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Figure 1. Multi-object multi-part semantic segmentation results for sample images from our expanded label space dataset, Pascal-Part-
201. Compared to state of the art BSANet [58], FLOAT accurately segments tiny parts (e.g. left eyebrow, right eyebrow on faces
in upper image) and handles scale variations better – note the size variations of person instances. Also, observe that FLOAT predicts
directional attributes of parts (e.g. ‘left’/‘right’) accurately – [‘left’/‘right’]: see eyebrow, eye, arm in upper image and leg in lower
image ; [‘front’/‘back’]: see wheel parts of the bicycle (lower image).

Abstract

Multi-object multi-part scene parsing is a challenging
task which requires detecting multiple object classes in a
scene and segmenting the semantic parts within each ob-
ject. In this paper, we propose FLOAT, a factorized label
space framework for scalable multi-object multi-part pars-
ing. Our framework involves independent dense predic-
tion of object category and part attributes which increases
scalability and reduces task complexity compared to the
monolithic label space counterpart. In addition, we pro-
pose an inference-time ‘zoom’ refinement technique which
significantly improves segmentation quality, especially for
smaller objects/parts. Compared to state of the art, FLOAT
obtains an absolute improvement of 2.0% for mean IOU
(mIOU) and 4.8% for segmentation quality IOU (sqIOU) on
the Pascal-Part-58 dataset. For the larger Pascal-Part-108
dataset, the improvements are 2.1% for mIOU and 3.9% for
sqIOU. We incorporate previously excluded part attributes

and other minor parts of the Pascal-Part dataset to cre-
ate the most comprehensive and challenging version which
we dub Pascal-Part-201. FLOAT obtains improvements of
8.6% for mIOU and 7.5% for sqIOU on the new dataset,
demonstrating its parsing effectiveness across a challeng-
ing diversity of objects and parts. The code and datasets
are available at floatseg.github.io.

1. Introduction

Semantic scene parsing is a foundational image under-
standing problem in the vision community [23,49,50,52,54,
55,60]. Typically, the goal is to segment objects and “stuff”
regions (e.g. road, background) in the scene. Multi-object
multi-part parsing is a significantly more challenging vari-
ant which requires part-level segmentation of each scene
object [32, 40, 58]. Compared to traditional object-level
segmentation, semantic representations infused with fine-
grained part-level knowledge can provide richer informa-
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tion for downstream reasoning tasks including visual ques-
tion answering [19], perceptual concept learning [5], shape
modelling [1, 12] and many others [2, 8, 10, 21, 39, 53].

For part-based object segmentation, some existing ap-
proaches tackle the simpler problem of single-object part
parsing [14–16, 41, 42]. Although a few recent approaches
have addressed multi-object multi-part parsing [32, 40, 58],
they consider part labels to be independent and do not take
advantage of intra/inter ontological relationships among
objects and parts at label level. They also tend to per-
form poorly on smaller and infrequent parts/categories. To
address these shortcomings, we propose FLOAT, a novel
factorized label space framework for scalable multi-object
multi-part parsing. Our approach is motivated by the fol-
lowing observations:
Observation #1: Object part names in datasets typically
consist of a root component and side component(s). Many
object categories contain parts with the same root com-
ponent. For example, the root component of ‘left front
leg’ found in horse, cow etc. and ‘right leg’ found in
person, is leg. Therefore, parts can be grouped based on
their root component.

The example also suggests that object categories whose
instances contain shared category-level attributes (e.g. “liv-
ing things that move”) are likely to contain same root com-
ponents (such as leg). Using this criterion, some object cat-
egories (e.g. cow, person, bird) can be grouped as
‘animate’. Similarly, some categories (e.g. “rigid bodied”)
can be grouped as ‘inanimate’. As with the ‘animate’ group,
‘inanimate’ group categories also share many root part com-
ponents (e.g. ‘wheel’ in aeroplane, bicycle, car).
Observation #2: Similar to Observation #1, parts can also
be grouped by side component – e.g. ‘front’ is a side com-
ponent of ‘front wheel’ found in bike and ‘left front leg’
in person.

Factoring the object/part label space in terms of these
groups (‘animate’, ‘inanimate’, ‘side’) greatly reduces the
effective number of output labels. In turn, this increases
scalability in terms of object categories and part cardinality.
The design choice (‘factoring’) also enables efficient data
sharing when learning semantic representations for grouped
parts and improves performance for infrequent classes (see
Fig. 1).

A second key feature of our framework is IZR, an
inference-time segmentation refinement technique. IZR
transforms ‘zoomed in’ versions of preliminary per-object
label maps into refined counterparts which are finally com-
posited back onto the segmentation canvas. Apart from the
advantage of not requiring additional training, IZR is em-
pirically superior to alternate inference-time schemes and
significantly improves segmentation quality, especially for
smaller objects/parts.

In existing works, results are reported on simplified,

label-merged versions of the original dataset (Pascal-
Part [8]). In our work, we incorporate previously excluded
part attributes and other minor parts to create Pascal-Part-
201, the most comprehensive and challenging version of
Pascal-Part [8]. Along with the standard mean IOU (mIOU)
and mAvg scores, we report sqIOU [20] and sqAvg – nor-
malized segmentation quality measures which are less af-
fected by spatial scale of objects and parts.

In summary, our contributions are the following:

• FLOAT, a novel factorized label space framework for
scalable multi-object multi-part parsing (Sec. 3).

• IZR, an inference-time refinement technique which
significantly improves segmentation quality especially
for smaller objects/parts in the scene (Sec. 3.4).

• Pascal-Part-201, the most comprehensive and chal-
lenging version of the Pascal-Part [8] dataset (Sec. 4).
Experimental evaluation demonstrates FLOAT’s supe-
rior performance on Pascal-Part-201 relative to exist-
ing approaches (Sec. 5).

2. Related Work
Semantic segmentation is a broad area with intensive

research. We do not attempt to summarize all approaches to
enable focus on more directly relevant works. A common
design pattern for semantic segmentation is the encoder-
decoder setup [3, 6, 7, 56]. In particular, the baselines, ex-
isting approaches and our proposed approach all adopt the
popular DeepLab architecture [6] for various components
of the segmentation task pipeline.

Single-Object Multi-Part Parsing has been extensively
explored. Existing approaches typically consider object cat-
egory subsets such as persons [14, 15, 24–26, 29, 30, 36, 44–
46, 57], animals [16, 41, 42] and vehicles [25, 28, 36, 38].
However, in this setting, most works assume a single object
of interest per image.

Multi-object multi-part parsing is a relatively new and
under studied problem [32,40,58]. The approaches of Zhao
et al. [58] and Michieli et al. [32] tackle multi-object multi-
part parsing by providing object-level feature guidance to
the part segmentation network during optimization. Zhao et
al. [58] additionally provides boundary-level awareness to
features. Tan et al. [40] create a semantic co-ranking loss
modelling intra and inter part relationships. Xiao et al. [47]
introduce a composite dataset and an approach for predict-
ing perceptual visual concepts in scenes. However, in con-
trast to our framework, these approaches report results on
simplified (label-merged) versions of standard datasets and
empirically exhibit inferior performance for smaller parts.

Factorization: In machine vision applications, early
works such as Zheng et al. [59] used factorial Conditional
Random Field models to separately predict object category,
coarse object labels and object attributes such as shape, ma-
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Figure 2. An overview diagram of our FLOAT framework (Sec. 3). Given an input image I , an object-level semantic segmentation network
(Mobj , in blue) generates object prediction map (So). Two decoders (in orange) produce object category grouped part-level prediction
maps for ‘animate’ (Sa) and ‘inanimate’ objects (Si) in the scene. Another decoder (in red) produces part-attribute grouped prediction
maps for ‘left-right’ (Slr) and ‘front-back’ (Sfb). At inference time (shown by dotted lines), outputs from the decoders are merged in a
top-down manner. The resulting prediction is further refined using the IZR technique (see Fig. 3) to obtain the final segmentation map (Sp).

terial and surface type. Other works involve jointly learn-
ing object and attribute-related information as a separable
latent representation [35] or using graph networks [34].
Misra et al. [33] propose a factorization over global ob-
ject attributes and object classifiers to enable composition-
ality. Other works extend this idea to inter-object relation-
ships, e.g. noun-preposition-noun triplets [19, 22, 31]. In
all these works, a simple global property of the object (e.g.,
material, texture, color, size, shape) is learnt jointly with
the object category information. In their work on panoptic
part segmentation, Geus et al. [9] conduct experiments in-
volving two categories from Pascal-Part-58 with some parts
grouped by semantic similarity. Graphonomy, a framework
by Lin et al. [27] can span multiple datasets with a flat
label structure and requires a manually specified graph per
category. Such rigid connectivity relationships are unsuit-
able for modelling highly articulated objects (e.g. animals)
found in our setting. To the best of our knowledge, we are
the first to show that object parts can be factorized across di-
verse object categories at scale, and that such factorization
significantly improves segmentation performance, in reso-
nance with theories of visual recognition [4, 18].

Zooming in on image regions using bounding boxes
generated by attention maps [43] and reinforcement learn-
ing policies [11, 48] have been found to improve detection
and segmentation. Other works use the technique on object
instances for video interpolation [51] and on part instances
for object parsing [44]. Porzi et al. [37] use zoomed in
crops based on object classes for improving panoptic seg-

mentation of high resolution images. Similar to the latter
set of approaches, FLOAT also employs zooming in on ob-
ject regions. However, our zoom-based refinement does not
require any extra training and can be directly used during
inference for improved performance.

3. Our framework (FLOAT)
As mentioned earlier, FLOAT’s design leverages the

shared-attribute groups that naturally exist within ob-
ject categories (‘animate’, ‘inanimate’) and part attributes
(‘left’, ‘right’, ‘front’, ‘back’) - see Fig. 2. The sections that
follow describe how we operationalize the idea. Although
our approach is general in nature, we use object categories
and part names from the Pascal-Part dataset [8] for ease of
understanding.

3.1. Relabeling images with factored labels

The original Pascal-Part dataset contains object and part
level label maps. We re-label or partition these maps to ob-
tain five new label groups as described below.

object: The label set for this group comprises unique ob-
ject category labels. For example, So in Fig. 2 is a label map
from this group containing person and bicycle objects.

animate: For this group, the label set comprises root
components of part labels from the object categories bird,
cat, cow, cat, dog, horse, person, sheep. The
part labels are pooled across all object categories. For ex-
ample, a single label leg covers all corresponding part in-
stances from all objects in the ‘animate’ group. This can
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Figure 3. An overview of Inference-time Zoom Refinement (IZR) - Sec. 3.4. During inference, predictions from the object-level network
Mobj are used to obtain padded bounding boxes for scene objects (B). The corresponding object crops (C) are processed by the factorized
network (F , Sec. 3). The resulting label maps (D) are composited to generate Sp, the final refined part segmentation map (E). Notice the
improvement in segmentation quality relative to the part label map without IZR (included for comparison).

also be seen in Sa in Fig. 2 – the left foot and right
foot of person are color-coded the same (‘orange’) and
assigned the common label foot.

inanimate: The label set comprises root components of
part labels from aeroplane, bicycle, bottle, bus,
car, motorbike, pottedplant, train, tv. Note
that (i) these categories are disjoint from the ‘animate’
group (see Si in Fig. 2) (ii) the part label pooling mentioned
for ‘animate’ is applicable here as well.

side: In this case, two disjoint label groups exist. One
group comprises all part labels which have the words ‘left’
or ‘right’ in their name (e.g. left hand, right wing).
Label map regions whose part labels contain ‘left’/‘right’
are considered seed pixels for a flood-fill style procedure
which produces corresponding ‘left’/‘right’ label maps (e.g.
Slr in Fig. 2). The same procedure is used for the label
groups which have the words ‘front’ or ‘back’ in their name
(see Sfb in Fig. 2).

Broadly, object parts from living things that move are in
the ‘animate’ group while other parts, typically from rigidly
shaped non-living things, are in the ‘inanimate’ group. As
mentioned before, such grouping enables data-efficient rep-
resentation learning for common parts (e.g. torso in ‘an-
imate’ group). A similar reasoning holds for ‘side’ direc-
tional grouping ({‘left’, ‘right’}, {‘front’,‘back’}).

3.2. Factorized semantic segmentation architecture

We configure the segmentation architecture to output the
factorized label maps described in previous section. As
Fig. 2 shows, we employ two semantic segmentation net-
works, one for object-level and other for part-level label
maps. The object-level network (Mobj) outputs the ob-
ject prediction map (So). The part-level network consists
of a shared encoder (Epart), and three decoders: the ‘ani-
mate’ decoder (Danimate) which outputs the ‘animate’ la-
bel map (Sa), the ‘inanimate’ decoder (Dinanimate) which
outputs the ‘inanimate’ label map (Si). The ‘side’ decoder

(Dside) outputs the ‘left/right’ (Slr) and ‘front/back’ (Sfb)
label maps. The outputs from the object-level network (So)
and part-level network (Si, Sa, Slr, Sfb) are merged at in-
ference time. We describe this merging process next.

3.3. Top-Down Merge

To combine the factorized label maps output by seg-
mentation architecture F (see Fig. 2), we adopt a top-
down merging strategy. For each object (e.g. bicycle)
in the object prediction map (So), we examine the la-
bels of corresponding pixel locations in the part-level la-
bel maps. Depending on the type of object (‘animate’ or
‘inanimate’), the corresponding label regions are copied to
the scene-level prediction canvas. (e.g. for bicycle, the
considered labels in Si would be wheel, chainwheel,
handlebar, headlight, saddle). Similarly, the
object-level map’s pixel locations are referenced from ‘side’
label maps ({‘left’,‘right’} - Slr, {‘front’,‘back’} - Sfb). In
case of conflicts, the prediction defaults to background.
The corresponding label regions are copied to the scene pre-
diction canvas.

In the next section, we describe how the resulting predic-
tion map is refined using a per-object ‘zooming’ technique.

3.4. Inference-time Zoom Refinement (IZR)

The Inference-time Zoom Refinement (IZR) technique
improves segmentation quality by ‘zooming’ into each
scene object. As the first step, the input image I is pro-
cessed by the object-level network Mobj to obtain object-
level map (see A in Fig. 3). The bounding box correspond-
ing to each object component is then padded so that the ob-
ject is centered and aspect ratio is preserved (B in Fig. 3).
Image crops corresponding to the padded bounding box ex-
tents are then obtained (C). Note that the padding enables
scene context to be included for each cropped object and
also helps account for inaccuracies in the object map pre-
diction. The cropped object images are then processed by
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FLOAT’s factorized network F to obtain the corresponding
part-level label maps (D). These label maps are then com-
posited to generate the final refined segmentation map (E).
In the next two sections, we describe the optimizer formula-
tion for the networks in FLOAT and implementation details.

3.5. Optimization

We train the object model Mobj (Sec. 3.2) using the
standard per-pixel cross-entropy loss. For training the part-
level model, we use a combination of cross-entropy loss
(LCE) and graph matching loss (LGM ) [32]. The cross-
entropy loss is applied to each of the 4 output part-level
maps i.e. Sa, Si, Slr, Sfb (see Fig. 2).

The graph matching loss [32] captures proximity rela-
tionships between part pairs within the map and scores the
matching of these pairs between the ground truth and the
predicted map. The degree of proximity between a part pair
is represented by the number of pixels in one part situated
T pixels or less from the other part, where T is an empir-
ically set threshold. For efficiency, the pairwise proximity
map is approximated by dilating each part mask by ⌈T/2⌉
and computing the intersecting region. The ground truth
proximity map MGT (and similarly predicted map Mpred)
is formally defined as: m̃GT

i,j = |{s ∈ Φ(pGT
i ) ∩ Φ(pGT

j )}|
where m̃GT

i,j is the proximity between the ith and jth parts,
pi, pj are the respective part mask, s is a generic pixel, Φ
is morphological 2D dilation operator and |.| is the cardi-
nality of the given set. A row-wise normalization is ap-
plied to the proximity matrix: MMMGT

[i,:] = M̃̃M̃MGT
[i,:]/||M̃̃M̃M

GT
[i,:]||2.

The graph matching loss LGM is computed as the Frobe-
nius norm between the two adjacency matrices: LGM =
||MMMGT −MMMpred||F .

Additionally, for the ‘animate’ and ‘inanimate’ branches,
a composite foreground-background binary cross-entropy
loss serves as extra guidance. The loss for the part level
network is a weighted combination of the losses for all
part branches: Lpart = Lanim + Linanim + Lside, where
Lanim = Lanim

CE + λGMLanim
GM .

3.6. Implementation and Training Details

For fair comparison with previous works [32,40,58], we
employ the DeepLab-v3 [6] architecture with a ImageNet
pre-trained ResNet-101 [17] as the encoder (backbone) and
follow the same training scheme and augmentations. Dur-
ing training, images are randomly left-right flipped and
scaled 0.5 to 2 times the original resolution with bilinear
interpolation. The results at testing stage are reported at
the original image resolution. The threshold T employed
for proximity matrix (Sec. 3.5) is empirically set to 4. The
model is trained for 40K steps with the base learning rate
set to 7 · 10−3 which is decreased with a polynomial decay
rule with power 0.9. We employ weight decay regulariza-
tion of 10−4. We use a batch size of 16 images and use

Image Pascal-Part-58

Pascal-Part-108 Pascal-Part-201 (Ours)

Figure 4. An illustration of labelling granularity in different ver-
sions of the Pascal-Part dataset. Pascal-Part-108 [32] adds smaller
parts (e.g. eyes, ears) to Pascal-Part-58 [58]. Our newly
introduced Pascal-Part-201 further adds directional information
to parts as appropriate (e.g. {‘left’,‘right’} to eyes, ears;
{‘front’,‘back’} to legs).

λGM = 0.1 for weighting graph matching loss relative to
the cross-entropy loss. We use 2 NVIDIA A100 GPUs each
with 40GB GPU memory to train our models, and for ex-
periments.

4. Datasets and Evaluation Metrics
Pascal-Part: For experiments, we use the Pascal-Part [8]
which is currently the largest multi-object multi-part pars-
ing dataset. It contains 10,103 variable-sized images with
pixel-level part annotations on the 20 Pascal VOC2010 [13]
semantic object classes (plus the background class). We
use the original split from Pascal-Part with 4998 images for
training and 5105 images in the publicly provided valida-
tion set for testing.
Pascal-Part-58/108: For comparison with previous work,
we use the datasets Pascal-Part-58 [58] and Pascal-Part-
108 [32] which contain 58 and 108 part classes respectively.
Both the Pascal-Part variants simplify the original semantic
classes by grouping some parts together, and contain 58 and
108 part classes respectively. Pascal-Part-58 mostly con-
tains large parts of objects such as head, torso, leg etc.
for animals and body, wheel etc. for non-living objects.
Pascal-Part-108 is more challenging and additionally con-
tains relatively smaller parts (e.g. eye, neck, foot etc.
for animals and roof, door etc. for non-living objects).
Pascal-Part-201: We incorporate part attributes (‘left’,
‘right’, ‘front’, ‘back’, ‘upper’, ‘lower’) and other minor
parts (e.g. eyebrow) excluded in both the mentioned vari-
ants (58/108), to create the most comprehensive and chal-
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lenging version of the dataset containing 201 parts which
we dub Pascal-Part-201. We observed that the original part
labelling scheme in Pascal-Part leaves out large chunks of
an object’s pixels unlabelled for the bike, motorbike
and tv categories which lead to disconnected objects. To
address this, we add a body part annotation for bike,
motorbike, and a frame part for tv. An example il-
lustrating the differences in part labelling and granularity of
the Pascal-Part variants can be seen in Fig. 4.

4.1. Evaluation Metrics

For performance evaluation, we use two versions of
Intersection over Union (IOU) metric. We first describe
mIOU and mAvg, the standard segmentation quality metrics
reported for the problem setting. We then describe balanced
variants of these metrics – sqIOU and sqAvg.
mIOU: Let Predjp and GT j

p be the prediction and ground
truth respectively for the pth part in the jth image Ij . Sup-
pose the dataset contains N images. The mIOU for the part
(mIOUp) is calculated as:

mIOUp =

∑N
j=1(Predjp ∩GT j

p ) · I[p ∈ Ij ]∑N
j=1(Predjp ∪GT j

p ) · I[p ∈ Ij ]
(1)

where I[.] is the indicator function (i.e. summation is
performed only for images where part p is present). The
mIOU for the dataset is then calculated as: mIOU =(∑

p mIOUp

)
/Np, where Np is the number of part cat-

egories (classes) in the dataset (58/108/201).
mAvg: The mIOU score for an object category is
the average of its per-part scores, i.e. mIOUc =(∑

p mIOUp

)
/Nc where Nc is the number of unique part

labels in object category c. Finally, mAvg is calculated as
mAvg = (

∑
c mIOUc) /C, where C is the number of ob-

ject categories (21 for Pascal-Part datasets).
sqIOU: This is a modified version of Segmentation Quality
(SQ) metric [20] tailored for semantic segmentation. The
sqIOU for the part p is calculated as:

sqIOUp =

N∑
j=1

Predjp ∩GT j
p

Predjp ∪GT j
p︸ ︷︷ ︸

IOU(Pred,GT )jp

·I[p ∈ Ij ]

 /N (2)

The calculation for sqIOU and sqAvg is similar to that of
mIOU. Due to their formulation, mIOU and mAvg [32, 58]
tend to be dominated by contributions from bigger1 in-
stances. In contrast, sqIOU and sqAvg weight parts of all

1Informally, an instance is deemed “big” if it is among the largest in-
stances for an object part category by area.

Figure 5. Toy example comparing mIOU and sqIOU with two
images from toy-person category containing parts head and
torso . ‘Red’ and ’blue’ represent ground-truth, ‘pink’ and
’green’ represent prediction overlap areas. mIOU fails to reflect
the bad segmentation of head in image I2 while sqIOU is fairer.

sizes equally – compare Eqn. 1 and 2 and also see the toy
example in Fig. 5. Therefore, sqIOU and sqAvg can be con-
sidered a more ‘fair’ measure for segmentation quality.

5. Experimental Results
For evaluation, we compare the performance of FLOAT

with BSANet [58], GMNet [32] and CO-Rank [40]. As
a baseline, we train a DeepLab-v3 [6] model with in-
dependently paired object category and associated part
names (e.g. cow left eye, cow right ear) as la-
bels. BSANet and CO-Rank report results on Pascal-Part-
58 while GMNet additionally reports results on Pascal-Part-
108. We report results on all variants of the Pascal-Part
dataset, including our newly introduced Pascal-Part-201. To
enable comparison, we train GMNet and BSANet on our
dataset, Pascal-Part-201. For evaluation, we employ the
mIOU, mAvg and sqIOU, sqAvg metrics described previ-
ously (Sec. 4.1). In addition, we analyze the relative contri-
bution of various components in FLOAT via ablation stud-
ies.

5.1. Pascal-Part-201

Table 1 shows the category-wise and overall perfor-
mance on Pascal-Part-201. Overall, we see that FLOAT
outperforms baselines and existing approaches by a signif-
icantly large margin. We obtain large gains of 10.8% on
mIOU and 8.1% on sqIOU relative to the baseline. We out-
perform the next best method BSANet [58] by large margins
of 8.6% on mIOU and 7.5% on sqIOU as well.

Empirically, we obtain significant sqIOU gains of 10%-
30% on small parts – for e.g. left/right eye,
left/right ear, left/right horn etc. of ‘ani-
mate’ categories such as bird, cat, cow. For ‘inanimate’
categories (e.g. bus, car, aeroplane), we obtain sqIOU
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GMNet [32] 90.8 26.6 33.1 21.2 55.0 43.5 24.6 27.5 21.7 35.5 15.1 40.3 25.0 17.5 31.9 21.9 44.2 11.9 43.3 14.0 53.2 22.5 33.2

BSANet [58] 91.2 34.6 41.7 27.9 61.2 51.7 34.1 38.1 26.1 35.4 24.0 43.6 28.4 23.0 37.4 27.7 54.7 14.3 40.4 17.8 59.4 28.5 38.7

FLOAT 92.5 36.7 49.7 34.4 75.3 51.4 35.8 42.0 37.8 59.6 35.5 58.2 41.0 34.0 40.2 40.8 52.2 28.5 69.0 15.1 56.1 37.1 46.9
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sqIOU sqAvg

Baseline 89.6 28.9 39.3 17.1 57.4 32.3 27.1 26.0 20.5 39.8 14.8 34.7 22.7 17.2 31.5 19.2 34.9 10.8 52.6 14.4 53.8 21.5 32.6

GMNet [32] 89.4 20.7 23.5 12.6 53.1 25.8 19.3 17.2 18.1 38.2 11.2 35.2 15.9 14.2 25.4 13.8 26.9 8.5 52.0 13.8 46.9 16.9 27.7

BSANet [58] 89.9 30.7 33.5 18.6 60.2 31.2 29.2 26.4 21.2 37.8 17.5 38.0 22.3 17.8 31.2 18.2 33.6 10.8 47.2 17.5 55.4 22.1 32.8

FLOAT 90.8 32.5 41.8 24.5 63.9 36.1 30.4 29.9 33.0 50.8 28.1 47.6 35.6 26.1 33.6 29.9 34.5 20.6 69.0 13.6 56.8 29.6 39.5

Table 1. Category-wise results for Pascal-Part-201. FLOAT outperforms competing methods by large margins w.r.t mIOU (top) and sqIOU
(bottom).

Method Dataset mIOU mAvg sqIOU sqAvg

Baseline

58

54.3 55.4 46.0 48.4

BSANet [58] 58.2 58.9 49.3 51.5

GMNet [32] 59.0 61.8 49.4 54.3

CO-Rank [40] 60.7 60.6 - -

FLOAT 61.0 64.2 54.2 57.1

Baseline

108

41.3 43.6 32.2 36.1

BSANet [58] 45.9 48.4 36.6 41.0

GMNet [32] 45.8 50.5 35.8 41.9

FLOAT 48.0 53.0 40.5 45.6

Table 2. Results on Pascal-Part-58, Pascal-Part-108: FLOAT out-
performs the baseline and other existing methods on mIOU and
with a significant gap on sqIOU. Missing CO-Rank entries are due
to incomplete official codebase and missing details in the paper.

improvements in the range of 5%-11% on small parts
such as front/back plate, left/right wing.
The performance improvement is also similarly substantial
for most parts containing side components (‘left/right’ or
‘front/back’).

5.2. Pascal-Part-58 and Pascal-Part-108

We also show results on previously proposed datasets
Pascal-Part-58 [58] and Pascal-Part-108 [32]. As shown in
Table 2, FLOAT framework achieves the best performance
on both these datasets. In terms of mIOU, we outperform
CO-Rank [40] by 0.3% on Pascal-Part-58 and GMNet [32]
by 2.0%. In terms of sqIOU, we outperform other meth-
ods by large margins as well – 4.8% over GMNet and 4.9%
over BSANet. A similar trend is seen for Pascal-Part-108
with large improvements of 2.1% on mIOU and 3.9% on
sqIOU over the next best method BSANet [58].

Overall, the results across existing and challenging new
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mIOU sqIOU

Baseline

58

58 ✓ - 54.3 46.0

Mobj +Mpart 45 ✓ ✓ - 60.7 51.5

F 45 ✓ ✓ - 60.9 51.7

FLOAT 45 ✓ ✓ - IZR 61.0 54.2

Baseline

108

108 ✓ - 41.3 32.2

Mobj +Mpart 68 ✓ ✓ - 46.1 36.7

F 68 ✓ ✓ - 47.8 38.4

FLOAT 68 ✓ ✓ - IZR 48.0 40.5

Baseline

201

201 ✓ 26.3 21.5

Mobj +Mpart 119 ✓ ✓ 29.1 22.8

F −Dside 119 ✓ ✓ 31.3 24.1

F 80 ✓ ✓ ✓ 36.9 27.8

F* 80 ✓ ✓ ✓* 36.9 27.6

F + RCZ 80 ✓ ✓ ✓ RCZ 36.6 28.0

FLOAT 80 ✓ ✓ ✓ IZR 37.1 29.6

Table 3. Ablation study: Starting from baseline with no fac-
torization at all, we see that systematically adding components
of FLOAT pipeline noticeably improves segmentation quality.
Mpart is combined decoder for all part-level labels, FLOAT
= F + IZR (see Fig. 2) is the proposed model. RCZ stands
for Random Crop Zoom (see Sec. 5.3). The * indicates separate
decoders for ‘left/right’ and ‘front/back’. ‘Output heads’ – total
number of output channels of a model. ‘No factorization’ – parts
are labelled with concatenated category and associated part name.
‘Object’ – predicting object labels separately.

variants of Pascal-Part dataset demonstrate the strengths of
our factorized label space setup. In particular, the increasing
gains with increasing dataset complexity demonstrates the
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Image Ground-truth BSANetFLOAT (Ours) GMNet

Figure 6. Qualitative comparison on Pascal-Part-201. We observe that FLOAT gets small objects parts – person in the upper image, cat
in the middle image. FLOAT also gets the left-right and front-back correct – leg(s) of dog and cat, side of car, wheel of bike.

superior scaling capacity of the FLOAT framework.

5.3. Ablation Studies

We perform multiple experiments with ablative variant
models of FLOAT to verify the effectiveness of our design
choices. From the results in Table 3, we see that starting
from baseline (first row in each dataset variant), system-
atically adding components of FLOAT pipeline noticeably
improves segmentation quality. The gains are most appar-
ent for Pascal-Part-201 dataset, particularly when factorized
components are included. From the last two rows, we also
see that IZR is a superior choice compared to Random Crop
Zoom (RCZ) - a variant which uses random crops whose
cardinality matches the number of objects in the scene.
Some part names in the original Pascal-Part dataset [8] con-
tain the side component ‘upper/lower’. We attempted to
train a FLOAT variant with these components as outputs
of Dside decoder. However, the model failed to converge.
We hypothesize this is due to the drastically smaller quan-
tum of training data compared to other side attributes, i.e.
‘left/right’ and ‘front/back’.

5.4. Qualitative Analysis

Fig. 6 shows qualitative comparisons of our framework
with existing approaches on Pascal-Part-201, reflecting the
improvements gains we observe for mIOU and sqIOU met-
rics (Table 1). FLOAT is visually superior at segmenting
smaller object parts – notice the significantly improved seg-
mentation for parts in object categories person ( first row)
and cat (second row). From the examples, we see that
FLOAT is also better at learning directionality (‘left/right’,
‘front/back’). Similar improvements are evident from the

examples provided in Figure 1. Some limitations of FLOAT
include missing predictions for the smallest of parts (e.g.
eye in people far from camera) and partial predictions for
thin parts leading to disconnections.

6. Conclusion

FLOAT is a simple but effective framework for im-
proving semantic segmentation performance in multi-object
multi-part parsing. Our idea of factorized label space is
a key contribution which fully takes advantage of label-
level intra/inter ontological relationships among objects and
parts. The factorization not only enables scalability in
terms of both object categories and part labels, but also
improves segmentation performance substantially. Another
key contribution is our inference-time zoom. By focus-
ing only on object-centric regions of interest, IZR effi-
ciently enhances segmentation quality without requiring ex-
plicit object feature guidance or other modifications to the
part network setup. Apart from our framework, we intro-
duce a new variant of Pascal-Part called Pascal-Part-201
which constitutes the most challenging benchmark dataset
for the problem. Our experimental evaluation, using fairer
versions of existing measures, shows that FLOAT clearly
outperforms existing state-of-the-art approaches for exist-
ing and newly introduced Pascal-Part variants. The gains
from our framework increase with increased part and ob-
ject dataset complexity, empirically supporting our asser-
tion of FLOAT’s scalability. Although presented in a
2D scene parsing setting, we expect ideas from FLOAT
to be useful for the 3D scene parsing counterpart and in
general, for scenarios with appropriately factorizable at-
tributes.
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