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Abstract

Model pre-training is a cornerstone of modern visual
recognition systems. Although fully supervised pre-training
on datasets like ImageNet is still the de-facto standard, re-
cent studies suggest that large-scale weakly supervised pre-
training can outperform fully supervised approaches. This
paper revisits weakly-supervised pre-training of models us-
ing hashtag supervision with modern versions of residual
networks and the largest-ever dataset of images and corre-
sponding hashtags. We study the performance of the result-
ing models in various transfer-learning settings including
zero-shot transfer. We also compare our models with those
obtained via large-scale self-supervised learning. We find
our weakly-supervised models to be very competitive across
all settings, and find they substantially outperform their
self-supervised counterparts. We also include an investi-
gation into whether our models learned potentially trou-
bling associations or stereotypes. Overall, our results pro-
vide a compelling argument for the use of weakly supervised
learning in the development of visual recognition systems.
Our models, Supervised Weakly through hashtAGs (SWAG),
are available publicly.

1. Introduction

Most modern visual-recognition systems are based on
machine-learning models that are pre-trained to perform
a task that is different from the downstream task that the
system aims to solve. Such pre-training allows the sys-
tem to leverage (annotated) image or video datasets that
are much larger than the datasets available for the down-
stream task. Arguably the most popular pre-training task
is supervised image classification on datasets such as Im-
ageNet and JFT [20, 42, 76], but recent studies have also
explored self-supervised [11–14, 27, 29, 31, 51] and weakly
supervised [37, 38, 44, 49, 57] tasks for pre-training.

There are trade-offs between these three types of pre-
training. Fully supervised pre-training benefits from a
strong semantic learning signal for each training example,
but does not scale well because manual labeling of training
data is time-consuming. By contrast, self-supervised pre-
training receives hardly any semantic information on the
training examples, but can be scaled to billions of training
examples relatively easily [27, 31]. Weakly-supervised ap-
proaches fall somewhere in between: for example, hashtags
or other text associated with visual data generally provide a
noisy semantic learning signal but can be obtained at large
scale with relative ease [49, 57].

Following the success of prior work [49], this paper per-
forms an in-depth study of weakly-supervised pre-training
using hashtag supervision. We pre-train modern image-
recognition models on the largest-ever-dataset of images
and associated hashtags, and evaluate the resulting models
in a range of transfer-learning experiments. Specifically, we
transfer our models to a variety of image-classification tasks
and evaluate the performance of the resulting models. We
also evaluate the models in zero-shot transfer and few-shot
transfer settings [57]: that is, we evaluate the “off-the-shelf
performance” of these models without finetuning them on
the target tasks. The overall goal of our study is to shed
light on the trade-offs between fully supervised, self super-
vised, and weakly supervised pre-training. Throughout our
experiments, we find the weakly-supervised approach to be
very competitive: our best models perform on par with the
state-of-the-art on a range of visual-perception tasks despite
employing a relatively simple training pipeline.

A potential downside of weakly-supervised pre-training
is that models may inherit or amplify harmful associations
from the underlying supervisory signal. We perform a series
of experiments aimed at assessing the extent to which this
happens. Our results do not provide conclusive answers, but
they do suggest that the risks involved may not be as large as
in language modeling [6, 9]. Overall, we believe our study
presents a compelling argument for weakly-supervised pre-
training of visual-recognition systems.
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2. Related Work
This study is part of a large body of work on pre-training

models for visual recognition. This body of work can be
subdivided into three key groups.
Fully supervised pre-training was pioneered by [19, 59]
and is now the de-facto standard approach to a variety of
visual-recognition tasks, including fine-grained image clas-
sification [30, 62], object detection [61], image segmenta-
tion [32, 70], image captioning [46], visual question an-
swering [40], video classification [21], etc. The ImageNet-
1K dataset [63] is by far the most commonly used image
dataset for pre-training, whereas the Kinetics dataset [39]
is often used for pre-training of video-recognition models.
Some recent studies have also used the much larger JFT-
300M [20] and JFT-3B [76] image datasets, but not much
is known publicly about those datasets. The effectiveness
of supervised pre-training has been the subject of a num-
ber of studies, in particular, [1, 42, 60] analyze the transfer
performance of supervised pre-trained models.
Self-supervised pre-training has seen tremendous
progress in recent years. Whereas early self-supervised
learners such as RotNet [26] or DeepCluster [10] sub-
stantially lagged their supervised counterparts in vision
pre-training, more recent approaches have become quite
competitive. These approaches learn to predict clus-
ters [11], use contrastive learning [13, 31, 51], or use
student-teacher architectures in which the teacher is an
exponentially moving average of the student [12, 14, 29].
A key advantage of self-supervised pre-training is that is
can easily be scaled to billions of training images: several
studies have shown that scaling self-supervised learning
can lead to substantial performance improvements [27, 31].
Weakly-supervised pre-training has not received nearly
as much attention as the other two pre-training paradigms,
but has shown very promising performance nonetheless.
Whereas early studies that pre-trained models by predict-
ing words [38] or n-grams [44] in image captions were not
very competitive because of the limited scale of their train-
ing data, recent weakly-supervised pre-training methods are
much more competitive on a range of visual-recognition
tasks [5, 25, 37, 49, 56, 57]. In particular, ALIGN [37] and
CLIP [57] pre-train vision-and-language models on large
numbers of images and associated captions, and success-
fully perform zero-shot transfer to new recognition tasks.

Our study builds on [49], which trained convolutional
networks on billions of images to predict associated hash-
tags. Compared to [49], our study: (1) trains larger models
with more efficient convolutional and transformer architec-
tures on a much larger dataset, (2) studies the performance
of the resulting models in zero-shot transfer settings in ad-
dition to standard transfer-learning experiments, (3) per-
forms comparisons of our models with state-of-the-art self-
supervised learners, and (4) presents an in-depth study of

potential harmful associations that models may adopt from
the weak supervision they receive. Despite the concep-
tual similarities in our approach, our best model achieves
an ImageNet-1K validation accuracy that is more than 3%
higher than that reported in [49].

3. Pre-Training using Hashtag Supervision
Our weakly supervised pre-training methodology is

based on hashtag supervision. We train image-recognition
models to predict the hashtags that were assigned to an im-
age by the person who posted the image. Hashtag predic-
tion has great potential as a pre-training task because hash-
tags were assigned to images to make them searchable, i.e.,
they tend to describe some salient semantic aspects of the
image. While hashtag prediction is conceptually similar to
image classification, it differs in a few key ways [16,49,68]:

1. Hashtag supervision is inherently noisy. Whilst some
hashtags describe visual content in the image (e.g.,
#cat), other hashtags may be unrelated to the visual
content (e.g., #repost). Different hashtags may be
used to describe the same visual content, or the same
hashtag may be used to describe different visual con-
tent. Importantly, hashtags generally do not provide a
comprehensive annotation of the visual content of an
image, that is, there tend to be many false negatives.

2. Hashtag usage follows a Zipfian distribution [50]; see
Figure 1. This implies that the learning signal follows
a very different distribution than is common in image-
recognition datasets like ImageNet [63], which tend to
have a class distribution that is more or less uniform.

3. Hashtag supervision is inherently multi-label: a single
image generally has multiple hashtags associated with
it that all serve as positive classification targets.

Our data pre-processing and model pre-training procedures
are designed to (partly) address these issues. We describe
them in more detail in Section 3.1 and 3.2, respectively.

3.1. Hashtag Dataset Collection

We follow [49] in constructing a dataset of public Insta-
gram photos and associated hashtags. We adopt the follow-
ing four steps in constructing the pre-training dataset:

1. Construct a hashtag vocabulary by selecting frequently
used hashtags and canonicalizing them.

2. Gather publicly available images that are tagged with
at least one of the selected hashtags.

3. Combine the resulting images and associated hashtags
into labeled examples that can be used for pre-training.

4. Resample the resulting examples to obtain the desired
hashtag distribution.

Next, we describe each of these steps in detail.
Hashtag vocabulary. We select hashtags used more than
once in public Instagram posts by US users. Next, we filter
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Figure 1. Hashtag distribution of Instagram images. Left: Fre-
quency of all hashtags occurring with public images posted by US
users. Right: Frequency of filtered and canonicalized hashtags
occurring with public images by users from all countries. We de-
fine the head as the set of canonical hashtags associated with more
than 5,000 images; the remaining hashtags form the tail.

out and canonicalize the hashtags using WordNet synsets
[22]. More details about this process are in Appendix A.
This results in a label set, C, that contains ∼27k canoni-
cal hashtags that correspond to a set of ∼75k raw hashtags,
where multiple hashtags can map to a single canonical hash-
tag (e.g., #dog and #canine). We drop the “canonical”
qualifier when it is obvious from the context. As the exact
images in the dataset may change with time, the number of
canonical hashtags varies between 27k and 28k across ex-
periments. The hashtag selection and canonicalization re-
duces some of the inherent noise in the supervisory signal.
Image collection and labeling. We collect all public In-
stagram images that have at least one hashtag from our vo-
cabulary.1 The images were subjected to an array of auto-
mated filters designed to remove potentially offensive con-
tent. While certainly not perfect, this substantially reduces
the issues that plague other large image datasets [8,55]. We
construct a multi-label dataset using these images by con-
verting all hashtags into their corresponding canonical tar-
gets (note that a single image may have multiple hashtags).
Hashtags that are not in the vocabulary are discarded.
Resampling. We adopt a resampling procedure similar
to [49] to generate our final pre-training examples. The re-
sampling procedure aims to down-weight frequent hashtags
whilst up-weighting infrequent hashtags in the pre-training
task. We do so by resampling according to the inverse
square root of the hashtag frequency. Unlike [49], we addi-
tionally upsample (with replacement) the long tail of images
with at least one infrequent hashtag by ∼100×. Herein, we
define infrequent hashtags as those that occur with fewer
than 5,000 images (see Figure 1). The resulting resampled
dataset comprises 30% tail images and 70% head images
(see Appendix A for more details).

1We downloaded images from all countries, but excluded images by
users from particular countries to comply with applicable regulations.

We note that this means that in a single training epoch,
each unique tail image appears multiple times. This implies
there is a discrepancy between the number of unique im-
ages in an epoch and the number of total samples processed
in that epoch. We label our dataset by the number of unique
images in the dataset: our IG-3.6B dataset has ∼3.6 billion
unique images. However, a single training epoch over that
dataset processes ∼5 billion samples due to our re-sampling
procedure. This is different from other datasets we com-
pare with (e.g., JFT-300M) in which the unique number of
images equals the total samples processed in an epoch.

3.2. Pre-Training Procedure

In preliminary experiments (Appendix C.1), we studied
image-recognition models including ResNeXt [74], Reg-
NetY [58], DenseNet [35], EfficientNet [65], and ViT [20] .
We found RegNetY and ViT models to be most competitive,
and focus on those in the experiments presented here.

During pre-training, we equip our models with an output
linear classifier over |C| ≈ 27k classes. For ViTs we use
an additional linear layer with output dimension equal to
the input dimension, similar to [20]. Following [49], we
use a softmax activation and train the model to minimize
the cross-entropy between the predicted probabilities and
the target distribution. Each target entry is either 1/K or 0
depending on whether the corresponding hashtag is present
or not, where K is the number of hashtags for that image.

All our RegNetY models were trained using stochastic
gradient descent (SGD) with Nesterov momentum of 0.9.
We employed a half-cosine learning rate schedule [48] with
a base initial value of 0.1 for a batch size of 256 and a final
value of 0. We used a weight decay of 10−5, but disabled
weight decay in batch-normalization layers: preliminary ex-
periments suggested that batch-normalization weight decay
is effective when pre-training on ImageNet-1k, but signifi-
cantly degrades results on larger datasets such as IG-3.6B.

Our ViT models were trained using AdamW [47] with
β1 =0.9 and β2 =0.95. We used an initial learning rate of
4 · 10−4, a batch size of 8,192, and a weight decay of 0.1.

Following [28], we scale the initial learning rate linearly
with the batch size when doing distributed training. We
“warm up” the learning rate for the first 5% of training up-
dates by linearly increasing the learning rate from 1/10-th of
the initial value to the initial value. Similar to [28], we find
that performance degrades for batch sizes larger than 8,192
so we did not increase our batch size further.

We trained our models using mixed-precision training on
images that were pre-processed to 224×224 resolution us-
ing a standard random-resize crop followed by a random
horizontal flip. In preliminary experiments, we also eval-
uated several other training approaches that provide gains
in ImageNet-1k pre-training [18,65], including exponential
moving averages [54], mixup [77], label smoothing [52],
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AutoAugment [15], and stochastic depth [36]. However,
we did not find those approaches to lead to performance
improvements; some even deteriorated performance.

We trained our largest model for 2 epochs of the IG-3.6B
dataset (10 billion samples seen) using 128 Nvidia V100
32GB GPUs across 16 nodes. The nodes were connected
via Ethernet, with 8 GPUs / node connected via NVLink.

4. Experiments
We performed a series of experiments to test the effi-

cacy of our hashtag-based pre-training strategy. We com-
pare our weakly supervised models in transfer-learning ex-
periments with modern supervised (Section 4.2) and self-
supervised models (Section 4.3), and with other weakly su-
pervised models in zero-shot transfer (Section 4.4).

4.1. Experimental Setup

In our experiments, we focus on different types of trans-
fer learning to image-classification tasks. Specifically, we
study: (1) transfer learning using linear classifiers, (2) trans-
fer learning using finetuning, (3) zero-shot transfer learn-
ing, and (4) few-shot transfer learning. We compare the
efficacy of our pre-training strategy with that of fully super-
vised (4.2) and self-supervised (4.3) pre-training strategies.
Datasets. We perform experiments in which we trans-
fer models to ImageNet classification [63] on ImageNet-
1k (1.28M training images, 50,000 validation images,
1,000 classes), and ImageNet-5k (6.57M training im-
ages, 250,000 validation images, 5,000 classes) as de-
fined in [49, 74]. We also perform experiments in which
we transfer pre-trained models to other commonly used
image-classification benchmarks, including the iNaturalist
2018 [67], Places365-Standard [79], and Caltech-UCSD
Birds-200-2011 (CUB-2011) [69] datasets.
Finetuning. We follow [41] in finetuning our pre-training
models for downstream tasks. We finetune the models us-
ing SGD with a batch size of 512 and a half-cosine learning
rate schedule [48]. The initial value was tuned for every
each model-task combination separately via grid-search.
We did not use weight decay during finetuning. We fine-
tune RegNetY and ViT B/16 models using an image reso-
lution of 384×384, and ViT L/16 and H/14 models with
larger 512×512 and 518×518 resolutions respectively –
higher resolutions help these models significantly. For Ef-
ficientNets, we use the pre-training resolution for finetun-
ing. For “large” transfer datasets (defined as datasets with
N > 500,000 examples), we finetune for 20,000 parame-
ter updates; for “medium” datasets (20,000<N ≤ 500,000
examples), we finetune for 10,000 steps; and for “small”
datasets (N ≤20,000 examples), we finetune for 500 steps.
We use mixup [77] with α = 0.1 during finetuning on all
datasets. We used synchronous batch normalization across
GPUs, as it improves transfer performance (see appendix).

For ImageNet-1k finetuning, we additionally compute an
exponential moving average (EMA) of the parameters dur-
ing training with a decay rate of 10−4 and use the averaged
weights for inference [54]. We found this improved the top-
1 accuracy for our best RegNetY and ViT models by 0.2%.
Lastly, we finetuned ViTs for 28 epochs on ImageNet-1k
since the longer schedule helped improve performance.

During evaluation, we resize the smaller side of the im-
age to the final resolution and then take a center crop of the
same size (e.g., resize smaller side to 224 then 224×224
center crop). This differs from standard practice [66] but
gives a boost of 0.1% to 0.5% on the ImageNet-1k dataset.

4.2. Comparison with Supervised Pre-Training

We compare our weakly supervised RegNetY and ViT
models with state-of-the-art supervised EfficientNets [72,
73] and ViTs [20, 76] in transfer-learning experiments on
five datasets: (1) ImageNet-1k , (2) ImageNet-5k, (3) iNat-
uralist, (4) Places365, and (5) CUB-2011. We finetune all
models (see 4.1) on the training split of the transfer dataset
and measure the classification accuracy of the finetuned
models on the validation or test split.

Table 1 presents an overview of the results of these ex-
periments. For each model, the table shows the pre-training
dataset used, the image resolution used during pre-training
and finetuning, the inference throughput of the model, the
number of FLOPs and parameters in the finetuned model,
and the test accuracy on the transfer datasets. We do not re-
port results for an approach when its pre-trained model and
pre-training dataset are not publicly available. In the table,
accuracies that we adopted from the original paper are ital-
icized. For the ImageNet-1k dataset, we report both results
reported in the original papers and results we obtained when
we reproduced the model. We boldface the best result and
underline the second-best result for each dataset. Table 1
groups models into supervised and weakly supervised. In
this grouping, we consider pre-training on JFT datasets to
be supervised pre-training but we acknowledge that little is
known on how these datasets were collected: [76] refers to
the JFT-3B dataset as “weakly labeled” and “noisy” but also
states that semi-automatic annotation was used to collect it.
This suggests that JFT datasets were manually curated and
annotated, which is why we consider them as supervised.2

The results in Table 1 show that our weakly-supervised
models are very competitive: they achieve the best or
second-best accuracy on all five transfer datasets. We note
that models pre-trained on IN-1k datasets observe 5% of the
CUB test data during pre-training [49] as a result of which
their performance is overestimated. This makes the strong
performance of our weakly-supervised models (which do

2Although our system-level evaluations hamper exact comparisons, our
results suggest that the weakly supervised IG-3.6B dataset provides the
same amount of supervisory signal as the supervised JFT-300M dataset.
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Model Pre-training Resolution IN-1k Accuracy Classification accuracy Throughput FLOPs Params
Pre. Fine. Report. Reprod. IN-5k iNat. Places CUB (images/sec.) (B) (M)

Supervised pre-training†

EfficientNet L2 [73] JFT 300M‡ 475 800 88.4 88.3 – – – – 108 479.9 480.3
EfficientNet L2 [73] JFT 300M‡ 475 – 88.2 88.0 61.8 86.5 59.4 91.2§ 293 172.6 480.3
EfficientNet B7 [73] JFT 300M‡ 600 – 86.9 86.7 56.7 82.0 59.2 90.6§ 652 38.4 66.3
EfficientNet B6 [73] JFT 300M‡ 528 – 86.4 86.3 55.4 79.9 58.8 89.1§ 849 19.5 43.0
EfficientNet B8 [72] IN-1k 672 – 85.5 85.2 54.8 81.3 58.6 89.3§ 480 63.7 87.4
EfficientNet B7 [72] IN-1k 600 – 85.2 85.0 54.4 80.6 58.7 88.9§ 652 38.4 66.3
EfficientNet B6 [72] IN-1k 528 – 84.8 84.7 53.6 79.1 58.5 88.5§ 849 19.5 43.0
ViT G/14 [76] JFT 3B 224 518 90.5 – – – – – 56 2826.1 1846.3
ViT L/16 [76] JFT 3B 224 384 88.5 – – – – – 567 191.5 304.7
ViT H/14 [20] JFT 300M 224 518 88.6 – – – – – 116 1018.8 633.5
ViT L/16 [20] JFT 300M 224 512 87.8 – – – – – 255 362.9 305.2
ViT L/16 [20] IN-21k 224 384 85.2 85.2 – 81.7 59.0 91.3§ 567 191.5 304.7
ViT B/16 [20] IN-21k 224 384 84.0 84.2 – 79.8 58.2 90.8§ 1,161 55.6 86.9
ViT L/32 [20] IN-21k 224 384 81.3 81.5 – 74.6 57.7 88.7§ 1,439 54.4 306.6

Weakly supervised pre-training

ViT H/14 IG 3.6B 224 518 88.6 60.9 86.0 60.7 91.7 116 1018.8 633.5
ViT L/16 IG 3.6B 224 512 88.1 59.0 84.2 60.7 91.6 255 362.9 305.2
ViT B/16 IG 3.6B 224 384 85.3 54.5 79.9 59.1 89.8 1,161 55.6 86.9
RegNetY 128GF IG 3.6B 224 384 88.2 60.9 85.7 60.1 90.8 307 375.2 644.8
RegNetY 32GF IG 3.6B 224 384 86.8 58.5 82.9 59.6 89.5 976 95.1 145.0
RegNetY 16GF IG 3.6B 224 384 86.0 57.2 81.4 59.2 88.3 1,401 47.0 83.6

Table 1. Transfer-learning accuracy of models pre-trained on the specified pre-training dataset followed by finetuning and testing on five
transfer datasets. Accuracies that were adopted from the original papers are italicized. The best result on each dataset is boldfaced; the
second-best result is underlined. Our weakly-supervised pre-trained models achieve the best or second-best performance on all five transfer
datasets. †It is unknown how much manual curation was performed to annotate the JFT datasets. ‡IN-1k is used as supervised pre-training
data; JFT 300M is used without labels. §Model was pre-trained on IN-1k training set, which overlaps with the CUB-2011 test set.

not see test data during training) particularly noteworthy.
To provide more insight into the classification accuracy

and throughput trade-off, we plot one as a function of the
other in Figure 2. Comparing ViT and RegNetY models
trained on the same IG-3.6B dataset, we observe that vision
transformers obtain the highest classification accuracies. In
terms of accuracy-throughput tradeoff, RegNetYs outper-
form at small to medium model sizes. The RegNetY 128GF
model performs quite similarly on accuracy and throughput
to the semi-supervised EfficientNet L2 model, but at smaller
size scales, RegNetYs provide a better tradeoff.

4.3. Comparison with Self-Supervised Pre-Training

Our experiments so far suggest that the ability to scale up
weakly-supervised pretraining to billions of images can off-
set the lower amount of learning signal obtained per train-
ing example. This raises the question if we need weak su-
pervision at all, or whether modern self-supervised learn-
ers [10–14, 26, 27, 29, 31, 51] may suffice. Self-supervised
learning scales even more easily than weakly-supervised
learning, and prior work has demonstrated the potential of
self-supervised pre-training at scale [27, 31].

We perform transfer-learning experiments on ImageNet-
1k that compare our weakly-supervised learner with Sim-
CLR v2 [13], SEER [27], and BEiT [3]. The comparison
with SEER is of particular interest: because it is trained on
a similar collection3 of Instagram images, we can readily

3The data distribution used in [27] and in our study may not be exactly

compare both learning paradigms on the same data distri-
bution. We perform experiments in two transfer-learning
settings: (1) a setting in which a linear classifier is attached
on top of the pre-trained model and the resulting full model
is finetuned and (2) a setting that initializes this linear classi-
fier using the zero-shot transfer approach described in Sec-
tion 4.4 (without Platt scaling) before finetuning the full
model. Following prior work [13, 27], we vary the amount
of labeled ImageNet examples used for finetuning to 1%,
10%, and 100% of the original ImageNet-1k training set.
We report results using images of size 224×224 pixels.

The results of our experiments are presented in Table 2.
Results for SimCLRv2, SEER and BEiT were adopted
from [3, 13, 27]; small differences in experimental setup
may exist. Our results show that weakly-supervised learn-
ing substantially outperforms current self-supervised learn-
ers, particularly in low-shot transfer settings, likely because
our weakly-supervised learners receive more learning sig-
nal per sample. Moreover, our results show that weakly-
supervised learners benefit from zero-shot initialization in
low-shot transfer settings. We note that our observations
may change if self-supervised learners are scaled further.

4.4. Zero-Shot Transfer

Another potential advantage of weakly-supervised mod-
els is that they have observed a large variety of training tar-
gets during pre-training. This may help them recognize new

the same, as we use the data resampling approach described in Section 3.1.
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Figure 2. Transfer-learning accuracy as a function of throughput
of pre-trained models that were finetuned on five datasets (please
refer to Table 1 for full results). ViTs and EfficientNets achieve the
highest top-line accuracies, but RegNetY models perform better in
the high-throughput regime.

visual concepts quickly. We test the ability of our mod-
els to learn and recognize new visual concepts rapidly in
zero-shot transfer learning setting.4 In this setting, we use
the output layer of the pre-trained model directly without
any finetuning. We can do this because we trained on 27k
hashtags derived from WordNet [22], allowing us to define
a mapping between hashtags and class labels for datasets,
like ImageNet-1k, also built on WordNet. We use the same
image resolution as pre-training, viz., 224× 224 pixels.

Platt scaling. In our zero-shot transfer experiments, we
consider a transductive learning setting [24] in which all
test examples are available simultaneously at test time. This
allows us to train a Platt scaler [53] on the test data that cor-
rects for differences in the distribution of hashtags (which
are Zipfian) and the distribution of classes in the target task

4Some prior work refers to this learning setting as zero-shot learn-
ing [37, 57]. We find this term confusing because it differs from classical
zero-shot learning [43]. Hence, we adopt the term zero-shot transfer.

Model Approach Pre-training Transfer Accuracy
1% 10% 100%

Self-supervised pre-training

RN152w3 + SK SimCLRv2† [13] IN-1k Finetune 74.9 80.1 83.1
RegNetY 128GF SEER [27] IG 1B Finetune 57.5 76.7 83.8
RegNetY 256GF SEER [27] IG 1B Finetune 60.5 77.9 84.2
ViT L/16 BEiT [3] IN-1k Finetune – – 85.2

Weakly supervised pre-training

RegNetY 128GF Ours IG 3.6B ZS-Init.+Ft. 82.0 84.5 87.8
RegNetY 32GF Ours IG 3.6B ZS-Init.+Ft. 79.4 82.0 86.5
RegNetY 16GF Ours IG 3.6B ZS-Init.+Ft. 77.6 80.8 85.7
RegNetY 128GF Ours IG 3.6B Finetune 79.2 84.1 87.9
RegNetY 32GF Ours IG 3.6B Finetune 74.8 81.7 86.3
RegNetY 16GF Ours IG 3.6B Finetune 72.3 80.4 85.3

Table 2. Transfer accuracy of models on the ImageNet-1k dataset
as a function of the percentage of ImageNet-1k training exam-
ples used for transfer learning. Transfer learning is performed
using either standard finetuning, or zero-shot (ZS) transfer ini-
tialization followed by finetuning. The best result in each set-
ting is boldfaced; the second-best result is underlined. Accu-
racies that are adopted from the original paper are emphasized.
Our weakly supervised pre-trained models outperform models pre-
trained with modern self-supervised learners, in particular, in the
few-shot regime. †During finetuning, SimCLRv2 accessed 100%
of the ImageNet training images but k% of the labels, whereas
SEER and our method accessed k% of the training data.

(which is uniform). The Platt scaler is parameterized by a
weight vector w ∈ RC and bias vector b ∈ RC , where C is
the number of classes. Given a probability vector p ∈ ∆C

with ∆C the C-simplex, the Platt scaler computes a new
output p′ = softmax (diag(w)p+ b). The Platt scaler
is trained to minimize the cross-entropy loss between the
test distribution of p′ and a uniform distribution over the C
classes. Note that this does not use the test labels; it only
encourages the predictions to be uniform over classes.

Mapping from hashtags to ImageNet classes. Because
the targets in both the ImageNet and IG-3.6B datasets are
English nouns, we can construct a many-to-many map-
ping between Instagram hashtags and ImageNet classes. To
do so, we first map both hashtags and ImageNet classes
to WordNet synsets, and then map hashtags to ImageNet
classes based on their similarity in WordNet [22]. We use
the resulting many-to-many mapping between hashtags and
classes to aggregate hashtag-prediction scores over Ima-
geNet classes. We experiment with three different aggre-
gation methods and use the method that we found to work
best for each model; see appendix for details.

Results. The results of our zero-transfer results are pre-
sented in Table 3. The table presents top-1 classification ac-
curacies on four ImageNet-like test sets for our models with
and without Platt scaling. We compare the performance of
our models with that of CLIP [57] and ALIGN [37]. These
experiments are system-level comparisons in which many
factors are different: For example, CLIP was trained on
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a dataset of 400 million images and captions that appears
more curated than ours, it was finetuned at a higher res-
olution, and it performs zero-shot transfer via prompt en-
gineering [9] which is known to improve recognition accu-
racy [57]. ALIGN uses a different image-recognition model
(viz., EfficientNet) and was trained on 1 billion pairs of web
images and corresponding alt-texts [37].

Table 3 presents our results with zero-shot transfer on
four ImageNet-like datasets. The results show that our
weakly supervised models perform very well out-of-the-
box: without ever seeing an ImageNet image, our best
model achieves an ImageNet top-1 accuracy of 75.3%. The
results also show that Platt scaling is essential to obtain
good zero-shot transfer performance with our model, as it
corrects for differences in the distribution of hashtags and
ImageNet classes. Finally, we find that our ViT models un-
derperform our RegNetY models in the zero-shot transfer
setting. This is unsurprising considering that ViTs also un-
derperformed RegNetYs on ImageNet-1k finetuning at an
image resolution of 224× 224 pixels.

Comparing our models with CLIP [57], we observe that
the CLIP ViT L/14 model slightly outperforms our model in
zero-shot transfer to the IN-1k dataset; whereas the smaller
RN50×64 CLIP model underperforms it. On some datasets,
the ALIGN [37] model performs even slightly better. How-
ever, the results are not fully consistent: our models do ob-
tain the best performance on the ImageNet-v2 dataset [60].
Because these experiments perform system-level compar-
isons, it is difficult to articulate what drives these differences
in performance. Nonetheless, our results provide further ev-
idence that weakly-supervised approaches like ours, CLIP,
and ALIGN provide a promising path towards the develop-
ment of open-world visual-recognition models [33].

5. Broader Impact
A potential downside of weakly-supervised training of

models on uncurated web data is that they may learn harm-
ful associations that reflect offensive stereotypes [6, 9].
Moreover, the models may not work equally well for dif-
ferent user groups; for example, they do not work as well in
non-English speaking countries [17] because we used En-
glish hashtags as the basis for training our models. We
performed a series of experiments to better understand: (1)
the associations our hashtag-prediction models learn with
photos of people with varying characteristics, and (2) how
well those models perform on photos taken in non-English
speaking countries. We summarize the results of those ex-
periments here and refer to the appendix for further details.
Analyzing associations in hashtag predictions. We per-
formed experiments analyzing the associations our Reg-
NetY 128GF hashtag-prediction models make for photos
that contain people with different apparent skin tone, ap-
parent age, apparent gender, and apparent race. The ex-

Model Platt Classification accuracy
IN-1k ReaL-IN IN-v2 Obj. Net

Visual n-grams [45] N/A 35.2 – – –
CLIP RN50×64 [57] N/A 73.6 – – –
CLIP ViT L/14 [57] N/A 76.2 – 70.1 72.3
ALIGN [37] N/A 76.4 – 70.1 –

RegNetY 128GF Yes 75.3 79.5 71.1 64.3
RegNetY 32GF Yes 73.6 78.3 69.1 49.9
RegNetY 16GF Yes 72.5 77.6 67.9 45.1
RegNetY 128GF No 65.1 69.7 60.2 54.2
RegNetY 32GF No 62.2 67.5 57.3 59.1
RegNetY 16GF No 60.7 66.3 55.6 54.8
ViT H/14 Yes 72.3 76.5 66.5 60.0
ViT L/16 Yes 71.6 76.0 65.7 57.3
ViT B/16 Yes 67.7 73.0 61.9 43.0
ViT H/14 No 62.8 67.3 57.7 52.4
ViT L/16 No 62.1 66.6 56.3 51.1
ViT B/16 No 58.4 63.6 52.3 48.9

Table 3. Zero-shot transfer accuracy of models on four datasets
with WordNet-based classes: (1) the ImageNet-1k dataset, (2) the
ReaL ImageNet [7] dataset, (3) the ImageNet v2 [60] dataset, and
(4) the ObjectNet [4] dataset. The best result on each dataset is
boldfaced; the second-best result is underlined. Accuracies that
are adopted from the original paper are italicized. When using
Platt scaling, our weakly-supervised RegNetY models work very
well out-of-the-box. They achieve 75.3% zero-shot transfer accu-
racy on ImageNet-1k, and outperform CLIP [57] and ALIGN [37]
on the ImageNet v2 [60] dataset.

periments were performed using: (1) a proprietary dataset
that contains 178,448 Instagram photos that were annotated
using the Fitzpatrick skin tone scale [23] and (2) the UTK
Faces dataset, which provides apparent age, apparent gen-
der, and apparent race labels [78].

We find that the model has learned several associations
between hashtags and skin tone; see the appendix for de-
tails. For example, #redhead is more commonly pre-
dicted for photos of people with a light skin tone, whereas
#black is more often predicted for people with a dark
skin tone. Similarly, some hashtag predictions correlate
with the apparent age of people in photos; see the appendix
for details. For example, our models more commonly pre-
dict #baby or #kid for photos that contain people who
are 1−10 years old, and more commonly predict #elder
for the 80− 90 years age group. When analyzing our
model for gender stereotypes, we found that our model’s
hashtag predictions associate men with #football and
#basketball more frequently. By contrast, our model
associates photos containing women more frequently with
#makeup and #bikini; see the appendix for details.

The most troubling associations we observed stem from
an analysis of model predictions for photos that contain peo-
ple with different apparent race. In particular, some of our
experiments suggest that our model may associate photos
that contain Black people with #mugshot and #prison
more frequently; see the appendix. However, it is unclear
whether these observations are due to our model making
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incorrect or biased predictions for photos in the evaluation
dataset, or whether they are due to the evaluation dataset
containing a problematically biased image distribution. In
particular, a more detailed analysis uncovered the presence
of a troubling bias in the evaluation dataset (rather than in
our model): we found that the UTK Faces dataset [78] con-
tains a substantial number of mug shots that disproportion-
ally portray Black individuals.

Overall, our results suggest that while our hashtag-
prediction models appear to make fewer troubling predic-
tions than language models [6, 9], careful analyses and
adaptations would be needed before hashtag predictions
from our model can be used in real-world scenarios. Mo-
tivated by this observation, we do not release the final
hashtag-prediction layer of our models as part of this study.
Analyzing hashtag prediction fairness. We also analyzed
how well our hashtag-prediction models work on photos
taken across the world. We repeated the analysis of [17]
on the Dollar Street dataset and performed analyses on a
proprietary dataset that contains millions of images with
known country of origin. Akin to [17], we observe large
accuracy differences of our model on Dollar Street photos
from different countries. Our analysis on the much larger
and more carefully collected proprietary dataset confirms
this result but suggests that the effect sizes are much smaller
than reported in [17]; see the appendix for details. Specifi-
cally, we find that the range of per-country accuracies is in
a relatively tight range of ∼5% i.e., our model achieves per-
country recognition accuracies between 65% and 70% for
all 15 countries in the dataset. Overall, our results suggest
more work is needed to train models that perform equally
across the world. In future work, we plan to train multi-
lingual hashtag models [64] as this may lead to models that
achieve equal recognition accuracies across countries.

6. Discussion
In this paper, we have presented an in-depth study of

fully supervised, self-supervised, and weakly-supervised
pre-training for image recognition. Combined with related
work [25, 37, 49, 56, 57], our results provide a compelling
argument for the use of weakly-supervised pre-training in
the development of systems for visual perception. However,
our study also uncovers limitations of this line of research.

In particular, we find it is increasingly difficult to per-
form systematic, controlled experiments comparing differ-
ent approaches and techniques. There are a variety of rea-
sons for this, including the use of proprietary data that was
collected via opaque processes5, the diversity of model ar-
chitectures used, the complexity of training recipes, the het-

5We acknowledge that, although the data we use in our experiments
is public, it is hard for others to collect that data. However, unlike other
studies, we did strive to be comprehensive in describing our data-collection
procedure, as we aim to maximize what the reader can learn from our study.

erogeneity of hardware and software platforms used, the
vast compute resources required, and the fact that not all
studies publish pre-trained models. Together, this creates
an environment in which researchers cannot perform con-
trolled studies that test the effect of one variable, keeping
all other variables fixed. Instead, they can only perform
system-level comparisons, as we did in this study. Such
comparisons provide signal on the potential of various ap-
proaches, but they do not produce conclusive results. This
problem is exacerbated by the fact that the signal we are
measuring is small, as recognition accuracies on commonly
used evaluation datasets appear saturated. To create a thriv-
ing research community focused on large-scale learning of
vision systems, it is imperative that we address these issues.

A second limitation of this line of research is the strong
focus on recognition accuracy and inference speed as the
main measures of merit. While recognition accuracy and in-
ference speed are obviously important, they are not the only
measures that matter for the quality of a visual-perception
system. Other measures include the recognition accuracy
experienced by different groups of users and the prevalence
of predictions that reinforce harmful stereotypes. We pre-
sented an initial study of such measures in Section 5 but
this foray is not completely conclusive or sufficient. In par-
ticular, we found there are no well-established evaluation
datasets and experimental protocols that facilitate the rig-
orous analyses. To make matters worse, the presence of
harmful stereotypes in some commonly used vision datasets
(such as the association between Black people and mug
shots we found in the UTK Faces dataset [78]) appears to
be unknown. In order to make hashtag-prediction systems
like ours ready for real-world deployment, it is essential that
we improve the quality of our analyses, and that we address
any issues that those analyses may surface.

To conclude, we emphasize that we remain convinced
about the potential of weakly-supervised learning ap-
proaches. If we resolve the aforementioned issues, we be-
lieve such approaches may improve visual-perception sys-
tems in the same way that large-scale language models have
improved natural language understanding, machine transla-
tion, and speech recognition.
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