
Learning Structured Gaussians to Approximate Deep Ensembles

Ivor J.A. Simpson
University of Sussex, UK
i.simpson@sussex.ac.uk

Sara Vicente
Niantic, UK

svicente@nianticlabs.com

Neill D.F. Campbell
University of Bath, UK
n.campbell@bath.ac.uk

Abstract

This paper proposes using a sparse-structured multivari-
ate Gaussian to provide a closed-form approximator for the
output of probabilistic ensemble models used for dense im-
age prediction tasks. This is achieved through a convolu-
tional neural network that predicts the mean and covari-
ance of the distribution, where the inverse covariance is
parameterised by a sparsely structured Cholesky matrix.
Similarly to distillation approaches, our single network is
trained to maximise the probability of samples from pre-
trained probabilistic models, in this work we use a fixed en-
semble of networks. Once trained, our compact represen-
tation can be used to efficiently draw spatially correlated
samples from the approximated output distribution. Impor-
tantly, this approach captures the uncertainty and struc-
tured correlations in the predictions explicitly in a formal
distribution, rather than implicitly through sampling alone.
This allows direct introspection of the model, enabling vi-
sualisation of the learned structure. Moreover, this formu-
lation provides two further benefits: estimation of a sample
probability, and the introduction of arbitrary spatial condi-
tioning at test time. We demonstrate the merits of our ap-
proach on monocular depth estimation and show that the
advantages of our approach are obtained with comparable
quantitative performance.

1. Introduction
Single prediction neural networks are ubiquitous in com-

puter vision and have demonstrated extensive capability for
a variety of tasks. However, researchers are increasingly
interested in capturing the uncertainty in estimation tasks
to combat over-confidence and ambiguity; such concerns
are important when building robust systems that connect
computer vision approaches to down-stream applications.
The deployment of neural networks for safety-critical tasks,
such as autonomous driving, requires an accurate measure
of uncertainty. While Bayesian Neural Networks [17] are
often a model of choice for uncertainty estimation, ensem-
bles [14] have been proposed as a simple alternative. Em-

Unlimited structured
samples

Ensemble

Input image ...

Ours

Model
introspection

Conditioning

SUPN

CNN

CNN

CNN

Mean

Sample 1

Sample 2

Sample N

Input image
Covariance

Figure 1. Our method is trained to approximate the output of
an ensemble, by using structured uncertainty prediction networks
(SUPN) to predict a mean and covariance for a multivariate Gaus-
sian distribution. This explicit distribution enables a variety of
tasks including: sampling, conditioning and model introspection.

pirically, ensembles have been shown to produce good mea-
sures of uncertainty for vision tasks [15,19] and allow prac-
titioners to exploit associated application-specific inductive
biases, for example established architectures, directly.

Limitations of implicit approaches Despite their pop-
ularity, ensembles have a number of drawbacks that we
group into three themes. Firstly, they come at an increased
cost compared with deterministic networks. At training
time, they require training multiple deep models, while
at test time, multiple inference passes are required. MC-
dropout [5] saves computation at training time, but it still
requires multiple passes at inference time. Secondly, these
approaches only provide an implicit distribution over prob-
able model outputs. Any uncertainty captured is only acces-
sible through ancestral sampling. Accordingly, one cannot

366

calculate conditional samples, or assess the likelihood of a
new sample given the learned model. Finally, and of in-
creasing importance to the community, introspection of the
trained models is very difficult.

When combining computer vision with larger systems,
there is virtue to summarising the posterior distribution in
a formal and compact form that can be visualised and ap-
propriately used to inform downstream tasks. The computa-
tional challenges have prompted work on producing a single
model to approximate the output of an ensemble; so called
“ensemble distillation” [2, 15, 18, 21].

Lack of structure in distillation methods Previous meth-
ods focus on: classification problems [15, 18], approximat-
ing only the mean of the ensemble [2], or modelling inde-
pendent per-pixel variance [21]. In contrast, while we also
adopt a single model to reduce the computational cost, we
propose to learn a model that approximates the ensemble
by formally capturing structure in the output space; this is
more appropriate for dense prediction tasks. When mak-
ing per-pixel predictions, it is common to use models that
capture spatial correlation in the output space. In particular,
models such as Markov or Conditional Random Fields [20],
which capture correlations between neighbouring pixels,
have been extensively used in computer vision. However,
capturing the structure of the output space is less explored
in the context of modelling uncertainty. Previous work has
focused on per-pixel heteroscedastic uncertainty, by using a
Gaussian [11,21] or Laplace [13] likelihood model with di-
agonal covariance. Since these models do not capture corre-
lations between pixels, samples suffer from salt-and-pepper
(independent) noise.

Capturing structure explicitly Previously, adopting per-
pixel uncertainty representations usually follows from the
expectation that direct estimation of a full covariance struc-
ture is intractable in both storage O(pixels2) and com-
putation O(pixels3). Recently, however, Dorta et al. [4]
introduced Structured Uncertainty Pprediction Networks
(SUPN) for generative models. The paper extended a Vari-
ational Auto Encoder (VAE) [12] with a likelihood model
that is Gaussian with a full covariance matrix. The authors
show how this can be predicted efficiently by using a sparse
approximation of the Cholesky decomposition of the preci-
sion matrix. Working in the domain of the precision allows
a dense covariance structure to be obtained whilst also re-
specting our prior that long range structure is derived from
the propagation of local image statistics. By encoding a full
covariance matrix, the samples obtained from such a model
capture these long range correlations in the image domain
and are free from salt-and-pepper (independent) noise.

Contributions In this work, we build on SUPN [4] and
show that a deep network can be trained in a regression
setting to predict a structured Gaussian distribution that

approximates the output distribution of methods that cap-
ture model uncertainty, such as ensembles [14] and MC-
dropout [5]. We introduce a novel efficient approach
to drawing conditioned or unconditioned samples from a
structured multivariate Gaussian distribution with a sparsely
structured precision matrix. By taking full advantage of the
closed form nature of the Gaussian distribution, our method
allows introspection and enables conditioning at test time,
which proves cumbersome for other methods. Importantly,
our approach is not limited to Gaussian likelihoods over the
prediction space (see § 3.4).
Evaluation We demonstrate the efficacy of our method for
the task of depth estimation. Experiments show that the
new advantages can be obtained without sacrificing quanti-
tative performance, with results comparable to the original
ensemble; we consider metrics over both accuracy and the
capture of uncertainty. The samples are found to follow the
ensembles without being limited in the number that can be
drawn. The compact representation is capable of encod-
ing a rich distribution with only a modest increase in com-
putation over a single deterministic network. Furthermore,
we demonstrate using our explicit representation to perform
conditional sampling and illustrate the ability to inspect the
model and visualise the correlation structure learned.

2. Background
Our goal is to model p(d |x), where x is the observed

image and d is a per-pixel prediction, e.g. a semantic la-
belling or depth map. While most deterministic deep mod-
els can be seen as capturing the mean µ(x) of this distribu-
tion, we are interested in models that also capture the vari-
ance Σ(x).

2.1. Uncertainty in Deep Models

Previous work for probabilistic modelling using neural
networks, can be broadly grouped into three categories:
(1) Bayesian approaches that model uncertainty of the net-
work parameters, (2) methods that empirically approximate
Bayesian approaches by predicting multiple hypothesis, and
(3) approaches that model p(d |x) directly by predicting a
parametric distribution. The literature on uncertainty mod-
elling in neural networks is vast and we direct the interested
reader to a recent review [1].
Modelling uncertainty in the parameters Bayesian neu-
ral networks [17] model uncertainty by modelling the prob-
ability distribution of the learned weights w of the net-
work. The resulting posterior p(d |x) is then obtained by
marginalising over the weights:

p(d |x,D) =
∫

p(d |x,w) p(w | D) dw , (1)

where w are the model parameters, and we make explicit
the dependence on the dataset D.

367

While this approach is able to model arbitrary distribu-
tions p(d|x), and generate samples which are correlated in
output space, it also suffers some limitations. The majority
of approaches rely on mean-field approximations over the
weights to maintain tractability. In addition, it is difficult to
condition on any of the output values due to the absence of
a parametric distribution over the posterior.

MC-dropout [5] approximates Bayesian networks by us-
ing dropout at both training and test time. Dropout was first
proposed to reduce over-fitting in deep neural networks [22]
and it proceeds by randomly setting some of the weights of
the network to zero. It has been shown, [5], that this ran-
dom dropping of weights at test time is akin to sampling
from the distribution p(w | D) and may be used to approxi-
mate the integral in (1).
Multiple hypothesis Ensemble methods make use of mul-
tiple models and combine them to get a single prediction.
Deep ensembles can be trained using bootstraping [14], i.e.
splitting the training set into multiple random subsets and
training each model in the ensemble independently. Al-
ternatively, to save computation, a deep ensemble can be
trained by taking multiple snapshots [9] from the same
training procedure, requiring a cyclic learning rate. Ensem-
bles have been shown to provide good measures of uncer-
tainty [14]. They can be seen as approximating Bayesian
networks by replacing the integral in (1) by a sum over a
discrete number of models. As discussed in § 1, training
and inference procedures can become expensive in terms
of maintaining an increasing number of networks; practi-
cal approaches are often limited in the number of distinct
models that, in turn, restricts the number test-time samples.
Predictive uncertainty via parametric distributions The
other alternative to modelling uncertainty is to use a feed-
forward neural network to predict the parameters of a para-
metric distribution [11]. For regression tasks, p(d|x) is typ-
ically described by a Gaussian likelihood, where the mean
and variance are outputs of the neural network:

p(d |x) ∼ N
(
d |µ(x),Σ(x)

)
, (2)

where Σ(x) is usually approximated by a diagonal matrix
where the diagonal elements are predicted by the network.
Kendall and Gal [11] discuss how the predicted variance can
be seen as a loss attenuation factor, reducing the loss for
outliers; this predicted per-pixel variance is shown to cor-
relate with error in the predictions. Evaluating predictive
uncertainty is more efficient since a single pass of the net-
work at test time is sufficient to fully determine the measure
of uncertainty. However, independent per-pixel uncertainty
estimates fail to capture spatial correlation that is known to
exist in images; samples from these models are destined to
be unrealistic and suffer from salt-and-pepper noise.
Ensemble distillation Recently, there has been a grow-
ing interest in approximating the probabilistic output of an

ensemble by a single model [2, 15, 18, 21]. This process
is commonly named “distillation”. Most of the focus has
been on classification [15, 18], where the goal is to predict
the class of the image. While these methods show impres-
sive results in detecting out-of-distribution images, they are
not easily extended for dense prediction tasks. Other meth-
ods focus on approximating only the mean of the ensemble
distribution [2], or modelling independent per-pixel vari-
ance [21]. In contrast, our model also does ensemble dis-
tillation, but can capture structure in the output space.
Uncertainty in depth prediction models The goal of self-
supervised depth estimation is to train a network to pre-
dict single image depth maps without explicit depth super-
vision [7, 8]. Instead, self-supervised approaches use geo-
metric constraints between two calibrated stereo cameras to
learn depth prediction. At test time, these methods do not
require a stereo pair, only a single image. Given the inherit
ambiguity of predicting depth from a single image, depth
prediction is a natural use case for uncertainty estimation
in dense prediction tasks. In [19] the authors review and
compare different approaches for uncertainty prediction for
self-supervised depth prediction. They focus on methods
that predict multiple hypothesis, such as dropout [5] and
ensembles [14], methods that predict per-pixel independent
heteroscedastic uncertainty [13], and combinations of both.

In the experiments, we use the pre-trained networks pro-
vided by [19] to evaluate the efficiency of our method in
approximating ensembles. In particular, we use their most
successful model, which combines an ensemble with pre-
dictive uncertainty. Their ensembles are trained using boot-
strapping [14], and they use an uncorrelated Laplace distri-
bution for predictive parametric uncertainty.

Xia et al. [25] show how a probabilistic model for depth
prediction can be explored by downstream tasks such as
inference with additional information. They model uncer-
tainty at a patch level in a model akin to a Markov Random
Field. In contrast to our approach, the method requires solv-
ing a complex optimization problem at inference time.

2.2. Predicting Structured Gaussian Distributions

To approximate an ensemble, we train a network to pre-
dict the parameters of a Gaussian distribution. Given an in-
put image x the network outputs the parameters of a Gaus-
sian distribution µ(x) and Σ(x). We focus on dense pre-
diction tasks. For these tasks, if N is the number of pix-
els in the input image, the size of µ is also N while a full
Σ matrix has N2 parameters. The quadratic scaling of the
number of parameters of the covariance matrix leads to the
common remedy of a diagonal matrix, which requires only
N parameters. However, this simplifying assumption pro-
hibits the capture of correlations between pixels.
Structured Uncertainty Prediction Networks Our ap-
proach builds on the work, [4, 24], where the parameter-

368

isation used is the Cholesky decomposition of the preci-
sion matrix, i.e. the network predicts LΛ directly, where
LΛL

⊤
Λ = Σ−1 and LΛ is a lower triangular matrix. For

completeness, we review some of the properties of the pa-
rameterisation presented in [4], which we use in our work.

When choosing a parameterisation, there are a few crite-
ria that should be taken into account: how easy it is to evalu-
ate the likelihood function required for training, how easy it
is to sample from the distribution at inference time and how
easy is to impose that the covariance matrix (or equivalently
precision matrix) is symmetric and positive definite? Direct
prediction of the Cholesky factor guarantees that the preci-
sion matrix is symmetric. To guarantee that it is positive
definite, the diagonal values of the Cholesky decomposition
are required to be positive; an easy constraint to enforce in
practice. This choice of parameterisation allows for easy
computation of the log-likelihood of the multivariate Gaus-
sian distribution. However, sampling is more difficult to
perform, since access to the covariance is required. We dis-
cuss a new efficient method for sampling in § 3.3.

Sparsity Despite the advantages of using this parameter-
isation and the fact that the Cholesky is a lower triangu-
lar matrix, the number of elements still grows quadratically
with respect to the number of pixels, N , making it pro-
hibitive to directly estimate for large images. We follow
SUPN [4] in imposing sparsity in the Cholesky matrix LΛ.
For each pixel, we only populate the Cholesky matrix for
pixels which are in a small neighborhood, while keeping
the matrix lower-triangular. We include an illustration in the
supplemental material. This sparse Cholesky matrix can be
compactly represented by only predicting the non-zero val-
ues; for a 3×3 neighborhood, this corresponds to predicting
the diagonal map plus 4 off-diagonal maps. Importantly,
this representation can be encoded efficiently into popular
APIs such as Tensorflow and PyTorch using standard con-
volutional operations.

Deep Gaussian MRFs Our model can be seen as a Gaus-
sian Markov Random Field, since the sparsity pattern on
the precision matrix directly implies the Markov property:
a variable is conditional independent of all other variables
given its neighbours. Similar to our approach, [3,10,23] use
a regression model to predict the parameters of a Gaussian
Conditional Random Field that captures structure in output
space. They show improved results for semantic segmenta-
tion. However, they focus on predicting the MAP solution
and do not make use of the full probability distribution.

3. Method

Our goal is to train a single network that approximates
the multiple outputs of an ensemble. We assume this en-
semble is given as a pre-trained network(s), e.g. from [14]
or [9]. We predict a structured multivariate Gaussian using

the sparse representation discussed in § 2.2.

3.1. Training

Given I training images {xi | i ∈ [1, I]}, the pre-trained
ensemble is run for the full training set, to obtain S distinct
predictions per image {ds

i | s ∈ [1, S]}, where S is the size
of the ensemble or number of MC-dropout samples.
Log-likelihood loss Our network is trained to minimise the
negative log-likelihood of the training set:

L = −
I∑

i=1

S∑
s=1

logN
(
ds
i |µ(xi),Σ(xi)

)
, (3)

where N
(
ds
i |µ(xi),Σ(xi)

)
is the probability density

function of a multivariate Gaussian distribution.

3.2. Inference

In common with ensembles and MC-dropout, we can use
our model to obtain samples from the predictive distribu-
tion p(d |x). In contrast with ensembles, our model is not
restricted on the number of samples that can be taken; we
discuss an efficient sampling procedure in § 3.3. More im-
portantly, since our model predicts a closed form probabil-
ity function, it allows for additional inference tasks which
are not possible with ensembles or MC-dropout.
Evaluation of the predictive log-likelihood Our model
allows evaluating the log-likelihood for a given dense pre-
diction. This is useful for model comparison.
Conditional distribution The output Gaussian distribution
can be used to compute the conditional distribution of some
pixel labels, given the label for other pixels. The ability of
drawing conditional samples has practical applications, for
example: for depth completion, where the depth of a small
number of pixels is provided by an external sensor, such as
a LIDAR scanner; or for interactive image segmentation,
where the label of a few pixels is provided by a user.

3.3. Efficient Sampling

Sampling from a Multivariate Gaussian distribution with
a diagonal covariance matrix Σ = diag(σ1, . . . , σN) can
proceed with a straight forward sampling approach where
each dimension (pixel) is independent:

d̃(s)n = µn + σn ε̃
(s)
n , ε̃(s)n ∼ N (0, 1) . (4)

If the Gaussian distribution has a general covariance,
however, then the sample cannot be computed indepen-
dently for each pixel and must be drawn through a square
root matrix of the covariance, such as the Cholesky factor:

d̃(s) = µ+ LΣ ε̃
(s), ε̃(s) ∼ N (0, IN) , (5)

where LΣL
⊤
Σ = Σ. Computation of the dense covari-

ance matrix from the sparse precision, followed by the

369

Cholesky operation would involve a computational com-
plexity of O(N3) and O(N2) storage making it infeasible.
Efficient calculation via the Jacobi method Fortunately,
adopting a sparse structure over the Cholesky precision ma-
trix LΛ means that we can perform a matrix multiplication
efficiently. We can exploit this to take approximate samples
using a truncated (to J iterations) version of the Jacobi itera-
tive solver to invert LΛ. This results in a tractable algorithm
for obtaining approximate samples of sufficient quality. We
can take multiple samples from the same distribution simul-
taneously while retaining efficiency.

We start with a set of S standard Gaussian samples,

Ẽ = [ε̃(1), . . . , ε̃(S)], ε̃(s) ∼ N (0, IN) . (6)

We then note that the transposed, inverse of the precision
Cholesky matrix can be used as a sampling matrix since

Σ = Λ−1 = (LΛL
⊤
Λ)

−1 = L−⊤
Λ L−1

Λ , (7)

indicating that L−⊤
Λ is the LHS of a square root matrix for

Σ. Thus we draw low variance Monte Carlo samples as

D̃ = [d̃(1), . . . , d̃(S)] = µ+ L−⊤
Λ Ẽ . (8)

To invert L⊤
Λ efficiently, we use J Jacobi iterations; these

are particularly efficient to apply with a sparse matrix that
is already lower triangular. We initialise S(0) = Ẽ and then,
at each iteration, update the samples with

S(j+1) ← D−1
Λ

(
Ẽ − UΛ S(j)

)
, (9)

where DΛ := diag(L⊤
Λ) and UΛ := L⊤

Λ − DΛ, a strictly
upper triangular matrix. The final samples are then obtained
by the addition of the mean such that D̃ = µ+ S.
Efficient conditional sampling As we have a closed form
representation of the output distribution:

d ∼ N (µ,Σ), Σ = L−⊤
Λ L−1

Λ , (10)

we can find the expression for a resulting conditional dis-
tribution where we specify values for a subset of the pixels
and sample from the resulting distribution over the remain-
ing pixels. Let us partition the pixels into a set of known
values dK and unknown values dU; pixels (arbitrarily) be-
long to either one set or the other under a pixel-wise mask:

[mK]n =

{
1, n ∈ K
0, n ∈ U , mU = 1−mK . (11)

Thus, with slight abuse of notation, we recover the full set
of values as d = mK ⊙ dK +mU ⊙ dU. The conditional
distribution for the unknown values, given that the known
values dK = α, is the Gaussian conditional density:

p(dU |dK = α) ∼ N (b,B) , (12)
b := µU +ΣUKΣKK(α− µK) , (13)

B := ΣUU −ΣUKΣ
−1
KKΣKU , (14)

Algorithm 1: Jacobi sampling for the multivariate
Gaussian distribution

Result: Samples drawn from a correlated
multivariate Gaussian (with sparse
precision)

Samples: S(0) ← Ẽ ∼ N (0, IN), N := W ×H;
Local connection filters: F = {fl}Ll=1;
Log diagonal terms: ϕ ∈ RN ;
Off diagonal terms: ψ ∈ RL×N ;

for j ← 0 to J − 1 do
V← Conv2D(S(j),F);
v←

∑L
l=1[V ⊙ψ]n,l;

S(j+1) ←
[
exp(ϕ)

]−1 ⊙ (Ẽ − v)

end

Output: S(J) ≈
(
L−⊤
Λ Ẽ

)
∼ N (0,Λ−1);

where the subscripts dictate the appropriate partitions of the
mean vector or blocks of the covariance matrix.

Evaluating this directly, in matrix form, would again be
prohibitively expensive, especially considering the matrix
inversions (from precision to covariance matrices). Thank-
fully we can use a modified form of the Jacobi sampling
method combined with Matheron’s rule for conditional
sampling. Matheron’s rule states that if (a,b) are samples
from the joint distribution p(dK,dU) then the random vari-
able b conditioned on a = α can be found by:

(b | a = α)← b+ΣUKΣ
−1
KK(α− a) . (15)

We can use straight forward identities to convert Matheron’s
rule into an update equation in terms of the precision:[

ΛKK ΛKU

ΛUK ΛUU

]
·
[
ΣKK ΣKU

ΣUK ΣUU

]
=

[
I 0
0 I

]
, (16)

⇒ ΛUK ΣKK +ΛUU ΣUK =0 (17)

⇒ ΣUK Σ−1
KK = −Λ−1

UU ΛUK . (18)

We have ready access to efficient evaluation of the sparse
L⊤
Λ , as discussed in the Jacobi method. With suitable book-

keeping, we can produce the appropriately shuffled local
connection filters Fshuff ← Shuffle(F) and permuted off-
diagonal terms ψshuff ← Shuffle(ψ) to provide a similar
evaluation of the sparse LΛ. This product results in a sparse
banded diagonal structure in the precision matrix Λ. The
appropriate blocks of this sparse matrix can be accessed and
used to solve for the conditional update of (15) using a pre-
cision form of the update (18).

3.4. Extension to Non-Gaussian Likelihoods

For many dense prediction tasks, a multivariate Gaus-
sian distribution is not an appropriate likelihood over the

370

observations directly. However, SUPN is still applicable for
this use case, by fitting the multivariate Gaussian distribu-
tion to the logit space, i.e. to the layer just before the last
non-linear layer. This is then followed by an appropriate
activation function. For example, for depth prediction, the
outputs of the network should be non-negative and the ac-
tivation function used is a scaled sigmoid, following mon-
odepth2 [8]. Similarly, for the task of segmentation, the fit-
ting of the SUPN could be done in logit space and soft-max
would be used as the activation function.

3.5. Implementation Details

Architecture We build upon the U-Net architecture used
by Monodepth2 [8], i.e. an encoder-decoder architecture
where the encoder is a ResNet18 and there are skip con-
nections between the encoder and the decoder. We add an
additional decoder to predict the Cholesky parameters. This
decoder takes skip connections from the mean decoder as
input. The additional decoder concatenates coordinate maps
in the convolutional blocks [16] to provide additional spatial
information. We designed an off-diagonal prediction ap-
proach where the scale of the values is initially very small,
≈ exp(−4), but adapts during training. We found this in-
ductive bias, in lieu of formal priors, was required to predict
high quality covariances. We use a 5× 5 neighborhood for
the Cholesky decomposition; please see the supplementary
details for architecture details and ablation experiments.

Model size Our model encodes the distillation of an en-
semble of large models into a single framework; we use
only 24% more parameters than a single network (out of 8
in the ensemble).

Multi-scale loss For depth prediction, we use a multi-scale
loss similar to Monodepth2 [8], where the loss in (5) is ap-
plied across different scales.

Complexity Fixed sparsity ensures that all operations are
O(N) for both computation and storage. Sampling isO(J)
(we used J = 1000); empirically, the total time for a full
Jacobi sample was 0.6s.

4. Experiments

For the experiments, we show our method applied to
monocular depth estimation. We use the KITTI dataset [6]
and base our implementation on the Monodepth2 reposi-
tory [8] and the repository from [19].

Pre-trained ensembles We use the pre-trained models pro-
vided by [19]. In particular, the ensembles created through
bootstrapping together with predictive uncertainty. Two dif-
ferent approaches are used for predictive uncertainty. Both
use a diagonal multivariate Laplace distribution, but differ
in the way they are trained: LOG is trained by directly opti-
mizing the log-likelihood of a self-supervised depth model;

while SELF uses a pretrained network for depth prediction,
without uncertainty estimation, as the teacher model.

Metrics For evaluating the accuracy of the estimated depth
maps we use a subset of the metrics commonly used for
the Kitti dataset: absolute relative error, root mean squared
error (RMSE) and the A1 metric.

For evaluation of the uncertainty estimates, we use the
metrics used in [19]: area under the sparsification error
(AUSE) and area under the random gain (AURG). Both
these metrics rely on using per-pixel uncertainty estimates
to rank pixels from less confident to more confident. For
AUSE, this ranking is compared with an oracle ranking that
sorts pixels from higher error to lower error, using the dif-
ferent ground truth metrics for ranking. A small AUSE
means that the ranking provided by the uncertainty estimate
is similar to this oracle ranking. AURG compares the rank-
ing based on estimated uncertainty with a random ranking,
large values are preferred for this metric.

Since both these established metrics only consider
per-pixel estimates, we also evaluate the posterior log-
likelihood of test samples from the ensembles under our
model. To provide a baseline, we also train a version of
our model with only a diagonal covariance structure (per-
pixel), which cannot model structure. Comparing against
this baseline allows us to determine if the model has cor-
rectly captured the distribution of test samples and avoided
overfitting. We also measure the log-likelihood to other en-
sembles to ensure that the SUPN variants estimate distribu-
tions that generalise well to support other plausible samples.

4.1. Quantitative Results

Depth accuracy In Table 1 we show a quantitative com-
parison between the two variants of ensembles and the cor-
responding versions of our model, trained to approximate
them. We compare the methods using the depth estimation
metrics. While the mean performance of the ensembles is
slightly superior to our approximate models, the results are
comparable within the margin of error. The box plot in Ta-
ble 1 highlights the strong overlap in the error distribution of
the ensemble and SUPN models, indicating that despite the
significant reduction in the number of parameters, SUPN is
able to approximate the performance of the ensemble.

Our models compare favourably with a diagonal only
model. This is particularly noticeable in the metrics for the
best sample. Samples from our model consistently outper-
form samples from a diagonal only Gaussian.

Uncertainty estimation Table 2 provides a quantitative
comparison in terms of uncertainty metrics. SUPN con-
sistently outperforms the teacher ensemble model for both
LOG and SELF. The log-likehood values demonstrate that
the correlated structure capture by SUPN is better able to
explain the test outputs of the ensembles that the baseline

371

Table 1. Accuracy comparison: Quantitative comparison of quality on commonly used depth metrics (see supplement for the remaining
metrics in [8]). The “Best” metrics sample 40 different predictions for our model, and from the 8 ensembles for the baseline, and choose
the best under each metric. Standard deviations are given in brackets. The box plot illustrates the substantial overlap in distributions.

0 5 10 15

SUPN (ours)

Ensemble
RMSE Mean

Box plot illustrating the strong dis-
tribution overlap between the origi-
nal ensemble and the trained SUPN
model for Boot+Log RMSE mean.

Model name AbsRel Mean ↓ AbsRel Best ↓ RMSE Mean ↓ RMSE Best ↓ A1 Mean ↑ A1 Best ↑
MD2 Boot+Log 0.092 (0.035) 0.084 (0.031) 3.850 (1.370) 3.600 (1.260) 0.911 (0.064) 0.923 (0.055)
MD2 Boot+Self 0.088 (0.034) 0.083 (0.031) 3.795 (1.397) 3.574 (1.323) 0.918 (0.060) 0.929 (0.051)

Diagonal 0.101 (0.044) 0.103 (0.043) 4.000 (1.457) 4.020 (1.444) 0.896 (0.076) 0.894 (0.074)
SUPN Boot+Log 0.104 (0.047) 0.095 (0.039) 4.071 (1.489) 3.577 (1.191) 0.892 (0.080) 0.909 (0.069)
SUPN Boot+Self 0.103 (0.049) 0.096 (0.046) 4.091 (1.442) 3.800 (1.396) 0.894 (0.078) 0.906 (0.073)

Table 2. Pixelwise uncertainty metrics: AUSE (area under the sparsification error), lower is better. AURG (area under the random gain),
higher is better. Uncertainy for SUPN estimated from std-deviation of 10 samples. Results marked with a * differ from the published work
by [19], as to make it comparable we do not use the Monodepth 1 post-processing. LL (Log-Likelihood) columns provide the log-likelihood
of samples from the respective ensembles under the diagonal (baseline) and SUPN models. Standard deviations are given in brackets.

Model name AbsRel AUSE ↓ AbsRel AURG ↑ RMSE AUSE ↓ RMSE AURG ↑ A1 AUSE ↓ A1 AURG ↑ LL Boot+Log ×105↑ LL Boot+Self ×105↑
MD2 Boot+Log 0.038 (0.020) 0.021 (0.019) 2.449 (0.877) 0.820 (0.929) 0.046 (0.048) 0.037 (0.040)
MD2 Boot+Self 0.029 (0.018) 0.028 (0.019) 1.924 (1.006) 1.316 (1.000) 0.028 (0.041) 0.049 (0.037)

MD2 Boot+Log* 0.041 (0.019) 0.018 (0.020) 2.927 (1.327) 0.324 (1.019) 0.050 (0.049) 0.032 (0.037)
MD2 Boot+Self* 0.040 (0.021) 0.017 (0.018) 2.906 (1.458) 0.331 (1.08) 0.045 (0.045) 0.031 (0.035)

Diagonal 0.085 (0.050) -0.020 (0.030) 5.075 (1.924) -1.697 (0.799) 0.138 (0.083) -0.440 (0.053) 1.77 (11.48) 1.15 (12.78)
SUPN Boot+Log 0.037 (0.027) 0.030 (0.025) 1.555 (1.307) 1.856 (1.355) 0.040 (0.063) 0.058 (0.047) 40.60 (1.35) 38.18 (2.93)
SUPN Boot+Self 0.050 (0.037) 0.017 (0.028) 2.786 (1.796) 0.674 (1.544) 0.062 (0.074) 0.034 (0.055) 36.51 (2.31) 38.87 (1.63)

Figure 2. Visualisation of learned covariances between example pixels (red crosses) and other pixel locations for SUPN BOOT+LOG. Red
indicates high positive correlation, blue is strong negative correlation. For clarity, these plots are scaled into the standard deviation range
(via a signed square root operation) and plotted over a range [-0.05, 0.05]. These examples illustrate the long range correlations that can
be captured from very local structure (5× 5 pixel regions) in the precision matrix. For more examples, see the supplementary video.

diagonal model. The samples routinely have higher sup-
port under the SUPN model which suggests that some of the
other measures are not accurately measure the quality of the
structure present in the posterior predictions of the model.
As expected, the performance of the SUPN approaches on
the test set for the corresponding samples are slightly better
but we note that overall the values are similar between the
two methods indicating that the correlations captured are
not overfit to the specific ensembles.

4.2. Qualitative Results

Figure 3 illustrates samples from the BOOT+LOG en-
semble, and the SUPN approximation; the samples are visu-
ally similar and exhibit considerable long-range structure.

Introspection As discussed in § 1, one of the advantages
of an explicit distribution is that it allows for introspection.
Figure 2 illustrates how the covariance between a specified
pixel, and any other, can be explicitly computed. These
visualisations are the corresponding row of the covariance
matrix obtained using the sampling process of (9) twice
(with LΛ and then L⊤

Λ) to a one-hot vector encoding the
pixel of interest on the RHS (instead of Ẽ) and no mean.

Conditional Distributions Figure 4 illustrates our model’s
ability to condition samples on arbitrary output pixels,
which is not possible in most deep probabilistic models. In
this example, we use some samples from the ground truth
depth as additional conditioning on the predicted distribu-
tion, and show the conditional mean.

372

(a) Input image (b) Mean disparity (c) BOOT+LOG diff (d) SUPN BOOT+LOG diff

Figure 3. Example depth samples (see supplementary video for more). (b) Average normalised disparity predicted by the ensemble models.
Difference between the mean and one of the (c) BOOT+LOG ensemble or (d) SUPN BOOT+LOG; the samples appear qualitatively similar.

(a) Image + conditioning locations (b) Mean disparity (c) Conditional mean disparity

Model name AbsRel ↓ RMSE ↓ A1 ↑
Ensemble 0.088 (0.034) 3.795 (1.397) 0.918 (0.060)
SUPN 0.104 (0.047) 4.071 (1.489) 0.892 (0.080)
SUPN 25∗ 0.086 (0.036) 3.893 (1.541) 0.922 (0.053)
SUPN 50∗ 0.076 (0.031) 3.607 (1.433) 0.936 (0.041)
SUPN 100∗ 0.064 (0.028) 3.251 (1.290) 0.949 (0.033)
SUPN 200∗ 0.054 (0.022) 2.873 (1.100) 0.960 (0.028)

(d) Quantitative conditioning accuracy

Figure 4. Conditional prediction using sparse ground truth depth information. (a) shows 25 randomly sampled conditioning locations
that have valid depth (b) shows the original mean disparity, while (c) shows the conditional mean disparity. d) Quantifies the accuracy
improvement of our SUPN Boot+Log model when conditioned on N∗ random ground truth depth pixels, repeated 10 times per image.

5. Discussion and Limitations

Similar to other distillation methods, the performance
of our method is upper-bounded by the performance of the
original ensemble model. This might become an issue when
the ensemble is small, and doesn’t capture the full diver-
sity of data. We’ve observed visually that the log-likelihood
alone is not always a good predictor of sample quality, i.e.
a sample might have high log-likelihood while looking im-
plausible, this may be due to a lack of variation in the en-
semble predictions. This could potentially be overcome by
using priors on the predicted Gaussian distribution, and fu-
ture work will consider subsequently training the model on
the specified task, using the drawn samples.

As a deterministic approximation to the output of an en-
semble, we seek to capture all forms of uncertainty captured
by the ensemble (e.g. aleatoric and epistemic). We acknowl-
edge that we do not consider the epistemic uncertainty in
the approximation separately, however our work may be
considered orthogonal to work in this area, e.g. BNNs, and
could be readily combined.

Potential negative impact We think that uncertainty es-
timation is a valuable endeavor in improving deep models,
and that our approach of using explicit distributions is a step
in the right direction, providing tangible benefits. How-
ever, the predicted distributions have yet to be evaluated

on out-of-distribution data. As with most machine learn-
ing models, we cannot expect generalisation of our SUPN
prediction networks to very different data. Clearly, this ap-
proach will require extensive validation before deployment
in safety-critical applications, such as autonomous driving.

Conclusion We presented a method for uncertainty esti-
mation by distillation of ensemble models. We showed that
our structured Gaussian model can be predicted by a single
pass of a convolutional neural network, we have proposed
an efficient method for drawing samples.

Our method was validated on the task of depth predic-
tion from a single image. Our distilled model is able to
perform similarly to the original ensemble on uncertainty
metrics, while requiring fewer parameters and allowing ar-
bitrary numbers of samples to be drawn. We have illus-
trated that the samples capture long-range correlations in
the image domain, which is in stark contrast to prior works
that use diagonal covariance matrices. We demonstrated the
benefit of our predicted distribution in terms of enabling ar-
bitrary test-time conditioning and allowing for direct intro-
spection of the inferred distribution. We hope that our paper
sparks interest in predictive uncertainty models that are able
to model correlation in the output space, with many prac-
tical applications in computer vision and integration with
subsequent down-stream tasks.

373

References
[1] Moloud Abdar, Farhad Pourpanah, Sadiq Hussain, Dana

Rezazadegan, Li Liu, Mohammad Ghavamzadeh, Paul
Fieguth, Abbas Khosravi, U Rajendra Acharya, Vladimir
Makarenkov, et al. A review of uncertainty quantification
in deep learning: Techniques, applications and challenges.
arXiv preprint arXiv:2011.06225, 2020. 2

[2] Samuel Rota Bulò, Lorenzo Porzi, and Peter Kontschieder.
Dropout distillation. In International Conference on Ma-
chine Learning, pages 99–107. PMLR, 2016. 2, 3

[3] Siddhartha Chandra and Iasonas Kokkinos. Fast, exact and
multi-scale inference for semantic image segmentation with
deep gaussian crfs. In European conference on computer
vision, pages 402–418. Springer, 2016. 4

[4] Garoe Dorta, Sara Vicente, Lourdes Agapito, Neill DF
Campbell, and Ivor Simpson. Structured uncertainty pre-
diction networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 5477–
5485, 2018. 2, 3, 4

[5] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian
approximation: Representing model uncertainty in deep
learning. In international conference on machine learning,
pages 1050–1059. PMLR, 2016. 1, 2, 3

[6] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel
Urtasun. Vision meets robotics: The kitti dataset. The Inter-
national Journal of Robotics Research, 32(11):1231–1237,
2013. 6

[7] Clément Godard, Oisin Mac Aodha, and Gabriel J Bros-
tow. Unsupervised monocular depth estimation with left-
right consistency. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 270–279,
2017. 3

[8] Clément Godard, Oisin Mac Aodha, Michael Firman, and
Gabriel J Brostow. Digging into self-supervised monocular
depth estimation. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 3828–3838,
2019. 3, 6, 7

[9] Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E
Hopcroft, and Kilian Q Weinberger. Snapshot ensembles:
Train 1, get m for free. In ICLR, 2017. 3, 4

[10] Jeremy Jancsary, Sebastian Nowozin, Toby Sharp, and
Carsten Rother. Regression tree fields: An efficient, non-
parametric approach to image labeling problems. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, 2012. 4

[11] Alex Kendall and Yarin Gal. What uncertainties do we need
in bayesian deep learning for computer vision? In Advances
in neural information processing systems, pages 5574–5584,
2017. 2, 3

[12] Diederik P Kingma and Max Welling. Auto-encoding varia-
tional bayes. In ICLR, 2014. 2

[13] Maria Klodt and Andrea Vedaldi. Supervising the new with
the old: learning sfm from sfm. In Proceedings of the Eu-
ropean Conference on Computer Vision (ECCV), pages 698–
713, 2018. 2, 3

[14] Balaji Lakshminarayanan, Alexander Pritzel, and Charles
Blundell. Simple and scalable predictive uncertainty esti-
mation using deep ensembles. NeurIPS, 2017. 1, 2, 3, 4

[15] Zhizhong Li and Derek Hoiem. Improving confidence esti-
mates for unfamiliar examples. In CVPR, 2020. 1, 2, 3

[16] Rosanne Liu, Joel Lehman, Piero Molino, Felipe Petroski
Such, Eric Frank, Alex Sergeev, and Jason Yosinski. An
intriguing failing of convolutional neural networks and the
coordconv solution. arXiv preprint arXiv:1807.03247, 2018.
6

[17] David JC MacKay. Probable networks and plausible
predictions-a review of practical bayesian methods for su-
pervised neural networks. Network: computation in neural
systems, 1995. 1, 2

[18] Andrey Malinin, Bruno Mlodozeniec, and Mark Gales. En-
semble distribution distillation. ICLR, 2020. 2, 3

[19] Matteo Poggi, Filippo Aleotti, Fabio Tosi, and Stefano Mat-
toccia. On the uncertainty of self-supervised monocular
depth estimation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
3227–3237, 2020. 1, 3, 6, 7

[20] Simon JD Prince. Computer vision: models, learning, and
inference. Cambridge University Press, 2012. 2

[21] Yichen Shen, Zhilu Zhang, Mert R Sabuncu, and Lin Sun.
Real-time uncertainty estimation in computer vision via
uncertainty-aware distribution distillation. In Proceedings of
the IEEE/CVF Winter Conference on Applications of Com-
puter Vision, pages 707–716, 2021. 2, 3

[22] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. Dropout: a simple way
to prevent neural networks from overfitting. The journal of
machine learning research, 2014. 3

[23] Raviteja Vemulapalli, Oncel Tuzel, Ming-Yu Liu, and Rama
Chellapa. Gaussian conditional random field network for
semantic segmentation. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
3224–3233, 2016. 4

[24] Peter M Williams. Using neural networks to model condi-
tional multivariate densities. Neural computation, 8(4):843–
854, 1996. 3

[25] Zhihao Xia, Patrick Sullivan, and Ayan Chakrabarti. Gener-
ating and exploiting probabilistic monocular depth estimates.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 65–74, 2020. 3

374

