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Abstract

Deep neural networks are efficient at learning the data
distribution if it is sufficiently sampled. However, they can
be strongly biased by non-relevant factors implicitly incor-
porated in the training data. These include operational
biases, such as ineffective or uneven data sampling, but
also ethical concerns, as the social biases are implicitly
present—even inadvertently, in the training data or explic-
itly defined in unfair training schedules. In tasks having
impact on human processes, the learning of social biases
may produce discriminatory, unethical and untrustworthy
consequences. It is often assumed that social biases stem
from supervised learning on labelled data, and thus, Self-
Supervised Learning (SSL) wrongly appears as an efficient
and bias-free solution, as it does not require labelled data.
However, it was recently proven that a popular SSL method
also incorporates biases. In this paper, we study the biases
of a varied set of SSL visual models, trained using ImageNet
data, using a method and dataset designed by psychologi-
cal experts to measure social biases. We show that there is a
correlation between the type of the SSL model and the num-
ber of biases that it incorporates. Furthermore, the results
also suggest that this number does not strictly depend on
the model’s accuracy and changes throughout the network.
Finally, we conclude that a careful SSL model selection pro-
cess can reduce the number of social biases in the deployed
model, whilst keeping high performance. The code is avail-
able at https://github.com/vpulab/SB-SSL.

1. Introduction

Supervised Deep Learning models currently constitute
the state-of-the-art in the fields of computer vision and natu-
ral language processing. However, the recent developments
[17, 24] in the field of Self-Supervised Learning (SSL) —a
type of unsupervised learning, are slowly closing the per-
formance gap gained via human guidance usually provided
in the shape of target labels. SSL methods aim at solving a

pre-formulated pretext task—defined by automatically gen-
erated labels, whose solution is expected to require high-
level understanding of the data in order to learn descriptive
feature embeddings with strong transferability potential.

Human social biases are a well-studied and, in some
cases, numerically quantifiable phenomenon [23] that
causes unjustified prejudices against social groups based,
among others, on aspects such as age, gender and race.
Whereas one cannot assign prejudices or preferences to
deep learning approaches as these are highly subjective
characteristics attributed solely to humans, deep learning
methods can wrongly correlate certain concepts if the la-
beled training data distribution is biased itself [45]. In prac-
tice, this leads to the replication of social biases. Sev-
eral cases have been studied and reported, including: an
incorrect gender prediction based on the contextual cues
(i.e., location - kitchen, office), rather than on visual ev-
idence associated with the described person [30], a fewer
number of automatic high-paying job recommendations for
female candidates than for male ones [20] and a promo-
tion of biased suggestions in the dating/political decision-
making context [7]. Anticipating these situations, institu-
tional initiatives are being developed internationally to ex-
tinguish social biases from the training data, as declared in
the Ethics Guidelines for a Trustworthy AI issued by the Eu-
ropean Commission, and regulate the use of machine learn-
ing methods with potential human implications, as stated in
numerous US bills [2, 3, 18] and the legislative documents
of other countries [1, 4–6].

Previously, it was demonstrated that supervised learn-
ing models are prone to implicitly learn biases from the
datasets containing them [9, 27, 30], as these human bi-
ases are encapsulated in the target labels. For instance, it
has been shown that the earlier versions of ImageNet [21]
exposed an imbalanced distribution regarding skin colors,
ages and genders, leading to the under-representation of cer-
tain groups [43]. Furthermore, datasets collecting raw com-
ments scraped from the web [10, 40] contain explicit biases
against certain social groups [31].

SSL approaches, being unsupervised, are expected to be
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unaffected by biases-bearing labels. However, as they re-
quire large amounts of training data that often prevents its
curation, it is not unlikely that the data itself contains some
social human biases. In fact, results for a recent study [37],
suggest that two of the state-of-the-art unsupervised learn-
ing models also contain association biases learned from the
data, only in this case it cannot be explained by the choice
of class labels, as the unsupervised models do not leverage
this information in the training process. This result indi-
cates that at least one top performing SSL model [15] might
implicitly learn social biases while training to solve the tar-
geted pretext task. Hence, data should be handled carefully,
as the neural network’s capacity to avoid inadvertent perpet-
uation of undesirable social biases is an important quality to
consider, alongside classification accuracy, in the design of
deep learning models.

This paper addresses this phenomenon and attempts to
answer the questions: what is the origin of the biases in the
SSL setting? What affects the model’s proneness to learn
an implicit social bias? What is the relationship between
the model’s accuracy and the biases it learns? Whereas a
preliminary work addresses the first question and hypothe-
sizes on the origins of implicit social biases in a couple of
unsupervised models [37], to our knowledge, this is the first
attempt to study a wider and more varied set of SSL models.

In particular, the contributions of this paper are:

• We study the association biases acquired by 11 SSL
models that share the same ResNet-50 [29] architec-
ture, and vary in terms of pretext task and, thus, their
accuracy after transfer learning. The results of this
study suggest that the nature of the pretext task influ-
ences the number and nature of incorporated biases,
and that contrastive models are more prone to acquire
biased associations that are implicit in the data.

• We also perform an analysis of biases acquired in the
embeddings at different layers of the models, show-
ing that the number and strength of the biases vary at
different model depths. The results of the per-layer
analysis suggest that a careful consideration of bias in
transfer learning applications can improve the trade-off
between bias and accuracy, as the accuracy achieved
using embeddings from highly-biased layers is not far
from the accuracy achieved by a less-biased embed-
dings layer.

2. Related work
2.1. Measuring biases of computer vision models

Many of the existing methods for measuring the bi-
ased associations are based on the Implicit Association Test
(IAT) [23] that measures the differential relationships be-
tween a target concept and an attribute. The IAT measures

the difference in reaction time of a respondent when corre-
lating concepts and attributes for which biased associations
are prone to exist and for which they are not. For instance,
a biased test subject strongly associating a concept flower
with an attribute pleasant takes less time to correlate ver-
bal or visual stimuli representing them rather than correlat-
ing stimuli representing a concept insect with an attribute
pleasant.

Until recently, association bias tests were mostly used for
Natural Language Processing (NLP) [11,19,35,39,45], but
a recent work has extended the Word Embedding Associa-
tion Test (WEAT) [11] to the image domain, thereby, mak-
ing it possible to quantify association biases in computer vi-
sion models. This approach, named Image Embedding As-
sociation Test (iEAT), measures the differential association
of the target concepts X and Y with the attributes A and B
based on the image embeddings obtained by feeding images
representing these concepts and attributes to a trained deep
learning model. For instance, let the chosen target concepts
be insect (X) and flower (Y) and the attributes be unpleasant
(A) and pleasant (B). Then, the association test will mea-
sure the strength of correlation between insect and unpleas-
ant, and flower and pleasant based on the cosine distances
between the embeddings of X, Y, A and B. A more detailed
explanation is given in Section 3.

2.2. Image embeddings via self-supervised learning
models

In this paper, we refer to an image embedding as the fea-
tures extracted at a given layer of a deep learning model
when a particular image is fed to it. These embeddings are
accepted as a representative description of the image —sub-
jected to the training target. Usually, one can expect that, at
a given layer and for a given architecture, the higher the
performance of the learned model is, the more represen-
tative the embeddings will be. A common way to obtain
image embeddings is by using a network trained in the su-
pervised mode [29, 38]. Alternatively, SSL models can be
used if images are to be represented in label scarce scenar-
ios—as medical data requiring expert annotations or data
acquired using devices capturing at non-visual modalities.
SSL methods, instead of being trained for a label-driven
task can be trained by using objectives such as a simple ge-
ometric task [22,32], pseudo labels generated through auto-
matic clustering [12, 44], or promoting proximity of “simi-
lar” data points in the feature space [14–17, 24, 28]. These
objectives are commonly known as pretext tasks and can be
used to arrange SSL models into the following three groups.

Geometric models One of the most straightforward ap-
proaches to defining a pretext task is applying a geometric
transformation to an input image and training a network to
solve it. The three geometric pretext tasks considered in
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Figure 1. Images representing the concepts of overweight people
(at the top) and thin people (on the bottom). The images are used to
identify a weight-valence bias in the iEAT and original IATs [23].

Figure 2. Images representing the concepts of valence: pleasant (at
the top) and unpleasant (on the bottom). The images correspond to
the verbal stimuli commonly used to describe the valence concepts
[23].

this paper are rotation prediction [32], relative patch loca-
tion prediction [22] and jigsaw puzzles [36]. The rotation
prediction pretext task randomly applies one out of 4 ro-
tations: 0◦, 90◦, 180◦, 270◦, to each training image sample
and trains the network to predict which rotation was applied
to a given image. On the other hand, a model trained to
predict patch locations is based on randomly sampling two
close regions from an input image and training the network
to predict their relative spatial location. Finally, when a jig-
saw puzzle strategy is followed, the image is divided into
tiles, that are then randomly shuffled. Then, the network is
trained to predict their original arrangement.

Clustering-based representation learning A more so-
phisticated approach to deep unsupervised learning is based
on the classical clustering methods that are used to group
unlabeled data into clusters according to some homogene-
ity criteria. An obvious way to incorporate clustering into
the pretext task formulation is to perform clustering after
each model update step. The generated labels are then used
as pseudo-labels to evaluate the model in a supervised man-
ner. These labels would, in turn, change the embeddings at
the next step as the newly generated labels may differ from
the labels at the previous step. This is the strategy followed
by Deep Clustering (DC) [12], that suffers from instability
during the training process due to the random permutation
of labels at each step. To tackle the issue of labels per-
mutation and instability, Cluster Fit [42] relies on using a

teacher network to define the pseudo-labels. Differently, in
Online Deep Clustering (ODC) [44] the labels are updated
using mini-batches and this process is integrated into the
model update. This way, the embeddings and labels evolve
together and the instability inherent in DC is eliminated.

Contrastive models Top performing SSL models are
driven by pretext tasks using contrastive losses [26]. Al-
though exact implementations vary from model to model,
the main idea remains the same: to learn representations
that map the positives close together and push apart the
negatives. The positive samples might be chosen based on
modifications of patches in the same image or applying dif-
ferent augmentations obtained from the same image.

Non-Parametric Instance Discrimination (NPID) [41]
treats each input image (instance) as belonging to a unique
class and trains the classifier to separate between each in-
stance via the noise-contrastive estimation [25]. The mo-
tivation for it comes from the observation that supervised
learning approaches return similar embeddings for related
images. Specifically, it is often the case that the second top
scoring predicted class at the end of the model is seman-
tically close to the first one following a human interpreta-
tion. Therefore, the network is expected to learn the seman-
tic similarity between classes without explicitly having it as
the objective.

Momentum Contrast (MoCo) [28] leverages a dynamic
dictionary where a query and associated keys represent im-
age encodings obtained with an encoder network. If a query
and a key come from the same image, they are considered to
be a positive pair, otherwise a negative one. The queries and
the keys are encoded by separate networks and the key en-
coder is updated as a moving average of the query encoder,
enabling a large and consistent dictionary for learning vi-
sual representations.

Simple Framework for Contrastive Learning of Visual
Representations (SimCLR) [14], building on the principles
of contrast learning, introduces a series of design changes
that allow it to outperform MoCo [28] not requiring a mem-
ory bank. Among these changes are a more careful choice
of data augmentation strategies, addition of a non-linearity
between the embeddings and the contrastive loss, and in-
creased batch sizes and the number of training steps. Fur-
ther improving on the results of SimCLR [14], the second
version of Momentum Contrast model (MoCo v2) [16] ac-
knowledges its efficient design choices and takes advantage
of an MLP projection head and more data augmentations.

Bootstrap Your Own Latent (BYOL) [24] reaches a
new state-of-the-art on ImageNet linear classification while
avoiding one of the greatest challenges that other contrastive
models face: a need for negative pairs. BYOL circumvents
this problem by generating the target representations with a
randomly initialized model and then using them for its on-
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line training. By iteratively updating the target network, the
online network is expected to learn better and better repre-
sentations.

Finally, SwAV [13] describes a hybrid clustering-
contrastive method that avoids the computation of pairwise
distances between positive and negative samples by cluster-
ing the data in consistency-enforced clusters of the different
image augmentations. Thereby, defining positive samples
according to cluster memberships and reducing the distance
storage requirements of the other contrastive methods.

3. Methodology
Given the set of SSL models described in Section 2.2,

we apply the iEAT framework [37] introduced in Section
2.1 to each model and investigate the presence of associa-
tion biases. iEAT takes a set of input embeddings {x, y}
of images representing the target concepts (X,Y ) and a
set of input embeddings {a, b} representing the measured
attributes (A,B). For instance, the target concepts over-
weight people and thin people are represented by the exam-
ple images on Figure 1, while the attributes pleasant and
unpleasant can be visualized by the images representing
the valence concept (see examples in Figure 2). The null-
hypothesis tested by iEAT states that X=overweight people
embeddings are as similar as Y =thin people embeddings to
(A,B)=(pleasant, unpleasant) embeddings, or that the dis-
similarities are alike. The rejection of the null-hypothesis
would mean that one target concept is more correlated with
one attribute than the other target concept, thus, detecting
an association bias. iEAT tests the null-hypothesis by a per-
mutation test and a metric quantifying the differential asso-
ciation s(X,Y,A,B), defined as follows:

s(X,Y,A,B) =
∑
x∈X

s(x,A,B)−
∑
y∈Y

s(y,A,B), (1)

where:

s(t, A,B) = mean
a∈A

cos(t, a)−mean
b∈B

cos(t, b) for t = {x, y}.
(2)

The permutation test randomly shuffles the labels of the
set of embeddings representing target concepts (X,Y ), cre-
ating 10000 randomly permuted sets (or the maximum num-
ber of permutations allowed by the set size). Then, the dif-
ferential association (Eq. 1) of each one of these permuted
sets is measured. The p-value collects the percentage of
permuted sets resulting in a larger or equal differential as-
sociation than the original set. The null-hypothesis can be
rejected (and thus a bias detected) with high probability if
the p-value is below a certain threshold. The strength of the
bias can be measured as the effect size (d-value) —mea-
sures the separation between the two distributions of the
distances of the two sets of target concept samples to the
attribute samples [11]:

d =

mean
x∈X

s(x,A,B)−mean
y∈Y

s(y,A,B)

std
t∈X∪Y

s(t, A,B)
. (3)

The full bias-detection pipeline for a given network
model, therefore, consists of the extraction of deep feature
embeddings of 4 image sets representing 2 target concepts
and 2 attributes (i.e., Office-Home vs. Male-Female) with
the same model, and running the permutation test described
above on these embedding sets.

We evaluate the SSL models on the data provided by the
authors of the iEAT framework1 [37]. This data encom-
passes visual stimuli for sets of target concepts such as race,
gender and age. The dataset contains 3 to 55 psychologists-
selected images per concept taken from well-established
IAT tests [23], CIFAR-100 dataset [33] or the web. Fol-
lowing the approach outlined above, we collect the p- and
d-values representing the likelihood and strength of each of
the 39 association biases proposed in the iEAT framework
(see supplementary material for a complete list).

All models used in this paper were trained on Ima-
geNet2012 [21] and share the same backbone architecture:
ResNet-50 [29]. The weights for the pretrained networks
were taken from the OpenSelfSupervised Framework2 and
VISSL3 with training hyper-parameters listed in Table 1.
We evaluate embeddings obtained from the first max pool-
ing layer (layer 1 hereinafter), as well as the embeddings
obtained after each ResNet block (layers 2-5) and the final
Global Average Pooling (GAP). To achieve a more compre-
hensive overview of the presence of biases in the SSL mod-
els, we do not limit our choice to the state-of-the-art archi-
tectures and select networks that conceptually represent dif-
ferent approaches for SSL: Rotation prediction (Rotation)
[32], Relative patch location prediction (Relative Location,
RL) [22], Jigsaw puzzles [36], SwAV [13], ClusterFit [42],
ODC [44], NPID [41], MoCo v1 [28], MoCo v2 [16], Sim-
CLR [14] and BYOL [24], as well as a randomly initialized
ResNet-50 (random) and a fully supervised ResNet-50 (su-
pervised) [29].

4. Experimental results
This section summarizes the results of the bias detection

on the deepest ResNet-50 embeddings, as well as on em-
beddings of its intermediate and shallow layers.

As stated in Section 3, the p-values are obtained with the
permutation test. Due to the inherent randomness of this
test, we repeat each experiment three times to confirm the
consistency of the results and average the obtained p- and
d-values (statistical error results are provided in the supple-
mentary material). Moreover, we evaluate three instances

1distributed under CC BY-NC-SA 4.0 license
2https://rb.gy/iz1xlg
3https://rb.gy/rveiso
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Table 1. Hyperparameters used to train the SSL models and the fully supervised ResNet-50.

Jigsaw RL ClusterFit Rotation NPID ODC MoCo v1 SimCLR MoCo v2 BYOL SwAV Sup.

Batch size 256 512 256 512 256 512 256 4096 256 4096 4096 256
Epochs 105 70 105 70 200 440 200 200 200 200 200 90
Base lr 0.1 0.2 0.1 0.2 0.03 0.06 0.03 0.3 0.03 0.3 0.3 0.1

ImageNet accuracy
(best layer) 48.57 49.31 53.63 54.99 56.61 57.70 61.02 66.61 67.69 71.61 73.85 74.12
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(a) 2nd ResNet block
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(b) GAP ResNet layer

Figure 3. Number of biases for different values of pt. Biases detected for lower values of pt are statistically more significant. Contrastive
models are plotted with thick solid lines, geometric models and clustering-based models with dashed lines.

of the random ResNet-50 model, in order to account for
the random weight initialization. Thus, the p- and d-values
reported for the random model are averaged for three in-
stances and three permutation tests.

4.1. Bias-analysis for the GAP embeddings

The first analysis of the presence of social biases on dif-
ferent SSL models is performed using the embeddings at the
deepest layer of the CNN architecture, i.e., after the GAP
layer of ResNet-50, (GAP embeddings hereafter). GAP
embedings generally convey a high performance in trans-
fer learning scenarios (although not necessarily the high-
est). Thus, given the reduced dimensionality of the GAP
embeddings with respect to those extracted at previous lay-
ers (which leads to faster training of a classifier on top of
them) they are a common choice for transfer learning appli-
cations.

A bias is considered to be present in the model if its
statistical significance, measured with the p-value yielded
by the permutation test, is below a certain threshold pt.
Given the absence of a universally correct pt value, a pos-
sible approach to categorize bias detection is to split them

into groups of significance, as done in previous works [37].
Here, we take a similar approach, and explore the biases
acquired by a model for pt values in the [10−4, 10−1] inter-
val —which sits in the range of high statistical significance.
Figure 3b shows the number of biases found at the GAP
embeddings of the thirteen considered models with respect
to the p-value threshold. From Figure 3b one can observe
a clear separation in the number of detected biases between
two groups of models: contrastive SSL models yield more
biases than geometric/clustering-based models, with the ex-
ception of the RL model. For example, at pt = 10−2 no bias
is detected for the rotation model and only 2 biases are de-
tected for ODC, while the number of biases for contrastive
models ranges from 8 to 12. This holds for any value of the
threshold, showing the reliability of this conclusion. This
is also shown on the large differences in the number of ac-
quired biases among the three groups of models depicted in
Figure 4. Especially for the intersectional biases (the most
common ones) detected at the GAP embeddings. Results
for all embeddings and biases are in the supplementary ma-
terial.

We quantitatively assess the difference in the number
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Figure 4. Numbers of intersectional biases detected in the embed-
dings of the Global Average Pooling layer with pt < 0.01. Note
that a hybrid clustering-contrastive model SwAV [13] is labeled as
a clustering method for better readability of the figure.

of biases acquired by contrastive and non-contrastive mod-
els, by a statistical analysis of the biases present in two
equal-sized sets of models: i) contrastive (NPID, SimCLR,
MoCo v1, MoCo v2, BYOL) and ii) non-contrastive (Jig-
saw, Rotation, ODC, RL, ClusterFit):

1. Initially, pt is set to 0, and is gradually increased to
0.1 (i.e., pt is moved in the direction of the x-axis of
Figure 3b).

2. For each pt value, we:

2.1. Compute δorig: difference between the number
of biases for the contrastive and non-contrastive
sets.

2.2. Permute the labels between the contrastive and
non-contrastive sets, and, for each permutation k,
compute δk: the difference between the number
of biases for the two sets generated in the permu-
tation.

2.3. For each permutation k, check if (δorig < δk),
and use this to estimate the probability of ran-
domly permuted sets having more biases than the
original sets.

3. Finally, we average the probabilities computed for
each step of pt.

This test yields a p-value of 0.049 that validates the
premise by the rejection of the null-hypothesis: “contrastive
models are not more biased than other models”.

Finally, if we compare the bias data in Figure 3b with the
accuracy data in Table 1, there is no direct link between the
model’s classification accuracy and the number of biases it

incorporates. Indeed, BYOL and MoCo acquired more bi-
ases than the more accurate supervised model. Moreover,
the least accurate model (RL) is one of the models that in-
corporates the highest number of biases.

4.2. Bias detections in the random model

Performing the bias analysis on the embeddings of the
baseline random ResNet-50 model, we discovered a high
number of biases. While it is implausible that a randomly
initialized model can consistently contain certain biases, the
bias detections themselves are possible in conditions that
relate to the specific test data. We hypothesize that the bias
detections in the random models come from the correlations
in the test data caused by strong similarities between some
low-level features. To test this hypothesis we randomly per-
mute the pixels in the images representing two target con-
cepts (i.e., Weapon, Tool), while leaving the images rep-
resenting the two attributes (i.e., Black, White) unchanged,
and repeat the bias test. This allows to remove the high-level
visual concepts and most of the low-level features (such as
textures) from the images, preserving only the distribution
of pixel values. We perform this test for 13 social biases
that are detected in the random model and observe that af-
ter the permutation of pixels, 11 of them remain present
(see supplementary material for complete results) and, in
some cases, even have lower p-values (Lincoln-Trump vs.
Pleasant-Unpleasant).

4.3. Per-layer analysis

Anticipating that the strength and the number of biases
varies for different layers of the network architecture due
to increasing semantic interpretability in the internal CNN
representations [8], the bias-detection procedure is carried
out on the feature embeddings extracted from all ResNet
blocks. Our findings are partially depicted in Figure 3,
that presents the cumulative number of biases varying pt
in the embeddings of the 2nd ResNet block and Global Av-
erage Pooling layer. Figure 5 complements these results by
summarizing the number and cumulative strength of biases
in the embeddings extracted from all ResNet blocks. The
strength of a bias refers to the d-value (Section 3), and the
cumulative strength is the sum of the d-values of all detected
biases.

The results shown on Figure 3a indicate that the bi-
ases are also detected in the feature embeddings of shal-
low ResNet layers that semantically resemble low-level fea-
tures. However, the biases detected in the shallow layers
mostly repeat for all models. For example, in Figure 3a four
out of five biases at p < 10−2 are common for all models
and are race-related. On the other hand, the feature embed-
dings extracted from deeper layers, as shown on Figure 3b,
result in more biases given the same value of the threshold.
This statement holds for all the models except for the ro-
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tation prediction model. Model-wise, the number of biases
with the same degree of statistical significance is more uni-
form in the shallow layer embeddings and begins to differ
towards the end of the network, with contrastive SSL and
supervised models having a larger amount of biases.

Dissecting the bias detections at p < 10−2 (Figure 5) for
the embeddings of different ResNet blocks we gain insight
into the distribution of the number and strength of the biases
identified at different model depths. Overall, the cumulative
strength of detected biases is smallest around the 3rd and 4th

blocks, and it grows at the 5th block. One can observe that
some models (e.g., rotation, jigsaw and supervised) deviate
from this pattern. Finally, for each model, the embeddings
of the 1st ResNet block yield some of the highest cumulative
strength values.

4.4. Biases in the downstream tasks

Additionally, we perform a preliminary experiment that
further exemplifies the practical consequences of a con-
trastive model being more biased than a clustering one.
Specifically, we analyze two SSL models: SimCLR (con-
trastive) and ODC (clustering). According to both p- and
d- values of the Gender-Career bias (see Table 7 in Sup-
plementary Material) the classification of people’s occupa-
tion (career) is more biased by gender in SimCLR than in
ODC. To validate this result, we transfer the knowledge of
the SSL models to a relationship classifier for image sub-
jects, and assess the differences in the classification accu-
racy for male and female subjects. To this aim, we train two
linear classifiers on top of SimCLR and ODC features, to
predict people’s relationship (“Friends”, “Family”, “Cou-
ple”, “Professional”), using the training set of the People
in Social Context dataset [34]. We evaluate the predictions
of both models on the test set, where the people’s gender
has been manually annotated in 400 images (male-only: M,
female-only: F, and male/s and female/s together: M+F).
Table 2 shows the classification accuracy for each relation-
ship category, for the whole test set (A) and for the M, F
and M+F gender subsets. The results indicate that whereas
SimCLR performs better overall (in line with the results in
Table 1), it is less accurate than ODC in the classification
of female professionals, while being better in the classifica-
tion of male professionals. Hence, the Gender-Career bias
detected in the SSL backbone is transferred to the down-
stream task and noticeably affects the results favoring “Pro-
fessional” predictions towards male subjects.

5. Discussion on the experimental results
5.1. Relation between the number of biases and SSL

learning strategy

Figures 3b and 5 suggest that deep embeddings obtained
with contrastive SSL models show more biases than the

Table 2. Classification accuracy of the Professional-Family-
Friends-Couple categories according to the genders of people
present in the image. M stands for “Male-only”, F stands for
“Female-only”, A stands for “Any gender”-males, females or both
together, M+F stands for males and females together.

ODC,
accuracy (%)

SimCLR,
accuracy (%)

A M F M+F A M F M+F
Professional 69.2 74.6 81.8 56.3 75.2 82.5 72.7 66.7

Family 51.4 46.9 50.0 56.3 55.6 56.3 37.5 59.4
Couple 44.0 59.1 28.6 33.3 54.0 68.2 42.9 42.9
Friends 40.9 38.6 45.0 41.3 50.9 50.0 45.0 54.4

ones computed with geometric and clustering-based mod-
els. We hypothesize that the reason for this difference might
lie in the nature of the contrastive loss function. A con-
trastive loss promotes the similarity between features of two
images representing a concept and an attribute (not neces-
sarily related) if the images are similar. Instead, a geometry-
based loss function will not amplify this circumstantial sim-
ilarity as much as a contrastive one.

Moreover, we state that a higher classification accuracy
of the SSL model does not necessarily result in a higher
number of social biases incorporated into it. Figure 5 pro-
vides a good example of this by showing that one of the least
accurate, among studied, model (RL) yields the highest cu-
mulative strength of biases detected in it. In addition to
it, ODC demonstrates an inferior to NPID cumulative bias-
strength, whilst being more accurate (based on the accuracy
of linear classifiers trained on the features of the 5th ResNet
block).

The aforementioned conclusions might have an impor-
tant application in the deployment of deep learning models
for tasks that have an impact on human processes: in the
context of transfer learning, one must not solely rely on fi-
nal accuracy when choosing a model or the layer-depth to
extract embeddings from. Based on the ImageNet perfor-
mances, we argue that it might be beneficial, for some mod-
els, to give preference to embeddings resulting in a slightly
lower accuracy but significantly reducing the strength of
identified biases. For instance, for two linear classifiers
trained on the embeddings from the 5th block and the GAP
layer of NPID, the difference in classification accuracy on
ImageNet is only 0.01%. Meanwhile, cumulative strength
of biases of these two layers differs by 9%. Furthermore,
the classifier trained on the GAP embeddings of NPID is
3.18% more accurate than the classifier trained on the GAP
embeddings of ODC, but the number of intersectional bi-
ases acquired by them differs significantly (see Figure 4).

5.2. Distribution of biases along the layers

Although the presence of biases in initial layers of the
model might be counterintuitive, we believe that it can be
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Figure 5. Cumulative strength (on the left) and number (on the right) of biases detected in different layers. The number of biases correlates
with the cumulative strength (see additional plots in supplementary material). Models are ordered according to their classification accuracy
on ImageNet.

explained through a correlation between the low-level char-
acteristics of the test data and the nature of the filters learned
in the shallow layers of CNNs, i.e., similar data issues af-
fect the first layer and the random models as described in
Section 4.2. For example, many of the biases that are con-
sistently detected in the 1st block embeddings of all models
relate to the skin tone and valence or weight and valence.
Considering that images representing the concept of pleas-
antness contain brighter pixels (like the images of white
skin tone) and images representing the concept of unpleas-
antness contain darker pixels (like the images of dark skin
tone), it could be expected that the correlation identified be-
tween corresponding embeddings might be caused by these
data factors (as we explore in the supplementary material)
and not by the meaning of the depicted concepts.

Regarding the distribution of the biases, besides the
aforementioned behaviour in the first layer, biases grow in
strength and quantity as one advances along the contrastive
models, strongly correlating the number and intensity of
the acquired biases with the classification potential of the
embeddings at each layer of a given model—generally the
deeper the better as reported in OpenSelfSupervised Frame-
work: the more specialized the embeddings are within a
model, the more and stronger biases are acquired. The same
trend is observable in the RL model, and in a more subtle
way in the ODC model. Biases in the supervised model
are more evenly distributed along the layers and strongly
increase in the last layers, maybe because these are closer
to the label-guided classification layer. The rotation model
shows a different behaviour with lower and less intense bi-
ases evenly distributed along the model without representa-

tive biases in the GAP layer.

6. Conclusion
In this work, building on the existing approaches, we

study the presence of common social biases in three types of
SSL models: geometric, clustering-based and contrastive.
We show that the number of detected biases does not de-
pend on the SSL model’s classification accuracy but on its
type, with contrastive models yielding the highest number
of biases. Moreover, we show that the presence of biases is
not constant across different layers of a model, and that this
layer-distribution of biases changes across models. Given
these findings, we suggest that the number and strength of
biases should be taken into account, alongside the resulting
accuracy, when performing transfer learning on (supervised
or SSL) pre-trained models. Specially for tasks that have an
impact on human processes, this educated selection would
result in models with a better trade-off in terms of accu-
racy and bias. Nevertheless, not all open questions have
been answered yet: the sources of biases that stem from
training data need to be isolated, and the influence of the
dataset used during the models training needs to be inves-
tigated more closely. In fact, this study considered an am-
ple number of models, although all of them trained only on
ImageNet. This limitation opens avenues for further explo-
ration of biases that arise in models trained using different
datasets.
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