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Abstract

We study complex-valued scaling as a type of symmetry
natural and unique to complex-valued measurements and
representations. Deep Complex Networks (DCN) extend real-
valued algebra to the complex domain without addressing
complex-valued scaling. SurReal extends manifold learning
to the complex plane, achieving scaling invariance with
manifold distances that discard phase information.

Treating complex-valued scaling as a co-domain trans-
formation, we design novel equivariant/invariant layer func-
tions and architectures that exploit co-domain symmetry. We
also propose novel complex-valued representations of RGB
images, where complex-valued scaling indicates hue shift or
correlated changes across color channels.

Benchmarked on MSTAR, CIFAR10, CIFAR100, and
SVHN, our co-domain symmetric (CDS) classifiers deliver
higher accuracy, better generalization, more robustness to
co-domain transformations, and lower model bias and vari-
ance than DCN and SurReal with far fewer parameters.

1. Introduction
Symmetry is one of the most powerful tools in the deep

learning repertoire. Naturally occurring symmetries lead to
structured variation in natural data. Modeling these symme-
tries thus greatly simplifies learning [1], e.g., Convolutional
Neural Networks (CNNs) [2] capture the translational sym-
metry of image data, and PointNet [3] captures the permu-
tation symmetry of 3D point clouds. These symmetries are
formalized as invariance or equivariance to a group of trans-
formations [4]. However, this line of research has primarily
focused on transformations defined on the domain of an im-
age (such as scaling and rotations [5–7]), while co-domain
transformations (Fig. 1) such as color shift and complex-
valued range scaling remain under-explored. Additionally,
this research has primarily focused on real-valued data.

We explore complex-valued data which arise naturally
in 1) remote sensing such as synthetic aperture radar (SAR)
imaging, medical imaging such as magnetic resonance imag-
ing (MRI), and radio frequency communications; 2) spectral
representations of real-valued data such as Fourier Trans-

Figure 1. We study principled deep learning designs that exploit co-
domain symmetry in the range of an image. An image is a function
from pixel coordinates in the domain RD to pixel values in the
co-domain CK (e.g., (D,K) = (2, 3) for RGB images). Spatial
transformations such as scaling and rotations act on the domain,
mapping points in RD to other points, while leaving the underlying
function values intact. Co-domain transformations such as color
distortion or complex-valued scaling, on the other hand, act on the
function values only. Rows 2-3 in Column 4 are complex-valued
scaled SAR images with magnitudes and phases visualized in the
color intensity and hue respectively.

form [8,9]; and 3) physics and engineering applications [10].
In deep learning, complex-valued models have shown several
benefits over their real-valued counterparts: larger represen-
tational capacity [11], more robust embedding [12] and asso-
ciative memory [13], more efficient multi-task learning [14],
and higher quality MRI image reconstruction [15]. We ap-
proach complex-valued deep learning from a symmetry per-
spective: Which symmetries are inherent in complex-valued
data, and how do we exploit them in modeling?

One type of symmetry inherent to complex-valued data is
complex-valued scaling ambiguity [18]. For example, con-
sider a complex-valued MRI or SAR signal z. Due to the
nature of signal acquisition, z could be subject to global mag-
nitude scaling and phase offset represented by a complex-
valued scalar s, thus becoming s·z.

A complex-valued classifier takes input z and ideally
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Figure 2. Our method combines the strengths of DCN and SurReal,
demonstrating better generalization and increased robustness to
C-scaling and color transformations. All examples are from CIFAR
10 with our LAB encoding. (a) Unlike DCN or SurReal, our model
handles two aspects essential to complex-valued data: C-scale in-
variance and complex algebra. Our key insight is to design novel
layer functions that are equivariant and invariant to complex scaling
in the rich family of functions with complex algebra. (b) Violin
plots of classwise bias/variance computed following the method
of [16]. The whiskers represent maximum/median/minimum values
respectively. While SurReal has the highest bias and variance, our
model achieves the lowest, indicating better generalization. (c)
Accuracy under color jitter (as used in [17]) and complex-scaling
with different rotation ranges. Our method maintains high accu-
racy across complex-rotations and color jitter, whereas DCN and
Real-valued CNN fail. SurReal [18] is robust, but has low overall
accuracy. Our method combines high accuracy with robustness.
(d) Model confidence of the correct class for a single example.
Higher confidence means larger radius. DCN predictions are highly
variable, while our model is robust to complex-scaling.

should focus on discriminating among instances from dif-
ferent classes, not on the instance-wise variation s·z caused
by complex-valued scaling. Formally, function f is called
complex-scale invariant if f(s · z) = f(z) and called
complex-scale equivariant if f(s·z) = s·f(z). For brevity,
we abbreviate complex-valued scaling as C-scaling.

We distinguish two types of image transformations, view-
ing an image as a function defined over spatial locations.
C-scaling of a complex-valued image is a transformation in
the co-domain of the image function, as opposed to a spatial
transformation in the domain of the image (Fig. 1). Formally,
I : RD → CK denotes a complex-valued image of K chan-
nels in the D-dimensional space, where R (C) denotes the
set of real (complex) numbers. Some common (D,K)’s are
(2,1) for grayscale images, (2,3) for RGB, and (3, 6+) for
diffusion tensor images.

1. Domain transformation T : RD→RD transforms the
spatial coordinates of an image, resulting in a spatially
warped image I(T (p)), where p ∈ RD denotes the pixel
location. Translation, rotation, and scaling are examples
of domain transformations.

2. Co-domain transformation T ′ : CK → CK maps the
pixel value to another value, resulting in a color adjusted
image T ′(I(p)), p ∈ RD. C-scaling and color distortions
are examples of co-domain transformations.

C-scaling thus presents not only a practical setting but also
a case study for general co-domain transformations.

Existing methods approach complex-valued deep learn-
ing in two different ways. 1) Deep Complex Networks
(DCN) [19] extends real-valued algebra to the complex do-
main without addressing C-scaling; their models are highly
sensitive to C-scaling (Figs. 2c and 8a). A pre-processing
trick to remove such scaling ambiguity is to simply normal-
ize all the pixel values by setting their average phase to 0 and
magnitude to 1, but this process introduces artifacts when the
phase distribution varies greatly with the content of the im-
age (Fig. 8c). 2) SurReal [18] extends manifold-valued deep
learning to complex-valued data, achieving C-scaling invari-
ance using manifold distances. However, these manifold
distances discard rich phase information, and the restrictive
SurReal framework is unable to express complex algebraic
operations on complex-valued data. As a result, it underper-
forms on large datasets (Tab. 1 and Fig. 2c).

We propose a principled method by designing novel layer
functions that preserve co-domain symmetry. Our work
makes the following contributions. 1) We develop coun-
terparts of common layer functions used in computer vi-
sion pipelines that are equivariant and invariant to C-scaling.
Our method circumvents the limitations of SurReal [18]
and achieves high accuracy with larger models and datasets.
2) We introduce novel complex-valued encodings of color,
demonstrating the utility of using complex-valued repre-
sentations for real-valued data. C-scaling invariance under
our LAB encoding automatically leads to color distortion
robustness without the need for color jitter augmentation.
3) Benchmarked on MSTAR, CIFAR 10, CIFAR 100, and
SVHN, our method outperforms DCN and SurReal with
higher accuracy, better generalization, and more robustness
using far fewer parameters.

2. Related Work
Complex-valued processing. Complex numbers are

ubiquitous in mathematics, physics, and engineering [10,
20,21]. Traditional complex-valued data analysis involves
higher-order statistics [22, 23]. [11] demonstrates higher rep-
resentational capacity of complex-valued processing on the
XOR problem. [24] proposes a sparse coding layer utiliz-
ing complex basis functions. [25] proposes a biologically
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meaningful complex-valued model. [26, 27] encode the con-
fidence and size of pairwise affinity in complex-valued mea-
surements and learn a global data embedding in the complex
plane. [15] applies complex-valued neural networks to MRI
image reconstruction. [28] investigates the role of critical
points in complex neural networks. [29] demonstrates that
complex-valued networks have smaller generalization errors
than real-valued networks. [19] contains a detailed account
of complex-valued deep learning.

Transformation equivariance and invariance. Most
work focuses on developing convolutional layers equivariant
to domain transformations such as rotation and scaling [5,
6, 30, 31]. [6] introduces a principled method for producing
group-equivariant layers for finite groups. [5] extends this
work to Lie groups on continuous data. [32] uses circular
harmonics to produce deep neural networks equivariant to
rotation and translation. [33] attempts to produce a general
theory of group-equivariant CNNs on the Euclidean space
and the sphere. [34] further extends the framework to local
gauge transformations on the manifold. These methods are
not applicable to the co-domain transformation we study
here. [7] introduces rotation-equivariant layers for point-
clouds, generalizing neurons to R3 vectors with 3D rotations
as a co-domain transformation. In contrast, our method
handles both the complex-valued algebra and the geometry
of complex-valued scaling.

Complex-valued scaling. Despite increasing interests in
complex-valued neural networks, how to handle C-scaling
ambiguity remains an open issue [19, 35–37] extend real-
valued neural architectures to the complex domain by re-
defining building blocks such as complex-valued convolu-
tion, batch normalization, and non-linear activation func-
tions. However, these methods are not robust against C-
scaling. SurReal [18] achieves invariance to complex-valued
scaling by adopting a manifold view of complex numbers.
It models a complex number as an element of a manifold
where C-scaling corresponds to translation and uses tools
from manifold-valued learning to create models invariant to
C-scaling. SurReal generalizes better to unseen complex-
valued data with much leaner models. However, SurReal is
highly restrictive (Sec. 3.1), and its complex-valued stages
are forced to be linear (Sec. 3.2), limiting SurReal’s mod-
elling capacity and preventing it from achieving high accu-
racy on large datasets (Tab. 1).

3. Co-Domain Symmetric Learning
We treat complex-valued scaling as a co-domain trans-

formation and design novel equivariant and invariant layer
functions and architectures that exploit co-domain symme-
try. We can divide C-scaling into two parts: magnitude and
phase. Since magnitude variations can be handled by nor-
malizing the input, we focus primarily on building layers
that are equivariant/invariant to phase scaling.

This section describe equivariant versions of convolu-
tion, non-linearity, pooling, and BatchNorm followed by
invariant layers. We also describe GTReLU, a generalized
version of the Tangent ReLU [18] non-linear activation func-
tion. Finally, we introduce prototype distance layers to con-
vert complex-valued features into equivariant/invariant real-
valued predictions.

3.1. Equivariant Convolution

Convolutional layers form a crucial part of modern com-
puter vision pipelines. [19] describes a generalization of real-
valued convolution to complex-valued filters and inputs. For
pedagogical clarity, we summarize this construction here.

We start with a complex-valued feature z = x+ iy where
x denotes the real-valued part, y denotes the imaginary part,
and i =

√
−1. Then for a complex-valued filter matrix

W = A+ iB, [19] defines the complex-valued convolution
W ∗ z using a combination of real-valued convolutions:

W ∗ z = (A ∗ x−B ∗ y) + i(A ∗ y +B ∗ x) (1)
In practice, a bias term is also added after the convolution to
create an affine function. The structure of the weight matrix
W results in translational equivariance, and works like [1, 5,
6] generalize it to transformations beyond translation.

In contrast to domain transformations which require a
structured weight matrix, any linear layer is equivariant to
complex-valued scaling: For a linear function L : Cm → Cn

with an input vector x ∈ Cm and complex scalar s ∈ C,
L(s ·x) = s ·L(x). However, the bias term used in DCN
[19] destroys C-scale equivariance. Thus, we remove this
term, restoring its equivariance. Additionally, we use Gauss’
multiplication trick to speed up the convolution by 25%:

W ∗ z = (t1 − t2) + i(t3 − t2 − t1)

where t1 = A ∗ x, t2 = B ∗ y, t3 = (A+B) ∗ (x+y).
In contrast, SurReal uses weighted Frechet Mean (wFM),
a restricted convolution where the weights are constrained
to be real-valued, positive, and to sum to 1. This restrictive
definition leads to significantly lower accuracy (Tab. 4).

3.2. Equivariant Non-Linearity

Non-linear activation functions are necessary to construct
deep hierarchical representations. [18, 19, 37, 38] have inves-
tigated several complex-valued non-linearities. CReLU, the
most prominent example, computes ReLU independently on
the real and imaginary parts of the input. Tangent ReLU
(TReLU) [18] uses the polar representation, thresholding
both magnitude and phase.

However, these non-linearities are not complex-scale
equivariant. DCN [19] uses CReLU, failing to be ro-
bust against complex-scaling. SurReal does not use non-
linearities in its complex-valued stages (see Tables I & II
in [18]). SurReal’s complex-valued stages are thus fully
linear, significantly limiting its modelling capacity (Tab. 1).
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Figure 3. Our equivariant non-linearity, E{N}, works in four
stages. We compute the channel mean m of the input feature f
and normalize it to retain only phase information. This normalized
mean vector m̂ is equivariant to phase. We multiply f by the
conjugate, m̂∗, to cancel the input phase, resulting in a phase-
invariant feature f ⊙ m̂∗. We feed this feature to the non-linearity
N and multiply by m̂ to restore the removed phase. The result is
equivariant in phase and also equivariant in magnitude if N is.

We introduce a method to make any non-linearity equiv-
ariant. Instead of applying the non-linearity to individual
feature values, we apply it to the relative phase information
between features (Fig. 3). Specifically, we subtract the av-
erage phase, apply the non-linearity, and add the original
phase back.

Given a complex-valued input feature vector f ∈ Cn with
n channels, and given any complex-valued non-linearity
N : C → C such as CReLUor TReLU, we compute an
equivariant version of N (denoted E{N}) as:

fout = E{N}(f) = m̂⊙N (f ⊙ m̂∗) (2)
where m̂ is the normalized mean with unit magnitude and
the same phase as the mean of f . m̂∗ denotes its complex
conjugate, and ⊙ denotes element-wise multiplication. The
normalized mean m̂ is equivariant to input phase and invari-
ant to input magnitude. As a result, the product f ⊙m̂∗(x, y)
is invariant to phase and equivariant to magnitude. If N is
equivariant to magnitude (e.g., CReLU), the overall layer
E{N} is equivariant to both phase and magnitude.

3.3. Equivariant Pooling

In real-valued networks, max-pooling selects the largest
activations from a set of neighboring activations. However,
for complex numbers, this method applied separately for real
and imaginary channels destroys phase information and thus
complex-scale equivariance. Instead, we select the pixels
with the highest magnitude, preserving phase information.
The result is equivariant to both magnitude and phase.

3.4. Equivariant Batch Normalization

We follow [7], computing Batch Normalization [39] only
on the magnitude of each complex-valued feature, thus pre-
serving the phase information. Given a complex-valued
input feature map f ∈ Cn, we compute:

fBN = BN(|f |) · f

|f |+ ϵ
(3)

where BN refers to real-valued BatchNorm, and ϵ = 10−6

is an offset to ensure the normalization is numerically stable.
This layer is equivariant to phase and invariant to magnitude.

3.5. Invariant Complex-Valued Invariants

In order to produce invariant complex-valued features,
we introduce the Division Layer and the Conjugate Mul-
tiplication Layer. Given two complex-valued features
z1, z2 ∈ Cn, we define:

Div(z1, z2) =
|z1|

|z2|+ ϵ
exp{i(∡z1 − ∡z2)} (4)

Conj(z1, z2) = z1z
∗
2 (5)

In practice, the denominator for division can be small, so we
offset the magnitude of the denominator by ϵ = 10−7.

While the division layer induces invariance to all complex-
valued scaling, the conjugate layer only induces invariance
to phase. This layer also captures some second-degree in-
teractions similar to a bilinear layer [40]. In contrast to our
layers which capture relative phase and magnitude offsets
of input features, SurReal’s Distance Layer achieves invari-
ance by extracting real-valued distances between features,
discarding detailed relative phase information in the process.

3.6. Generalized Tangent ReLU

[18] introduces Tangent ReLU, a non-linearity which
thresholds phase and magnitude. For a scalar input x ∈ C,
TReLU is defined as:

TReLU(x) = max(1, |x|) exp{i(∡x)+}
where x+ = ReLU(x) = max(x, 0). In practice, TReLU
slows down convergence compared to CReLU. We gen-
eralize TReLU through three modifications: a) a learned
complex-valued scaling factor for each input channel, en-
abling the layer to adapt to input magnitude and phase, b)
hyperparameter r to control the magnitude threshold, and c)
learned scaling constant for the output phase of each channel,
allowing the non-linearity to adapt the output phase distri-
bution. Notably, r = 0 produces a phase-only version of
TangentReLU, which is equivariant to input magnitude. Our
proposed method generalizes TReLU both as a transforma-
tion and as a thresholding function. It is defined as:
GTRelu(x; r, c, ω) = max(r, |c·x|) exp{iω∡(c·x)+}

where r ∈ C is the threshold parameter, c ∈ C and ω ∈ R
are learned scaling factors (Fig. 4).

3.7. Complex Features → Real-Valued Outputs

Tasks like image classification require real-valued out-
puts. Complex-valued neural networks thus employ various
strategies to convert complex-valued features to real-valued.
SurReal [18] uses a manifold distance metric to convert pairs
of complex-valued features into real-valued distances. While
this approach discards rich phase information in the inter-
mediate layers (Sec. 3.5), we note that feature distances are
useful for prototype-based classification [41]. We thus pro-
pose to learn a prototype vector pi for each class i and use
feature distance to classify the input.
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Figure 4. Our Generalized Tangent ReLU transforms the input
in three stages: (a) given input complex vectors, it (b) multiplies
each channel with a learned scaling factor, (c) thresholds the input
magnitude and phase with hyperparameter r, and (d) scales the
phase to adapt the output distribution.

Given a complex-valued feature vector f ∈ Cm, we com-
pute the distance of f to every class prototype vector pi, and
output the class with the closest prototype. Formally, the
class i logit, Li ∈ R, returned by the network is defined as:

Li = −α·d (f ,pi) (6)
where α is a learned scaling factor and d is the feature dis-
tance function. As the image feature moves farther away
from a class prototype, the predicted logit for that class be-
comes smaller. Since the features are complex-valued, a
suitable metric is the manifold distance (equivalent to [18]):

d (z1, z2)=

√(
ln |z1| − ln |z2|

)2
+ arc(∡z1,∡z2)2 (7)

where z1, z2 ∈ C. It amplifies the effect of phase differences
which would otherwise be suppressed by large variations in
magnitude. Alternatively, a simple metric is the Euclidean
distance. In practice, we use BatchNorm on the input fea-
tures before computing distances to accelerate convergence.

Invariant classification: This layer can be made
complex-scale invariant by multiplying the prototypes with
an equivariant feature map:

Li = −α·d
(
f ,pi ⊙ f̄

)
(8)

where f̄ is the mean activation averaged over channels. Since
both inputs to the distance function are C-scale equivariant,
the output is invariant [18].

3.8. Composing Equivariant and Invariant Layers

We introduce two patterns of model composition based
on our proposed layers. Type I models use a complex-
valued Invariant layer and achieve C-scale invariance in
the early stages of the model, whereas Type E models use
Equivariant layers and achieve invariance in the later layers,
thus retaining more phase information (Tab. 1)

Type I: These models consist of a complex-valued invari-
ant layer (Division/Conjugate) to achieve early invariance,
producing C-scale invariant features which can be used by
later stages without any architectural restrictions.

Type E: These models rely on equivariant layers, pre-
serving the phase information through equivariant layers,
and achieving late invariance. They typically achieve higher
accuracy (Tab. 1), but this model class is more restrictive.

Type-I

Type-E

Figure 5. Our CIFARnet models demonstrate two methods of con-
structing complex-scale invariant models. Green arrows represent
equivariant features, and blue arrows represent invariant features.
top: Type I architecture uses a Division Layer in early stages,
achieving early invariance. The resulting complex-scale invariant
features can be used with any subsequent layers. bottom: Type
E uses equivariant layers throughout the network, retaining phase
information until the final Invariant Prototype Distance Layer. This
class of models is more restrictive but can achieve higher accuracy
(See Tab. 1) as it retains more information.

4. Complex-Valued Color Encodings

In this section, we explore complex-valued representa-
tions of real-valued image data. One such representation
is the Fourier Transform, which have proven vital for sig-
nal processing applications. However, Fourier data is not
spatially homogeneous or translation invariant, making it
challenging for convolutional neural networks. To demon-
strate the utility of our method for real-valued images, we
instead propose two complex-valued color encodings which
capture hue shift and channel correlations respectively.

Our first so-called "Sliding" encoding takes an [R,G,B]
image and encodes it with two complex-valued channels:

[R,G,B] → [R+ iG,G+ iB] (9)
The complex phase in this encoding corresponds to the ratio
of R, G, B values, thus capturing the correlation between the
adjacent color channels.

Our second proposed encoding uses L∗a∗b∗, a percep-
tually uniform color representation with luminance repre-
sented by the L channel and chromaticity by the a and b
channels. [42] uses this color space for image colorization.
We use it to represent color as a two-channel, complex-
valued representation, with the first channel containing the
luminance (L∗ channel), and the second channel containing
chromaticity (a∗ and b∗ channels) as a∗ + i b∗ (Fig. 6):

[R,G,B] → [L∗, a∗ + ib∗] (10)
Color distortions as co-domain transformations: C-
scaling in our LAB color representation (Fig. 6) approxi-
mates color distortion. Invariant models are thus naturally
robust to color distortion without any data augmentation.
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Figure 6. Visualization of our complex-valued embedding of LAB
information undergoing complex-scaling. The L∗ channel is vi-
sualized as a grayscale image, and the complex-valued a∗ + ib∗

is visualized as a color image. For an image encoded with our
proposed LAB encoding, color distortions can be approximated
with C-scaling.

5. Experiments

We conduct three kinds of experiments: Accuracy: 1)
Classification of naturally complex-valued images, 2) real-
valued images with real and complex representations; Ro-
bustness against complex scaling and color distortion; Gen-
eralization: 1) Bias-variance analysis, 2) generalization on
smaller training sets, 3) Feature redundancy analysis.

5.1. Complex-Valued Dataset: MSTAR

MSTAR contains 15,716 complex-valued synthetic aper-
ture radar (SAR) images divided into 11 classes [43]. Each
image has one channel and size 128× 128. We discard the
last "clutter" class and follow [44], training on the depres-
sion angle 17◦ and testing on 15◦. We train each model on
varying proportions of the dataset to evaluate the accuracy
and generalization capabilities of each model.

SurReal: We replicate the architecture described in Ta-
ble 1 of [18]. Since the paper does not mention the learn-
ing rate, we use the same learning rate and batch size as
our model. DCN: We use author-provided code1, creating
a complex ResNet with CReLU and 10 blocks per stage.
By default, this model accepts 32 × 32 images, so we ap-
pend 2 × [ComplexConv,ComplexBatchNorm] with stride
2 to downsample the input. The model is trained for 200
epochs using SGD with batch size 64 and the learning rate
schedule in [19]. We select the epoch with the best validation
accuracy. Real-valued baseline: We use a 3-stage ResNet
with 3 layers per residual block and convert the complex
input into two real-valued channels.

CDS: We use a Type I model based on SurReal [18].
We extract equivariant features using an initial equivariant
block containing EConv, Eq. GTReLU, Eq. MaxPool layers,
and then obtain complex-scale invariant features by using a
Division Layer. These features are then fed to a real-valued
ResNet. Please refer to supplementary materials for details.

1https://github.com/ChihebTrabelsi/deep_complex_networks

Training: We optimize both SurReal and CDS models
using the AdamW optimizer [45,46] with learning rate 10−3,
momentum (0.9, 0.99), weight decay 0.1, and batch size
256 for 2.5× 105 iterations . We validate every 1000 steps,
picking the model with the best validation accuracy.

5.2. Real-valued Datasets: CIFAR10/100, SVHN

Datasets: CIFAR10 [49] (and CIFAR100) consists of
10 (100) classes containing 6000 (600) images each. Both
CIFAR10 and CIFAR100 are partitioned into 50000 training
images and 10000 test images. SVHN [50] consists of house
number images from Google Street View, divided into 10
classes with 73, 257 training digits and 26, 032 testing digits.

Models: To ensure equal footing for each model, all net-
works in this experiment are based off CIFARNet, i.e., 3
Convolution Layers (stride 2) and 2 fully connected layers.
We also replace average pooling with a depthwise-separable
convolution as a learnable pooling layer. All models are opti-
mized with AdamW [45,46] using momentum (0.99, 0.999),
for 5 × 104 steps with batch size 256, learning rate 10−3,
weight decay 0.1, and validated every 1000 iterations. DCN:
We use ComplexConv for convolutions and CReLU as the
non-linearity. We do not use Residual Blocks or Complex
BatchNorm from [19] to ensure fairness. SurReal: We
use wFM for convolutions and use Distance Transform af-
ter Layer 3 to extract invariant real-valued features. Real-
Valued CNN: We use the CIFARNet architecture, converting
each complex input channel into two real-valued channels.
CDS: We evaluate two models: Type I: We use EConv for
convolutions and GTReLU (r = 0) for non-linearity. We use
a Division layer after the first Econv to achieve invariance.
The final fully-connected layer is replaced with Prototype
Distance layer to predict class logits (Fig. 5). Type E: We
use Econv for convolutions and Equivariant GTReLU for
non-linearity. The final FC layer is replaced with Invariant
Prototype Distance layer to predict logits (Fig. 5), and the
prototype distance inputs are normalized with Equivariant
BatchNorm to preserve equivariance.

CDS-Large: We train a 1.7M parameter Type I model
on CIFAR 10 with LAB encoding and compare it against
equivalently sized DCN (WS with CReLU from [19]). CDS-
Large is based on the simplified 4-stage ResNet provided by
Page et al. [51] for DAWNBench [52]. We use the conjugate
layer after the first Econv to get C-scale invariant features
and feed them to the Complex ResNet. Like DCN, we op-
timize the model using SGD with horizontal flipping and
random cropping augmentations with a varying learning rate
schedule (see supplementary material for more details).

5.3. Model Performance Analysis

Accuracy and scalability: Our approach achieves C-
scale invariance of manifold-based methods while retaining
high accuracy and scalability. On MSTAR, our model beats
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(c) Filter similarity histogram for conv2

Figure 7. Our model generalizes across various dataset sizes, has lower bias/variance, and learns diverse filters. (a): We produce trend curves
(similar to [47]) for the MSTAR accuracy table (Tab. 2). We use linear regression to model log error rate as a function of log dataset ratio.
Our method has the lowest test error for measured dataset sizes, a trend that is predicted to scale to even smaller sizes. (b): We followed [16]
for CIFAR10 models with LAB encoding. Classes are ordered in ascending order of bias for our model. Our model consistently shows
the lowest bias for each class, and the lowest variance for 9 out of 10 classes, indicating overall superior generalization ability. (c): Filter
similarity histogram from the conv2 layer of each CIFARnet model, following [48]. Our distribution mean is closest to 0, indicating our
method achieves the least redundant filters.

Method # Params CIFAR10 CIFAR100 SVHN

RGB LAB Sliding RGB LAB Sliding RGB LAB Sliding

DCN [19] 66,858 65.17 58.64 63.83 32.52 27.36 28.87 85.26 84.43 87.44
SurReal [18] 35,274 50.68 53.02 54.61 23.57 25.97 26.66 80.51 53.48 80.79
Real-valued CNN 34,282 64.43 63.00 63.43 31.93 31.72 31.93 87.47 84.93 87.37

Ours (Type-I) 24,241 69.23 67.17 68.7 36.92 37.81 38.51 89.39 88.86 90.25
Ours (Type-E) 23,697 68.48 67.58 69.19 41.83 39.55 42.08 77.19 74.21 88.39

Table 1. Our models outperform the baselines’ CIFARnet versions on real-valued datasets. The Type-I model performs best on easy datasets
(e.g. SVHN), and the Type-E model performs better on difficult datasets (e.g. CIFAR100). In contrast, SurReal is worse on all datasets.

Model Params 5% 10% 50% 90% 100%

Real 33,050 47.4 46.6 60.6 73 66.9

SurReal [18] 63,690 61.1 68.0 90.3 95.6 94.9

DCN [19] 863,587 49.8 47.0 81.9 89.1 89.1

Ours 29,536 69.5 78.3 91.3 95.2 96.1

Table 2. Our method achieves the best accuracy and generalization
with the fewest parameters. We report accuracy on varying propor-
tions of MSTAR training data. The performance gap is wider for
smaller train-sets, with Real-CNN and DCN failing to generalize.

the baselines across a diverse range of splits with less than
half the parameters used by SurReal (Tab. 2). On the smallest
training split (5% training data), our model shows a gain of
19.7% against DCN and real-valued CNN and 8.4% against
SurReal. On the largest split (100%), our model beats real-
valued CNN by 29.2%, DCN by 7%, and SurReal by 1.2%,
showing our advantage on a large range of dataset sizes.

On CIFAR10, CIFAR100, and SVHN under different
encodings, our models obtain the highest accuracy across
every setting (Tab. 1). Unlike SurReal, our model scales
to these large classification datasets while retaining C-scale
invariance. For the complex-valued color encodings, which

require precise processing of phase information, our model
consistently beats baselines by 4%-8%. These results high-
light the advantage of our approach for precise complex-
valued processing across a variety of real-valued datasets.

Phase normalization and color jitter: A natural pre-
processing trick to address C-scale invariance is to compute
the average input phase ϕ̂ and to scale the input by e−iϕ̂

to cancel it. We test this approach by applying random C-
scaling with different rotation ranges and comparing DCN’s
accuracy with and without phase normalization against our
method (Type-E) (Fig. 8c). When the input phase distri-
bution is simple (e.g., phase set to 0), phase normalization
successfully protects DCN against C-scaling. However, for
complicated phase distributions such as LAB encoding, this
method fails. Our method succeeds in both situations, and
this robustness transfers to the color jitter (as used by [17],
see Fig. 2c). Our model is robust without data augmentation.

Bias and variance analysis: While model accuracy
across different datasets is useful, a better measure for the
generalization of supervised models is the bias-variance de-
composition. We follow [16]: given model f , dataset D,
ground truth Y , and instance x, [16] defines the bias-variance
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(a) t-SNE Embedding for [19] (b) t-SNE Embedding for our model
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Figure 8. Our method learns invariant features with respect to
complex-scaling of the input. All examples are from CIFAR 10 with
our LAB encoding, undergoing multiplication by a unit complex
number. (a, b) tSNE embedding trajectories from DCN [19] and
our model. Each color represents a different example. Embeddings
form tight clusters for our model, and irregular overlapping curves
for DCN. (c) Average accuracy under different rotation ranges,
comparing DCN with phase normalization (dotted blue line) and
without phase normalization (solid blue line) against our method.
The color encoding has a complicated phase distribution, and phase
normalization fails to estimate the amount of rotation, resulting in
poor accuracy. In contrast, our model is robust to C-scaling.

decomposition of the prediction error (per instance) as:
Err(x; f) = E

[
(f(x;D)− Y )2

]
(11)

= Bias(x; f) + Var(x; f) + Irred. Err(x) (12)
where bias measures the accuracy of the predictions with re-
spect to the ground-truth and variance measures the stability
of the predictions. Using the 0-1 loss L0−1, [16] calculates
the bias and variance terms (per instance per model) for the
classification task as such:

Bias(x;h) = L0−1 (ym; t) (13)

Var(x;h) =
1

n

n∑
k=1

L0−1

(
y(k); ym

)
(14)

where ym is the mode of all predictions. We compute this
metric for each instance, averaging bias and variance over
classes. Compared on CIFAR10 with LAB encoding, our
model (Type-E) achieves the lowest bias among all classes
and the lowest variance among 9 out of 10 classes (Fig. 7).
In contrast, SurReal achieves significantly higher bias and
variance despite being C-scale invariant.

Generalization from less training data: [47] derives em-

Method # Params %Acc

DCN [19] 1.7M 92.8

Ours 1.7M 93.7
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Table 3. Our model beats DCN while additionally achieving
complex-scale invariance. a) We train DCN and CDS on CIFAR10
with the LAB encoding, achieving higher accuracy. This result
is consistent with ( Tab. 1), with smaller margin of improvement
due to the larger capacity of big models. b) Similar to Figure 1g,
we plot average accuracy under different rotation ranges. DCN
accuracy degrades under C-scaling, while our method is robust.

pirical trends for scaling of language models under different
conditions, including the overfitting regime where the train-
ing set is small compared to parameters. We produce similar
trend curves for the MSTAR test results by fitting linear
regression curves to log accuracy and dataset size reported
in Tab. 2. We plot the results in Fig. 7. The extrapolated
least-squares linear fit suggests our model might continue to
generalize better on yet smaller datasets.

Feature redundancy comparison: [48] shows that com-
mon CNN architectures learn highly correlated filters. This
increases model size and reduces the ability to capture diver-
sity. We follow [48], measuring correlations between guided
backpropagation maps of different filters in layer 2 for each
model on CIFAR10 with the LAB encoding. We find that
our model displays the highest filter diversity. This observa-
tion is consistent with higher test accuracy, lower bias and
variance, and leaner models from previous experiments.

Scaling to large models: While edge computing and
low-energy applications benefit from leaner models (Tabs. 1
and 2), state-of-the-art models on large real-valued datasets
[53] contain millions of parameters. We test the scalability of
our approach by comparing CDS-Large with a DCN model
of equivalent size on CIFAR10 (LAB) (Tab. 3). While we
focus on leaner C-scale invariant models, our method beats
DCN while additionally achieving complex-scale invariance
even for large models. This observation is consistent with our
results for small models (Tab. 1), showing the effectiveness
of our method for diverse model sizes.

Summary: We analyze C-scaling as a co-domain trans-
formation and derive equivariant/invariant versions of com-
monly used layers. We also present novel complex encod-
ings. Our approach combines complex-valued algebra with
complex-scaling geometry, resulting in leaner and more ro-
bust models with better accuracy and generalization.
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