
AIM: an Auto-Augmenter for Images and Meshes

Vinit Veerendraveer Singh and Chandra Kambhamettu
Video/Image Modeling and Synthesis (VIMS) Lab, Department of Computer and Information Sciences,

University of Delaware, Newark, Delaware, United States of America, 19716
{vinitvs,chandrak}@udel.edu

Abstract

Data augmentations are commonly used to increase the
robustness of deep neural networks. In most contempo-
rary research, the networks do not decide the augmenta-
tions; they are task-agnostic, and grid search determines
their magnitudes. Furthermore, augmentations applicable
to lower-dimensional data do not easily extend to higher-
dimensional data and vice versa. This paper presents an
auto-augmenter for images and meshes (AIM) that easily
incorporates into neural networks at training and inference
times. It jointly optimizes with the network to produce con-
strained, non-rigid deformations in the data. AIM predicts
sample-aware deformations suited for a task, and our ex-
periments confirm its effectiveness with various networks.

1. Introduction
Deep neural networks are prevailing in various computer

vision tasks. They are commonplace for the analysis of dig-
ital images [15, 16, 38] and 3D graphics [8, 14]. These net-
works try to emulate human cognition in a computerized
environment. However, despite the success of deep learning
in recent years, it is still not as robust as human vision.

Learning methods for vision-based tasks need to dis-
associate between what an object looks like and where it
lies in space. To this end, it is common to pre-process in-
put data to neural networks with augmentation approaches.
Some augmentations make neural networks more tolerant
of geometric changes in data. For instance, augmentation
techniques such as affine transformations, random horizon-
tal flipping, and random cropping are standard for image
processing. For mesh analysis, jittering of mesh elements
is performed along with affine transformations. These aug-
mentations also form the basis of other advanced data
augmentation strategies [5, 11, 21, 32, 42, 55] and frame-
works [2, 54]. The augmentations mentioned above do not
directly participate in the learning process and are not de-
pendent on a task’s objective. Thus, they are non-learnable
and task-agnostic.

 Image
Classification

Network

AIM increases spatial
coverage of the pixels in

the image where the dog is
present

AIM

German
Shorthaired!

AIM increases spatial
coverage of the head, back,
and tail in the 3D mesh of

the dinosaur

AIM

 Mesh
Classification

Network

Dinosaur!

Figure 1. AIM performs non-rigid deformations on the input data
to a task network during training and testing. AIM learns to detect
critical regions in the samples to solve a task and increases their
spatial coverage. As shown, it applies to both images and meshes.

Conversely, task-aware augmentation approaches [5, 12,
20, 26, 37] jointly optimize with neural networks. A com-
mon theme to this set of approaches is to sequentially learn
which transformations suit a task, where to employ them,
and to what extent they should be applied. However, at
present, many learnable augmentation methods are con-
strained to the dimensions of their underlying representa-
tions. Methods applicable to 2D images are either unsuit-
able or have no clear way to extend to 3D data and vice
versa. In this work, we build upon these insights and short-
comings to propose an Auto-Augmenter for Images and
Meshes (AIM).

722

Eye movements in human beings are primarily catego-
rized into four categories: fixation [39], saccades [10], sta-
bilization [4], and smooth pursuit [24]. By fixating eyes
at specific locations, the human visual system can enhance
their resolution to process fine spatial details. AIM closely
imitates human fixation. It is implemented as a data pre-
processor to jointly optimize with existing neural networks
for image and mesh analysis. First, AIM infers regions in
the images and meshes that contain critical information to
solve a task. Then, it increases the spatial resolution of these
regions and simultaneously reduces spatial coverage of non-
crucial areas. A visual illustration of this process is in Fig. 1.
The main contributions of this paper are:

• AIM’s novel and differentiable spatial warper.

• An attention module for graph data.

• A novel directional consistency loss to constrain defor-
mations produced by AIM.

• Experiments on multiple data sets for image classifica-
tion, mesh classification, and mesh segmentation.

2. Related Works
We split existing data augmentation approaches for neu-

ral networks into two broad categories: non-learnable aug-
mentations and learnable augmentations. Methods in both
categories apply to digital images or 3D geometric data such
as meshes and point clouds. The non-learnable augmenta-
tions have no trainable parameters, and their ideal magni-
tudes depend on an extensive grid search. On the other hand,
the learnable approaches contain trainable parameters and
employ augmentations suited for a task.

2.1. Non-Learnable Augmentations

Propagating randomly cropped image regions train a
neural network in disentangling textural features from their
positions. Image rotation and flipping increase neural net-
works’ invariance to varying poses of objects. Random
Erasing [56] and CutOut [6] replace continuous regions
in images with random values to achieve tolerance to oc-
cluded views of objects. Color jitter randomly changes
image brightness, contrast, or saturation during training.
Dropout [18] regularizes a neural network by randomly
dropping neuron activations while training. It can be con-
sidered as feature map augmentation. CutMix [55] replaces
image regions with random patches from other images to
retain the regularization effect of regional dropout strate-
gies. Cut-Thumbnail [52] is similar to CutMix. But unlike
CutMix, it replaces image regions with thumbnails. Grid-
Mask [1] balances deletion and conservation of regions by
dropping discontinuous areas in images. Like GridMask,
MeshCut [21] overlays a square mesh grid upon images

to drop non-continuous parts. AugMix [17] increases ro-
bustness to corruptions in data distributions. All these non-
learnable augmentation techniques improve the representa-
tional capacity of neural networks. However, most regular-
ize the networks by dropping regions instead of focusing on
the correct ones. Also, it is unclear how these techniques
apply to 3D data. In particular, photometric augmentation
techniques find no use in augmenting purely geometric data.

Meshes and point clouds are commonly augmented
by scaling, translating, and jittering the position of ver-
tices [8, 35]. However, there are only a few advanced aug-
mentation techniques for 3D data. PointMixup [3] takes
inspiration from the image domain and interpolates point
clouds and their corresponding labels. Mix3D [32] cre-
ates new scenes by combining two augmented scenes. Such
a mixup allows generalization beyond contextual priors.
PatchAugment [42] augments feature maps of neural net-
works [35, 50] operating on point clouds. MeshCNN [14]
augments meshes by performing anisotropic scaling and
random edge flips.

2.2. Learnable Augmentations

Spatial Transformer Networks (STN) [20] learn and per-
form various transformations (affine, projective, and thin
plate spline) on images. However, extreme image transfor-
mations can occur for thin plate spline based STN. STN
can also crop regions in images when the determinant of
the left 2×2 sub-matrix in the affine transformation matrix
has a magnitude less than one. However, no such constraint
was explicitly imposed. Some methods augment input im-
ages to a network by increasing spatial coverage of cer-
tain image regions. Saliency Sampler (SS) [37] increases
spatial coverage of task-aware salient regions in images.
These salient regions are inferred with a pre-trained Con-
volutional Neural Network (CNN) [16]. Millions of train-
able parameters in this CNN update during network back-
propagation, making their approach computationally expen-
sive. Also, it is unclear how SS extends to 3D data. The
other works [7, 22, 44, 53] derived from SS also suffer from
similar limitations. Marin et al. [29] formulated a content-
adaptive downsampling method that favors locations near
semantic boundaries of classes prior to image downsam-
pling. However, this method is limited by selecting down-
sampling locations to a manually designed sampling objec-
tive. AutoAugment [5] does not provide any novel augmen-
tation approaches. Instead, it uses a search algorithm to de-
termine the best training policy. KeepAugment [12] learns
to preserve important regions from regional dropout. For 3D
point clouds, PointAugment [26] augments point clouds us-
ing an adversarial training strategy. Currently, no learnable
augmenter exists for mesh data to the best of our knowl-
edge. This work introduces an augmenter with very few
trainable parameters, and it applies to images and meshes.

723

3. Overview and Notations

Spatial
Warper

Input
data

Attention
Module

Augmented
data

Directional
Attention

Task
Network

Directional
Consistency Loss

Directional
Attention

Components of AIM

Figure 2. An overview of AIM. AIM’s components jointly opti-
mize with a task network to augment the input data.

The setup of deep learning methodologies for supervised
learning tasks is standard. We interchangeably refer to the
neural network for a task as a task network. A task network
(T) first learns on samples in the set of training data. We
denote the training set as Dtrain = {(x(i)train, y(i)train)}mi=1,
where x(i)train is an ith sample from the m training samples.
y(i)train is the task label of x(i)train. After training, T attempts
to predict task labels on a testing set Dtest. As illustrated in
Fig. 2, incorporating AIM with T is straightforward. At the
commencement of the training phase, AIM augments every
sample in a single batch of Dtrain and propagates it to T .
Based on the loss from the task network and the directional
consistency loss, the trainable parameters in AIM and T are
optimized together. Then, AIM refines the augmentations
for the next mini-batch, and this process continues up until
T reaches convergence. During the test phase, AIM aug-
ments all samples in Dtest to produce an augmented testing
set D′

test. Finally, D′
test is sent forth to T for evaluation.

Note that AIM learns augmentations on a per-sample basis.
In this paper, we apply AIM to supervised learning tasks.

A key aspect of AIM is to jointly optimize with a task net-
work for augmenting input images and meshes effectively.
It consists of three major stand-alone components: a spatial
warper, an attention module, and a directional consistency
loss. The spatial warper performs non-rigid deformations
on the input data. It adaptively increases or decreases the
coverage of different regions within the input. The attention
module decides the locations and magnitude of the defor-
mations. Finally, the directional consistency loss constrains
the locations from the attention module. We present details
on each component in the next section.

4. Method

We first elucidate upon AIM’s spatial warper in sec-
tion 4.1 and demonstrates how to use it for image and mesh
data. Then, section 4.2 presents AIM’s attention module im-
plemented as a graph convolutional network. Next, we for-
mulate the directional consistency loss in section 4.3 and

introduce our end-to-end strategy to incorporate AIM with
a task network. Lastly, we provide implementations details
in section 4.4.

4.1. Spatial Warper

Recent research [19, 20, 37, 51] shows that information
in certain regions in the data contributes more to a neu-
ral network’s decision-making ability than the information
in the remaining areas. Thus, intuitively, it is reasonable to
assume that fixating on the informative regions should im-
prove a network’s ability to make task-based decisions. The
spatial warper (SW) in AIM fixates on different regions in
the data by increasing their spatial coverage. Note that the
spatial warper does not detect the highly informative areas
beneficial to the task by itself.

The SW operates on the graph data structure. The topol-
ogy of a graph (G) is given by its set of vertices V = {vi}nv

i=1

and its set of edges E = {ei}ne
i=1. Here, vi and ei represent

an ith instance of the vertices and edges, respectively. nv

and ne represent the cardinality of V and E , respectively.
Each ei connects to two vertices (v0i and v1i). The SW pro-
duces non-rigid deformations in G by adjusting the position
of its vertices. This adjustment is achieved by changing the
edge length of each ei. A simple brute-force approach to
locally change edge lengths can be to multiply a unique co-
efficient by the length of each edge. However, vertices in a
graph usually connect to multiple other vertices, and an un-
constrained multiplication of coefficients can cause extreme
deformations. Moreover, in the case of visual data such as
images or meshes, deformations would appear unnatural
and important regions would deform beyond recognition.
Therefore, it is necessary to conserve the global shape of G
to a certain extent. Thus, the SW minimizes deformation in
the overall shape of G while deforming each edge locally.
Such a constrained deformation of G can be achieved by
minimizing the energy function E in equation 1:

E =
∑
ei∈E

∣∣∣∣ (x0
i − x1

i)− γi(v
0
i − v1i)

v0i − v1i + ϵ−1

∣∣∣∣2 , (1)

where:

v0i , v
1
i = initial location of endpoints for an edge ei

along an independent direction in space
x0
i , x

1
i = post-minimization locations for endpoints of

ei along an independent direction in space
γi = deformation coefficient for edge ei
ϵ−1 = a large number

The deformation coefficient (γi) for an edge ei is com-
puted as per equation 2. It is a linear combination of the
deformation factor (∆) and the sensitivity (si) of ei to defor-
mation. ∆ is a scalar with constant magnitude. Both ∆ and
si ∈ S are between zero and one. Note that a higher si does

724

not necessarily imply that an edge will expand more than
another edge with a lower si. The extent of the deforma-
tions is governed by α and β. Thus, the SW can adaptively
expand or shrink the spatial coverage of the edges indepen-
dent of the magnitude of their sensitivity. In the remainder
of this paper, we denote the set of deformation sensitivity of
all edges in G as S.

γi = αsi + β(1− si)

{
α = 1, if β = ∆

β = 1, if α = ∆
(2)

In equation 1, x0
i and x1

i are the updated positions of
edge endpoints for an edge ei after minimization. Thus,
prior to minimization, their locations are unknown. Since
V constitutes the endpoints of all edges, the energy function
E can also be expressed in terms of vertices. The reformu-
lation of E is represented as E ′ in equation 3.

E ′ =
∑
vi∈V

∑
vj∈

N (vi)

x2
i − 2xixj − 2γixi(vi − vj) + c

(vi − vj + ϵ−1)2
(3)

where:

vi = location of an ith vertex along an independent
direction in space

N (vi) = immediate vertex neighborhood of vi
vj = a vertex neighbor of vi
xi = location of vi after minimizing E ′

xj = location of vj after minimizing E ′

γi = deformation coefficient for the edge ei
between vi and vj

c = a constant
ϵ−1 = a large number

The goal of the SW is to minimize the overall movement
of the vertices while resizing the edges. We can achieve this
by taking partial derivatives of E ′ with respect to each xi

and equating it to zero, as shown in equation 4.

∂E ′

∂xi
=

∑
vj∈

N (vi)

2xi − 2xj − 2γi(vi − vj)

(vi − vj + ϵ−1)2
= 0 (4)

We obtain a linear equation in terms of an unknown ver-
tex xi and its unknown vertex neighbors from equation 4.
Once linear equations for all vertices are obtained, the min-
imization of E ′ can be expressed as a sparse linear system
of the form AX = B . The matrix A ∈ RV×V and a vector
B ∈ RV×1 are known and computed as per equation 5. AIJ

represents a row in matrix A for a vertex xi and its vertex
neighbors. The vector X = {xi}nv

i=1 is unknown and can be
approximated through a sparse linear solver.

Original
 Image

Edge sensitivities
highlighted on the

image graph

Warped
Image

Original
Mesh

Edge sensitivities
highlighted on the

original mesh

Deformed
Mesh

Figure 3. The spatial warper applies to images and meshes. Edges
with higher sensitivity are highlighted in red. From the top row, we
can observe that the spatial warper increases the spatial coverage
of pixels in the original image by shrinking the edges with higher
edge sensitivity. For meshes (bottom row), the spatial warper ex-
pands edges with higher sensitivity. [Best viewed in color]

AIJ =

∑

vj∈N (vi)

2
(vi−vj+ϵ−1)2 , if I = J

−2
(vi−vj+ϵ−1)2 , if I ̸= J

0, otherwise

BI =
∑
vj∈

N (vi)

2γi(vi − vj)

(vi − vj + ϵ−1)2

(5)

4.1.1 Spatial Warping of Images and Meshes

To apply the spatial warper to images, we consider that the
underlying representation of an image is a graph. The pixels
of an image are considered nodes of the graph. The edges
between these nodes are defined in an ad-hoc fashion. In
AIM, edges only exist between the horizontal and vertical
neighbors of a pixel. The SW is thus applicable to images.
For images, β in equation 2 is one. Therefore, edges with
higher sensitivity will shrink more than edges with a lower
sensitivity. Interpolation on an original image with such a
deformation grid will increase the spatial coverage of pix-
els connected to the edges with higher sensitivity. This phe-
nomenon can be observed in the top row of Fig. 3.

725

Graph
Convolution

Graph
Convolution

Graph
Convolution

Graph
Convolution

Graph
Convolution

Input
Graph

: element-wise addition
C : # hidden layer channels
C' : # input channels

: min-max activation

Edge
sensitivities

along an
independent
direction in

space Spatial Warper,
Directional

Consistency Loss

ℝ|𝒱| X C'

ℝ|𝒱| X 1

ℝ|𝒱| X C ℝ|𝒱| X C

ℝ|𝒱| X 1

ℝ|𝒱| X 1

|𝒱| : # of vertices

Figure 4. Design of AIM’s Attention Module. The attention module infers edge sensitivities from graph convolutional layers. Thus, the
number of training parameters are low, and sensitivities can be inferred on Euclidean as well as non-Euclidean data.

In the case of mesh data, α in equation 2 is one. Setting
α to one allows the nodes connected to edges with higher
deformation sensitivity to increase their spatial coverage.
Note that post-deformation, the image deformation grid and
meshes are normalized to fit a sphere of radius one and are
centered at the origin.

4.2. Attention Module

As mentioned earlier, the spatial warper cannot deter-
mine informative regions in the input data by itself. There-
fore, any attention mechanism that aids the spatial warper
and a task network to identify the informative regions in the
input data must follow three key criteria:

• Since the spatial warper operates on graphs, the atten-
tion mechanism must also operate on graphs.

• The attention mechanism learns edge sensitivities in
synergy with a task.

• The attention mechanism can learn edge sensitivities
in independent directions in space.

Convolutional Neural Networks (CNNs) are currently
the de-facto choice for analyzing images and other Eu-
clidean data. Numerous attention mechanisms [19, 51] also
exist for CNNs. However, CNNs do not generalize well to
non-Euclidean data such as meshes and graphs. Some recent
methods [8, 14, 31, 45, 46] have designed specialized con-
volutional operators for meshes. However, they made strict
assumptions about the mesh geometry (manifoldness, etc.).
AIM’s attention module is realized as a graph convolutional
network to conform to the criteria mentioned above. The ar-
chitecture of this attention module is shown in Fig. 4. The
attention module infers edge sensitivities (S) along each
independent direction in the input data. For example, in
the case of images, edge sensitivities are learned separately
along the x-axis (Sx) and the y-axis (Sy). S is constrained
between zero and one through min-max normalization.

4.3. Directional Consistency Loss

It is conducive for a task network reasoning about visual
data to disambiguate between the appearance of regions in
the data and where the regions lie in space. As the spatial
warper applies along independent directions in space, de-
formations will vary along each direction. However, ideally,
deformations should not vary in each direction. For exam-
ple, the highly informative parts in an image should be de-
formed more than the non-informative areas in both the x-
axis and the y-axis. AIM achieves this constraint through
directional consistency loss (Ldc). It enforces the attention
module’s embeddings (edge sensitivities) to be consistent
along each independent direction in space. It maximizes the
cosine similarity between the embeddings in the different
directions. For a mini-batch of N images, with spatial at-
tention Sx and Sy along the x-axes and y-axes, respectively,
the directional consistency loss is computed according to
equation 6. It is clear from equation 6 when Sx and Sy are
completely dissimilar, Ldc will be two. When Sx and Sy are
the same, Ldc will be zero.

Ldc = Lxy
dc = 1− 1

N

∑ Sx · Sy

∥Sx∥ · ∥Sy∥
(6)

For a mini-batch of meshes, loss in the directional con-
sistency is computed as per equation 7 below:

Ldc = Lxy
dc + Lyz

dc + Lzx
dc , (7)

where Lxy
dc is the directional consistency loss between Sx

and Sy . Lyz
dc is computed between Sy and Sz , and similarly

Lzx
dc is the loss in the directional consistency between Sz

and Sx. The directional consistency loss is task-agnostic.
With the spatial warper, attention module, and directional
consistency loss clearly defined, AIM is thus realized. We
trained and evaluated various task networks with AIM in an
end-to-end manner for different supervised learning tasks in
section 5.

726

4.4. Implementation Details

We implemented AIM using PyTorch [34], PyTorch Ge-
ometric [9], Torch Sparse Solve [25], and PyTorch3D [36].
The graph convolutions in the attention module is the
GraphSAGE [13] operator. The number of hidden layer
channels (C) is 64 for images and 32 for meshes. We per-
form bilinear interpolation of images by borrowing the grid
sampler introduced in STN [20]. Edge sensitivity is inferred
by averaging features of the vertices at their endpoints.
When applying AIM to images, we set the edge sensitiv-
ity at the border of the images to the minimum value in (S).
Thus, border pixels are reasonably conserved after warp-
ing. Our code is available at https://github.com/
VimsLab/AIM.

5. Experiments
Fine-grain visual categorization of images is a funda-

mental task in computer vision. Likewise, classification and
segmentation of meshes are fundamental in 3D shape anal-
ysis tasks. We applied AIM to classify images and meshes
in multiple data sets. We also evaluated AIM for the seg-
mentation of meshes.

5.1. Experimental Setup

We applied AIM for the fine-grain classification of im-
ages in the CUB-200 [49] and the Oxford-IIT Pets [33] data
sets. The CUB-200 data set contains images of 200 bird
species. The birds appear at different scales and poses and
are not tightly cropped. The training set contains approxi-
mately 6k images, and the testing set contains about 5.8k
images. The Oxford-IIT Pets only contains images of cats
and dogs. There are 37 pet categories in this data set, and
the images exhibit large variations in scale, pose, and light-
ing. It contains roughly 7.3k images, with about 200 images
per class. The sizes of the training and testing sets are near-
equal. We trained ResNet [16] and EfficientNet [48] with
AIM to classify the images in these data sets. Both net-
works were trained with the Stochastic Gradient Descent
optimizer with a momentum of 0.9 and weight decay set to
1e-4. For the ResNet models, the learning rate was 0.01, and
the batch size was 128. For EfficientNet, the learning rate
was 0.001, and the batch size was 48. The spatial warper
sub-sampled 224×224 images from 700×700 images for
CUB-200. For Oxford-IIT Pets, 224×224 images were sub-
sampled from 448×448 images. ∆ was set to 0.72.

For mesh classification, AIM was employed with Mesh-
Net [8] and MeshNet++ [46]. The attention module’s input
features for mesh data were the vertex normals, curvature,
or one-ring neighborhood area around the vertices. Both
networks were evaluated on the McGill 3D Shape Bench-
mark (MSB) [43] and the SHREC-11 [28] data sets. MSB
consists of 458 meshes belonging to 19 classes. The number

of vertices varies across this data set. The SHREC-11 data
set consists of 600 mesh models from 30 classes. We follow
a similar training strategy mentioned in MeshNet++, except
that we set the learning rate to 0.001 instead of 0.0002 for
MSB. ∆ was set between 0.7 to 0.9. Finally, we trained Dif-
fusionNet [41] with AIM to segment body parts in the hu-
man body data set [30]. ∆ was set to 0.9. We obtained ∆
for all models through a grid search.

5.2. Quantitative Experimental Results

5.2.1 Image Analysis

We first evaluated AIM with the following three variants of
ResNet: ResNet-18, ResNet-34, and ResNet-50. As shown
in Table 1, training these networks with AIM gave higher
accuracies than the baseline models. For the CUB-200 data
set, the accuracies were significantly higher. We also eval-
uated AIM against other augmentation techniques such as
Random Erasing [56] and Saliency Sampler [37]. We com-
pared AIM against Random Erasing to check if eliminating
regions in the images is conducive to fine-grain visual cat-
egorization. We also compared AIM against Saliency Sam-
pler (SS) since it also enlarges the spatial coverage of re-
gions beneficial to tasks like AIM. Both Random Erasing
and Saliency Sampler are trained with the same experimen-
tal setup without bells and whistles.

We observed that randomly erasing the regions within
the input data was not conducive to the fine-grain classi-
fication of images. A possible explanation for low accu-
racies using Random Erasing could be that other objects
do not heavily occlude the animals’ images in both data
sets. Thus, Random Erasing might have removed regions
essential for a classifier to make correct decisions. Overall,
Saliency Sampler gives slightly lower yet comparable ac-
curacies to AIM. This difference in the accuracies can be
attributed to Saliency Sampler’s inability to constrain de-
formations within the border of an image. For example, if
highly informative regions lie at image borders, SS will par-
tially eliminate those regions. Another reason for lower ac-
curacies in SS could be that its inferred saliency is only con-
strained by the loss function of the task network. Whereas in
AIM, the edge sensitivities are also constrained through the
directional consistency loss. We also compared the number
of learnable parameters (#Params) in millions (M) between
AIM and SS in Table 1. It can be observed that AIM has
nearly the same number of parameters as the baseline mod-
els and has a significantly lower number of parameters than
SS. We observed similar accuracies for the above-discussed
methods for EfficientNet as well.

5.2.2 Mesh Analysis

We also evaluated MeshNet++ and MeshNet with AIM for
classifying meshes in MSB and the split-16 of SHREC-11.

727

Method CUB- Oxford-IIT #Params
200 Pets in M

Acc(%) Acc(%)

ResNet-18 78.3 91.6 11.3
ResNet-18 79.4 90.9 11.3

+ Random Erasing (↑ 1.1) (↓ 0.7)
ResNet-18 78.7 91.9 22.9

+ SS (↑ 0.4) (↑ 0.3)
ResNet-18 79.4 91.9 11.3

+ AIM (Ours) (↑ 1.1) (↑ 0.3)

ResNet-34 79.8 92.5 21.4
ResNet-34 80.6 91.5 21.4

+ Random Erasing (↑ 0.8) (↓ 1.0)
ResNet-34 77.7 91.3 33.0

+ SS (↓ 1.1) (↓ 1.2)
ResNet-34 80.4 93.0 21.4

+ AIM (Ours) (↑ 0.6) (↑ 0.5)

ResNet-50 81.7 93.4 23.9
ResNet-50 81.7 92.1 23.9

+ Random Erasing (↑ 0.0) (↓ 1.3)
ResNet-50 82.4 93.6 35.3

+ SS (↑ 0.7) (↑ 0.2)
ResNet-50 82.5 93.5 23.9

+ AIM (Ours) (↑ 0.8) (↑ 0.1)

EfficientNet-b0 82.0 92.7 4.3
EfficientNet-b0 82.2 92.4 4.3

+ Random Erasing (↑ 0.2) (↓ 0.3)
EfficientNet-b0 82.5 93.0 15.8

+ SS (↑ 0.5) (↑ 0.3)
EfficientNet-b0 82.8 93.4 4.3
+ AIM (Ours) (↑ 0.8) (↑ 0.7)

EfficientNet-b1 82.8 93.3 6.8
EfficientNet-b1 83 93.3 6.8

+ Random Erasing (↑ 0.2) (↑ 0.0)
EfficientNet-b1 82 92.8 18.3

+ SS (↓ 0.8) (↓ 0.5)
EfficientNet-b1 83.1 93.3 6.8
+ AIM (Ours) (↑ 0.3) (↑ 0.0)

EfficientNet-b2 83.5 93.7 8.0
EfficientNet-b2 82.8 93.6 8.0

+ Random Erasing (↓ 0.7) (↓ 0.1)
EfficientNet-b2 80.9 93.5 19.5

+ SS (↓ 2.6) (↓ 0.2)
EfficientNet-b2 84.0 93.7 8.0
+ AIM (Ours) (↑ 0.5) (↑ 0.0)

Table 1. Classification accuracies (Acc) of methods for the fine-
grain visual categorization of images in multiple data sets. The
size of images to the task networks was fixed to 224 × 224.

The split-16 contains 16 models per class for training and
4 for testing. From Table 2, we observed that AIM signif-
icantly increased the classification accuracies of MeshNet
on both data sets. However, the overall classification ac-
curacies were still low because MeshNet is not robust in
classifying unoriented meshes. For a stronger learner, such
as MeshNet++, improvements were still observed. Mesh-
Net++ achieved a 100% classification accuracy on split-16.
Thus, it is challenging to verify how much AIM contributed
to MeshNet++’s decision-making ability.

Method MSB SHREC-11 (split-16)
Acc(%) Acc(%)

MeshNet 56.5 55.6
MeshNet with 67.3 63.1

AIM (↑ 10.8) (↑ 7.5)

MeshNet++ 94.5 100
MeshNet++ with 95.6 100

AIM (↑ 1.1) (↑ 0.0)

Table 2. Comparison of classification accuracies (Acc) of mesh
classification methods on multiple data sets. AIM significantly im-
proved classification accuracies for the MeshNet model.

Finally, DiffusionNet was evaluated with AIM to seg-
ment body parts in meshes of the human body. We observed
that training and testing DiffusionNet with AIM increased
the segmentation accuracies. We also trained and tested Dif-
fusionNet by randomly jittering the position of vertices in
the meshes. As seen in Table 3, the accuracies significantly
dropped when vertices were randomly moved at test time
without any learning. These experimental results support
that learning by AIM is not random, but it is in synergy
with the task network.

Method Acc(%)

DiffusionNet 90.9

DiffusionNet + jitter 87.9
(↓ 3.0)

DiffusionNet + AIM 91.3
(↑ 0.4)

Table 3. Comparison of accuracies (Acc) for segmenting body
parts in human body meshes.

6. Qualitative Experimental Validation
The directional consistency loss enforces edge sensitiv-

ities from AIM’s attention module to be similar in all in-
dependent directions in space. Thus, in the case of images,
the edge sensitivities highlighted on the deformation grid

728

along each separate direction must appear similar. We qual-
itatively verify this in Fig. 5 below.

Images Edge sensitivities
along the x-axis

Edge sensitivities
along the y-axis

Figure 5. The directional consistency loss enforces edge sensitivi-
ties (from the attention module) in independent directions in space
to be similar. Higher edge sensitivities are highlighted in red. [Best
viewed in color]

7. Ablation Studies

In our ablation study, we first verified the significance of
AIM’s directional consistency loss (Ldc). We trained all the
models in Table 1 with and without the directional consis-
tency loss and reported results in Table 4. Results suggest
that using AIM with Ldc is beneficial to a downstream task.

Method CUB-200 Oxford-IIT Pets
- Ldc + Ldc - Ldc + Ldc

ResNet-18 78.7 79.4 91.3 91.9

ResNet-34 80.4 79.8 92.6 93

ResNet-50 82.3 82.5 93.5 93.5

EfficientNet-b0 81.8 82.8 93.2 93.4

EfficientNet-b1 83.1 83.1 93.2 93.0

EfficientNet-b2 83.3 84 93.2 93.7

Table 4. Comparison of image classification accuracies for meth-
ods utilizing AIM with and without directional consistency loss
(Ldc). When a classifier was trained with Ldc, we denote it by
+Ldc, and when trained without Ldc, it is denoted as -Ldc.

We also verify whether or not AIM is an augmentation
strategy for only the training phase. By setting ∆ to one, no
deformations will be performed by AIM. Thus, we set ∆ to
one and report the results in Table 5. Comparing the results
of Table 5 against the results of Table 1 (where ∆ is 0.7),
we observed that the classification accuracies decreased.

Method CUB-200 Oxford-IIT Pets
Acc(%) Acc(%)

ResNet-18 78.8 91.7
ResNet-34 80.1 92.8
ResNet-50 82.0 93.3

EfficientNet-b0 82.3 92.9
EfficientNet-b1 83.1 93.1
EfficientNet-b2 83.2 93.4

Table 5. Comparison of classification accuracies (Acc) when AIM
is only used for training image classifiers and not for testing.

8. Discussion and Limitations

AIM can reasonably conserve the border pixels in im-
ages after warping. However, for a low ∆ value, the spatial
coverage of task-critical pixels can be reduced. If ∆ is low
for very tightly cropped images, task-critical image pixels
could even be eliminated. AIM can also find itself limited
in tasks requiring conservation of the input data geometry.
Stacking more graph convolutions in the attention module
will not necessarily increase the task performance [23], but
it will increase computational overhead. In addition, AIM’s
computational cost will further increase if applied to more
than three or four-dimensional data. Semi-supervised learn-
ing approaches can be a viable option in such scenarios [27].
In our experiments, DiffusionNet trained on a large number
of vertices, and this significantly increased the size of the
matrix A in equation 5. Moreover, AIM cannot solve for a
very large number of vertices (X) on most modern GPUs.
Thus, incorporating AIM with DiffusionNet increases train-
ing and testing times significantly. AIM recomputes the lo-
cations of the vertices during training and testing. However,
some methods [14, 31, 40, 47] pre-processed vertex-based
features before training, and they cannot use AIM.

9. Conclusion

We introduced an auto-augmenter for deep neural net-
works called AIM. AIM can augment two-dimensional im-
age data as well as three-dimensional mesh data. AIM aug-
ments the data by producing constrained, non-rigid defor-
mations at locations learned by an attention module. A key
characteristic of AIM is to jointly optimize with neural net-
works for varied tasks during training and inference times.
Thus, it can estimate the deformations suited to achieve bet-
ter performance on tasks. We evaluated AIM for classifying
images and meshes in multiple data sets. Furthermore, as
AIM can conserve the connectivity in the input data, we
also evaluated it for segmenting meshes. Our experimental
results demonstrated that AIM effectively increased the ro-
bustness of neural networks on multiple tasks.

729

References
[1] Pengguang Chen, Shu Liu, Hengshuang Zhao, and Ji-

aya Jia. Gridmask data augmentation. arXiv preprint
arXiv:2001.04086, 2020. 2

[2] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. In International conference on ma-
chine learning, pages 1597–1607. PMLR, 2020. 1

[3] Yunlu Chen, Vincent Tao Hu, Efstratios Gavves, Thomas
Mensink, Pascal Mettes, Pengwan Yang, and Cees GM
Snoek. Pointmixup: Augmentation for point clouds. In
Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part III 16,
pages 330–345. Springer, 2020. 2

[4] JD Crawford and T Vilis. Axes of eye rotation and listing’s
law during rotations of the head. Journal of neurophysiology,
65(3):407–423, 1991. 2

[5] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasude-
van, and Quoc V Le. Autoaugment: Learning augmentation
strategies from data. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
113–123, 2019. 1, 2

[6] Terrance DeVries and Graham W Taylor. Improved regular-
ization of convolutional neural networks with cutout. arXiv
preprint arXiv:1708.04552, 2017. 2

[7] Yao Ding, Yanzhao Zhou, Yi Zhu, Qixiang Ye, and Jianbin
Jiao. Selective sparse sampling for fine-grained image recog-
nition. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 6599–6608, 2019. 2

[8] Yutong Feng, Yifan Feng, Haoxuan You, Xibin Zhao, and
Yue Gao. Meshnet: Mesh neural network for 3d shape rep-
resentation. In Proceedings of the AAAI Conference on Arti-
ficial Intelligence, volume 33, pages 8279–8286, 2019. 1, 2,
5, 6

[9] Matthias Fey and Jan Eric Lenssen. Fast graph repre-
sentation learning with pytorch geometric. arXiv preprint
arXiv:1903.02428, 2019. 6

[10] John M Findlay. Saccadic eye movement programming:
Sensory and attentional factors. Psychological research,
73(2):127–135, 2009. 2

[11] Golnaz Ghiasi, Yin Cui, Aravind Srinivas, Rui Qian, Tsung-
Yi Lin, Ekin D Cubuk, Quoc V Le, and Barret Zoph. Simple
copy-paste is a strong data augmentation method for instance
segmentation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 2918–
2928, 2021. 1

[12] Chengyue Gong, Dilin Wang, Meng Li, Vikas Chandra,
and Qiang Liu. Keepaugment: A simple information-
preserving data augmentation approach. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1055–1064, 2021. 1, 2

[13] William L Hamilton, Rex Ying, and Jure Leskovec. Induc-
tive representation learning on large graphs. In Proceedings
of the 31st International Conference on Neural Information
Processing Systems, pages 1025–1035, 2017. 6

[14] Rana Hanocka, Amir Hertz, Noa Fish, Raja Giryes, Shachar
Fleishman, and Daniel Cohen-Or. Meshcnn: a network with

an edge. ACM Transactions on Graphics (TOG), 38(4):1–12,
2019. 1, 2, 5, 8

[15] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In Proceedings of the IEEE international
conference on computer vision, pages 2961–2969, 2017. 1

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 1, 2, 6

[17] Dan Hendrycks, Norman Mu, Ekin D Cubuk, Barret Zoph,
Justin Gilmer, and Balaji Lakshminarayanan. Augmix: A
simple data processing method to improve robustness and
uncertainty. arXiv preprint arXiv:1912.02781, 2019. 2

[18] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya
Sutskever, and Ruslan R Salakhutdinov. Improving neural
networks by preventing co-adaptation of feature detectors.
arXiv preprint arXiv:1207.0580, 2012. 2

[19] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-
works. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 7132–7141, 2018. 5

[20] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al.
Spatial transformer networks. Advances in neural informa-
tion processing systems, 28:2017–2025, 2015. 1, 2, 3, 6

[21] Wei Jiang, Kai Zhang, Nan Wang, and Miao Yu. Mesh-
cut data augmentation for deep learning in computer vision.
PLoS One, 15(12):e0243613, 2020. 1, 2

[22] Chen Jin, Ryutaro Tanno, Thomy Mertzanidou, Eleftheria
Panagiotaki, and Daniel C Alexander. Learning to downsam-
ple for segmentation of ultra-high resolution images. arXiv
preprint arXiv:2109.11071, 2021. 2

[23] Thomas N Kipf and Max Welling. Semi-supervised classi-
fication with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016. 8

[24] Richard J Krauzlis and Steve G Lisberger. Temporal prop-
erties of visual motion signals for the initiation of smooth
pursuit eye movements in monkeys. Journal of Neurophysi-
ology, 72(1):150–162, 1994. 2

[25] Floris Laporte. Torch sparse solve. https://github.
com/flaport/torch_sparse_solve.git, 2020. 6

[26] Ruihui Li, Xianzhi Li, Pheng-Ann Heng, and Chi-Wing Fu.
Pointaugment: an auto-augmentation framework for point
cloud classification. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
6378–6387, 2020. 1, 2

[27] Xianzhi Li, Lequan Yu, Chi-Wing Fu, Daniel Cohen-Or, and
Pheng-Ann Heng. Unsupervised detection of distinctive re-
gions on 3d shapes. ACM Transactions on Graphics (TOG),
39(5):1–14, 2020. 8

[28] Z Lian, A Godil, B Bustos, M Daoudi, J Hermans, S Kawa-
mura, Y Kurita, G Lavoua, and P Dp Suetens. Shape re-
trieval on non-rigid 3d watertight meshes. In Eurographics
workshop on 3d object retrieval (3DOR). Citeseer, 2011. 6

[29] Dmitrii Marin, Zijian He, Peter Vajda, Priyam Chatterjee,
Sam Tsai, Fei Yang, and Yuri Boykov. Efficient segmenta-
tion: Learning downsampling near semantic boundaries. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 2131–2141, 2019. 2

730

[30] Haggai Maron, Meirav Galun, Noam Aigerman, Miri Trope,
Nadav Dym, Ersin Yumer, Vladimir G Kim, and Yaron Lip-
man. Convolutional neural networks on surfaces via seam-
less toric covers. ACM Trans. Graph., 36(4):71–1, 2017. 6

[31] Francesco Milano, Antonio Loquercio, Antoni Rosinol,
Davide Scaramuzza, and Luca Carlone. Primal-dual
mesh convolutional neural networks. arXiv preprint
arXiv:2010.12455, 2020. 5, 8

[32] Alexey Nekrasov, Jonas Schult, Or Litany, Bastian Leibe,
and Francis Engelmann. Mix3d: Out-of-context data aug-
mentation for 3d scenes. arXiv preprint arXiv:2110.02210,
2021. 1, 2

[33] Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and
CV Jawahar. Cats and dogs. In 2012 IEEE conference on
computer vision and pattern recognition, pages 3498–3505.
IEEE, 2012. 6

[34] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban
Desmaison, Luca Antiga, and Adam Lerer. Automatic dif-
ferentiation in pytorch. 2017. 6

[35] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. Advances in neural information
processing systems, 30, 2017. 2

[36] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Taylor
Gordon, Wan-Yen Lo, Justin Johnson, and Georgia Gkioxari.
Accelerating 3d deep learning with pytorch3d. arXiv
preprint arXiv:2007.08501, 2020. 6

[37] Adria Recasens, Petr Kellnhofer, Simon Stent, Wojciech Ma-
tusik, and Antonio Torralba. Learning to zoom: a saliency-
based sampling layer for neural networks. In Proceedings
of the European Conference on Computer Vision (ECCV),
pages 51–66, 2018. 1, 2, 3, 6

[38] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In International Conference on Medical image com-
puting and computer-assisted intervention, pages 234–241.
Springer, 2015. 1

[39] Michele Rucci and Martina Poletti. Control and functions of
fixational eye movements. Annual review of vision science,
1:499–518, 2015. 2

[40] Lisa Schneider, Annika Niemann, Oliver Beuing, Bernhard
Preim, and Sylvia Saalfeld. Medmeshcnn-enabling meshcnn
for medical surface models. Computer Methods and Pro-
grams in Biomedicine, 210:106372, 2021. 8

[41] Nicholas Sharp, Souhaib Attaiki, Keenan Crane, and Maks
Ovsjanikov. Diffusion is all you need for learning on sur-
faces. arXiv preprint arXiv:2012.00888, 2020. 6

[42] Shivanand Venkanna Sheshappanavar, Vinit Veerendraveer
Singh, and Chandra Kambhamettu. Patchaugment: Local
neighborhood augmentation in point cloud classification. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 2118–2127, 2021. 1, 2

[43] Kaleem Siddiqi, Juan Zhang, Diego Macrini, Ali Shokoufan-
deh, Sylvain Bouix, and Sven Dickinson. Retrieving articu-
lated 3-d models using medial surfaces. Machine vision and
applications, 19(4):261–275, 2008. 6

[44] Vinit Veerendraveer Singh and Chandra Kambhamettu. Fea-
ture map retargeting to classify biomedical journal figures. In
International Symposium on Visual Computing, pages 728–
741. Springer, 2020. 2

[45] Vinit Veerendraveer Singh, Shivanand Venkanna Sheshap-
panavar, and Chandra Kambhamettu. Mesh classification
with dilated mesh convolutions. In 2021 IEEE International
Conference on Image Processing (ICIP), pages 3138–3142.
IEEE, 2021. 5

[46] Vinit Veerendraveer Singh, Shivanand Venkanna Sheshap-
panavar, and Chandra Kambhamettu. Meshnet++: A network
with a face. In Proceedings of the 29th ACM International
Conference on Multimedia, pages 4883–4891, 2021. 5, 6

[47] Dmitriy Smirnov and Justin Solomon. Hodgenet: Learn-
ing spectral geometry on triangle meshes. arXiv preprint
arXiv:2104.12826, 2021. 8

[48] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model
scaling for convolutional neural networks. In International
Conference on Machine Learning, pages 6105–6114. PMLR,
2019. 6

[49] Catherine Wah, Steve Branson, Peter Welinder, Pietro Per-
ona, and Serge Belongie. The caltech-ucsd birds-200-2011
dataset. 2011. 6

[50] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. Acm Transactions
On Graphics (tog), 38(5):1–12, 2019. 2

[51] Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So
Kweon. Cbam: Convolutional block attention module. In
Proceedings of the European conference on computer vision
(ECCV), pages 3–19, 2018. 3, 5

[52] Tianshu Xie, Xuan Cheng, Xiaomin Wang, Minghui Liu,
Jiali Deng, Tao Zhou, and Ming Liu. Cut-thumbnail: A novel
data augmentation for convolutional neural network. In Pro-
ceedings of the 29th ACM International Conference on Mul-
timedia, pages 1627–1635, 2021. 2

[53] Xiaohan Xing, Yixuan Yuan, and Max Q-H Meng. Zoom
in lesions for better diagnosis: Attention guided deformation
network for wce image classification. IEEE Transactions on
Medical Imaging, 39(12):4047–4059, 2020. 2

[54] Rong Yang, Robert Wang, Yunkai Deng, Xiaoxue Jia, and
Heng Zhang. Rethinking the random cropping data augmen-
tation method used in the training of cnn-based sar image
ship detector. Remote Sensing, 13(1):34, 2021. 1

[55] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk
Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix: Regular-
ization strategy to train strong classifiers with localizable fea-
tures. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 6023–6032, 2019. 1, 2

[56] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and
Yi Yang. Random erasing data augmentation. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 34,
pages 13001–13008, 2020. 2, 6

731

