Methodology

For training the proposed framework on different
datasets having either single or multiple degradations, we
follow a common training pipeline. Specifically, we use
AdamW [29] with momentum coefficients as 0.9 and 0.999
and weight decay as 0.02. The training image resolution is
fixed to 128 × 128 with a batch size of 4 using 2 Nvidia
3090 GPUs with an initial learning rate of 2e-4. The learn-
ing rate is adjusted following the cosine annealing with a
minimum learning rate set to 2e-6. The complete network is
trained for 400 epochs. Apart from the proposed Nth order
degradation, we randomly rotate the image by 90◦, 180◦ or
270◦. Furthermore, to ensure generating degradations does
not lead to computational bottlenecks, based on empirical
evaluation, we limit the value of N to 5.
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Table 1. Ablation studies of different mechanisms on the GOPRO-
I, GOPRO-II (r), and GOPRO-III datasets. Higher values of PSNR
and SSIM denote better performance

Algorithm GOPRO-I GOPRO-II (r) GOPRO-III # Params
PSNR / SSIM PSNR / SSIM PSNR / SSIM (x106)

Input 25.64 / 0.79 21.24 / 0.61 12.68 / 0.42 -
Baseline 30.78 / 0.89 22.19 / 0.64 13.49 / 0.40 14.6

Varying Order Degradation
+ Aug (N=1) 30.77 / 0.89 23.66 / 0.65 15.19 / 0.51 14.6
+ Aug (N=3) 30.71 / 0.89 25.37 / 0.69 19.23 / 0.55 14.6
+ Aug (N=5) 30.69 / 0.88 26.49 / 0.71 24.14 / 0.57 14.6

Spatial Compression
+ SC (Pool) 30.87 / 0.88 26.43 / 0.71 24.09 / 0.57 12.4
+ SC (Conv) 30.91 / 0.89 26.71 / 0.72 24.23 / 0.58 13.6

Feature Enhancement
+ MSFE (3) 31.16 / 0.89 26.05 / 0.73 24.59 / 0.61 12.7
+ MSFE (5) 31.24 / 0.89 26.08 / 0.73 24.62 / 0.62 12.8
+ MSFE (3, 5) 31.46 / 0.89 26.24 / 0.75 24.69 / 0.63 13.1
+ SDB 32.03 / 0.90 26.39 / 0.76 24.76 / 0.65 13.1
+ Scale (=2) 32.37 / 0.92 26.77 / 0.79 24.93 / 0.66 19.8
+ Scale (=3) 32.79 / 0.93 26.91 / 0.80 24.99 / 0.67 25.1
+ GT Sharpen 33.05 / 0.93 27.05 / 0.80 25.07 / 0.68 25.1
CSWin based 33.21 / 0.94 26.42 / 0.81 25.19 / 0.68 24.6

Longer Training x100 Epochs
Swin based 33.37 / 0.94 27.11 / 0.82 25.42 / 0.70 25.1
CSWin based 33.48 / 0.94 27.64 / 0.82 25.98 / 0.72 24.6

4. Experimental Analysis
4.1. Datasets and Evaluation Metrics

We choose both natural and synthetic single degradation
datasets for Motion Blur, Rain, Snow, Fog, Illumination
Variations, water droplets for our experiments. As there
lacks a dataset that captures multiple degradations and its
corresponding paired clean image, we extend the cityscapes
dataset to have varying combinations and intensities of the
degradations mentioned above. To generate fog we use the
framework proposed in [58] while for illumination variation
we use model proposed in [30], whereas for water droplets
we a pix2pixHD model [48] trained using [33] dataset. For
motion blur, rain, and snow augmentations, we use imgaug
library [21]. We elaborate on the data generation process
in the supplementary. As it is difficult to ascertain the im-
age quality of restored images, we use high-level percep-
tion tasks such as semantic segmentation to determine the
impact of restoration and reconstruction. To evaluate the
performance of restored images, we use PSNR and SSIM
as evaluation metrics where the PSNR is calculated on Y
channel of the YCbCr image.

4.2. Ablation Studies

Training transformer models is a time-consuming pro-
cess, thus, we first evaluate the contribution of different
mechanisms proposed to determine an effective and effi-
cient baseline algorithm. For this task, we utilize the GO-
PRO [32] dataset to represent natural motion blur and add
synthetic augmentations such as rain, snow, illumination

change, and None with a probability of 0.25. Furthermore,
we randomly switch the input degraded image with a clean
ground truth image to ensure the network can perform im-
age reconstruction. We chose GOPRO dataset due to a large
amount of natural paired training and test images, in which
synthetic degradations can be included to generate image
pairs having multiple degradations. To evaluate the perfor-
mance in single and multiple degradations, we use 3 ver-
sions of the GOPRO test set. This allows us to determine
the peak performance in single vs. multiple degradation
conditions. GOPRO-I contains the standard motion blur
images as input, whereas GOPRO-II(r/s/i/f/n) contains syn-
thetic rain or snow or illumination variation or fog or noise,
alongside motion blur. Finally, GOPRO-III contains all the
variations (rain, snow, noise, illumination change, fog) with
varying intensities. We summarize the quantitative results
in Tab. 1 and qualitative results for GOPRO-II(r) image in
Fig. 5 with remaining results included in supplementary.

We first examine the performance contribution of differ-
ent mechanisms by fixing the transformer hyperparameters
of GIQE i.e., window size to 8, channel size i.e. C1, C2,
C3 to 120, 96, 48 respectively and number of self-attention
heads to 6. Furthermore we fix the number of transformer
blocks (N1,N2,N3) for each scale as 36, 24 and 12 respec-
tively. We provide the results for different model architec-
tures in supplementary. Following this, we use the Swin
transformer and determine the optimal framework hyper-
parameters. We first train the baseline for deblurring us-
ing GOPRO dataset without using the proposed degradation
pipeline and evaluate performance on GOPRO-I, GOPRO-
II(r), and GOPRO-III datasets. As the degradations within
GOPRO-II(r) and GOPRO-III aren’t included in the train-
ing dataset, the restoration quality is poor. However, when
degradation space is increased by using the proposed Nth

order degradation model, we observe improved restoration
quality for other degradations while slightly decreasing for
when the image has only motion-blur. Specifically for 1st

order degradation (Aug (N=1)), we observe a performance
boost of +1.47db for GOPRO-II(r) and +1.7db for GOPRO-
III, however -0.01db performance drop on GOPRO-I is also
observed. We observe that increasing the degradation or-
der improves performance on multiple degradations, with
reduced performance on a single degradation dataset. We
attribute this drop in performance to arise from the reduced
amount of images within the dataset. While we observed
improved performance when increasing the order of degra-
dation, i.e., +1.71db for GOPRO-II(r), the increase stag-
nates when increasing the degradation space to 5th order
i.e., 1.12db. Furthermore, we observe the data loader be-
coming the bottleneck by consuming more time to process
the inputs vis-a-vis the GIQE. Hence we limit the degrada-
tion order to 5.

After obtaining the degradation order and baseline, we
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Input Image Swin [28] + SC + MSFE + SDB + Scale(=3)

Input GT CSWin [8] + SC + MSFE + SDB + Scale(=3)

Figure 5. Qualitative evaluation of combining different mechanisms on restoration and reconstruction quality using Swin [28] and CSWin
[8] transformer based models on GOPRO-II(r) subset

examine the impact of the spatial compression (SC) mod-
ule via a 2D convolution filter or simply using an average
pooling operation. While the pooling operation results in
a linear computational complexity and a reduced number
of parameters (∼2.2M), it also results in a slight perfor-
mance drop (-0.28db) compared to a convolutional filter-
based spatial reduction. In addition, we observe SC mecha-
nism to improve restoration performance under all degrada-
tion conditions surpassing the baseline (+0.18db, +0.22db
for pooling and convolution-based SC, respectively). How-
ever, emphasizing computational complexity reduction, we
choose the pooling operation for a spatial reduction since
increasing the number of transformer mechanisms, or self-
attention heads wouldn’t increase the computations sub-
stantially. Following this, we modify the FFN within the
transformer mechanism with the MSFE block and observe
using separable convolutions with filter sizes 3 and 5 to re-
sult in higher performance (+0.25db, +0.33db, +0.55db for
size 3, 5, and both respectively for GOPRO-I dataset) while
increasing the number of parameters (0.3, 0.4, 0.7 M).

We then examine the effect of introducing the auxiliary
decoder branch (SDB) within the training process and ob-
serve improved restoration performance for all degradation
types i.e. +0.57db, +0.15db, and +0.07db. As the SDB
mechanism is only utilized during training, it does not have
an effect on the overall number of parameters of GIQE.
We subsequently examine the effect of including multiscale
branches whose features are merged using the feature se-
lection module. We observe the performance to improve by
+0.34db and +0.76db as we increase the number of scaled
versions to 3 i.e. 1/8 and 1/16 scales. Finally, we examine
an additional trick of sharpening the ground truth by using
a randomized gaussian filter. This approach seems to im-
prove the performance by +0.26db, +0.14db, and +0.08db

for different datasets. As our evaluation was based on the
Swin transformer, we now replace it with the CSWin trans-
former and observer improved performance with a reduced
number of parameters for the same setting. Additionally, we
observe that the presence of multiple degradations reduces
the overall performance of the restoration algorithm, due to
a large degradation space from which the restoration map-
ping needs to be learned. Hence we examine the role of in-
creased training by ×100 epoch, we observe longer training
to significantly improve the restoration performance when
multiple degradations are affecting the image. We refer to
the CSWin based multiscale GIQE version for remaining
evaluations.

4.3. Image Restoration and Reconstruction

4.3.1 Single Degradation Restoration

We first compare the performance of the proposed mecha-
nism with SoTA algorithms for restoring images affected
by single degradation and summarize the results for De-
blurring on GOPRO [32] in Tab. 2. We also examine the
domain invariance characteristics ensured by the proposed
training mechanism and transformer network. Addition-
ally, we compare the performance with SoTA using Re-
alBlur [18] dataset by inferencing models using GOPRO-
pretrained weights. Based on these results, we observe the
proposed GIQE to surpass previous SoTA for deblurring on
GOPRO dataset while undergoing lower performance drop
compared to SoTA when evaluated on images outside train-
ing distribution, i.e., Real Blur dataset. We believe this char-
acteristic to arise from the dual contribution of the degrada-
tion model and Transformer architecture. As highlighted by
prior works [41,56] the ability of a restoration algorithm de-
pends majorly on the degradation diversity within the train-
ing dataset. It should be noted the proposed GIQE outper-

2083



Raindrop Raindrop + Rain A.GAN [34] MPRNet [54] DuRN [26] Uformer [49] GIQE GT

Figure 6. Qualitative comparison of SoTA algorithms for raindrop removal and raindrop and rain removal on Raindrop [34] and Rain1400
[12] dataset.

Table 2. Performance comparison with SoTA image deblurring
algorithms.

Algorithm GoPRO [32] RealBlur [18] GMACs # Params
PSNR / SSIM PSNR / SSIM (x109) (x106)

Input 25.64 / 0.79 26.55 / 0.80 - -
DMPHN [55] 27.98 / 0.84 26.04 / 0.79 825.1 5.4
DeblurGANv2 [23] 28.92 / 0.89 26.68 / 0.81 411.55 5.0
MPRNet [54] 31.84 / 0.92 26.68 / 0.82 11169.5 20.1
DuRN [26] 28.00 / 0.85 26.37 / 0.81 3416.9 3.7
Uformer [49] 32.27 / 0.90 30.74 / 0.88 1235.2 27.3
GIQE 33.48 / 0.94 30.18 / 0.84 814.8 24.6

forms transformer-based UFormer by a margin of 1.21db on
GOPRO dataset while demonstrating higher robustness to-
wards domain shifts. We observe similar performance char-
acteristics on other single degradation restoration tasks such
as deraining, desnowing, dehazing, and image enhancement
We present necessary quantitative and qualitative results in
supplementary.

4.3.2 Multiple Degradation Restoration
We subsequently evaluate the performance of SoTA and
GIQE towards a more realistic scenario wherein multiple
degradations co-exist. For this, we use the Raindrop dataset
[34] and introduce synthetic rain following Rain1400 [12]
design. We summarize the quantitative performance in
Tab. 3 and qualitative performance in Fig. 6. To ensure
SoTA can handle multiple datasets, we retrain them on the
Raindrop dataset augmented by Rain1400 rain streak pat-
tern following the training methodology proposed for each
SoTA. We observe AGAN and DuRN perform unsatisfacto-
rily when evaluating them on both images from the quanti-
tative and qualitative results. We concur this to arise from
their degradation specific architecture, whereas other SoTA
were able to enhance the images considerably, however they
weren’t able to restore them to the quality when only rain-
drop was present. We believe this arises from the drawback
of using convolutional filters, which makes them inflexible
towards spatially varying degradations. We include com-
prehensive evaluation in supplementary wherein we observe
similar patterns when evaluating on different degradation
combinations.

4.4. Supplementary Materials

We examine the effect of restoration and reconstruction al-
gorithms on high-level perception tasks i.e. semantic seg-
mentation in natural conditions wherein multiple degrada-

Table 3. Ablation Performance comparison with SoTA raindrop
removal algorithms.

Algorithm Raindrop Raindrop + Rain1400 GMACs # Params
PSNR / SSIM PSNR / SSIM (x109) (x106)

Input 21.41 / 0.75 11.69 / 0.57 - -
A.GAN [34] 23.68 / 0.75 19.79 / 0.59 531.9 6.2
Pix2PixHD [48] 24.05 / 0.69 17.43 / 0.58 412.9 182.4
DuRN [26] 23.91 / 0.75 17.88 / 0.62 332.9 10.1
EfficientDerain [14] 23.72 / 0.75 20.12 / 0.70 296.2 27.3
MPRNet [54] 24.19 / 0.79 20.47 / 0.66 4643.85 20.1
Uformer [49] 23.51 / 0.64 17.09 / 0.60 926.4 27.3
GIQE 25.18 / 0.82 23.41 / 0.75 465.6 24.6

tions co-exist, while also discussing the limitations. In sum-
mary, we demonstrate that it is more efficient to integrate an
image restoration and reconstruction algorithm vis-a-vis re-
training a model with deeper backbone.

5. Conclusion
In this paper, we argue that the fixed convolutional fil-

ters restrict the restoration and reconstruction quality ow-
ing to their inability to cope with spatially varying degrada-
tions. Furthermore, this restricts their ability to process im-
ages that are affected simultaneously by multiple degrada-
tions that are extensively encountered in natural conditions.
To solve this issue, we propose a transformer-based im-
age restoration algorithm provided with synthetic degraded
images as input. For ensuring the complexity of degrada-
tion and its dynamic nature is accurately captured in train-
ing samples, we propose an Nth order, iterative degradation
model. Additionally, we suggest two tricks to reduce the
computational cost of the transformer model while increas-
ing its ability to capture local features. We highlight that
when training a restoration algorithm, the underlying net-
work is expected to localize, quantify the magnitude and
type of degradation and restore the affected regions. Thus,
increasing the complexity of the training cycle. We inte-
grate an auxiliary decoder branch performing binary classi-
fication to aid in training to identify degraded regions within
an image. We conduct extensive experiments on both single
and multiple degradation datasets to demonstrate the effi-
cacy of the proposed approach.
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