
StyleGAN-V: A Continuous Video Generator with the Price, Image Quality and
Perks of StyleGAN2

Ivan Skorokhodov
KAUST

Sergey Tulyakov
Snap Inc.

Mohamed Elhoseiny
KAUST

Abstract

Videos show continuous events, yet most — if not all —

video synthesis frameworks treat them discretely in time.

In this work, we think of videos of what they should be —

time-continuous signals, and extend the paradigm of neural

representations to build a continuous-time video generator.

For this, we first design continuous motion representations

through the lens of positional embeddings. Then, we explore

the question of training on very sparse videos and demon-

strate that a good generator can be learned by using as few

as 2 frames per clip. After that, we rethink the traditional

image + video discriminators pair and design a holistic dis-

criminator that aggregates temporal information by simply

concatenating frames’ features. This decreases the training

cost and provides richer learning signal to the generator,

making it possible to train directly on 1024
2

videos for the

first time. We build our model on top of StyleGAN2 and it

is just ⇡5% more expensive to train at the same resolution

while achieving almost the same image quality. Moreover,

our latent space features similar properties, enabling spa-

tial manipulations that our method can propagate in time.

We can generate arbitrarily long videos at arbitrary high

frame rate, while prior work struggles to generate even 64

frames at a fixed rate. Our model is tested on four mod-

ern 256
2

and one 1024
2
-resolution video synthesis bench-

marks. In terms of sheer metrics, it performs on average

⇡30% better than the closest runner-up. Project website:

https://universome.github.io/stylegan-v.

1. Introduction

Recent advances in deep learning pushed image genera-
tion to the unprecedented photo-realistic quality [8, 28] and
spawned a lot of its industry applications. Video generation,
however, does not enjoy a similar success and struggles to
fit complex real-world datasets. The difficulties are caused
not only by the more complex nature of the underlying
data distribution, but also due to the computationally inten-

0 1/4 sec 1/2 sec 1 sec 5 sec 1 min 1 hour

D
IG
A
N

O
ur
s

M
oC
oG
A
N
-H
D

0 1/4 sec 1/2 sec 1 sec 5 sec 1 min 1 hour

D
IG
A
N

O
ur
s

M
oC
oG
A
N
-H
D

Figure 1. Examples of 1-hour long videos, generated with different
methods. MoCoGAN-HD [65] fails to generate long videos due
to the instability of the underlying LSTM model when unrolled
to large lengths. DIGAN [80] struggles to generate long videos
due to the entanglement of spatial and temporal positional embed-
dings. StyleGAN-V (our method) generates plausible videos of
arbitrary length and frame-rate. Also, unlike DIGAN, it learns
temporal patterns not only in terms of motion, but also appearance
transformations, like time of day and weather changes.

sive video representations employed by modern generators.
They treat videos as discrete sequences of images, which
is very demanding for representing long high-resolution
videos and induces the use of expensive conv3d-based ar-
chitectures to model them [13, 54, 55, 67]. 1

In this work, we argue that this design choice is not
optimal and propose to treat videos in their natural form:
as continuous signals x(t), that map any time coordinate

1E.g., DVD-GAN [13] requires ⇡$30k to train on 2562 resolution [65]

3626



G sample CLIP edit animate
"Blue sky with clouds"

project CLIP edit animate
"Person with mustaches"

Figure 2. Our model enjoys all the perks of StyleGAN2 [30], including the ability of semantic manipulation. In this example, we edited
a generated frame (top row) or projected off-the-shelf image (bottom row) with CLIP and animated it with our model. To the best of our
knowledge, our work is the first one which demonstrates such capabilities for video generators.

Figure 3. FID scores and training cost by FVD16 for modern video
generators on FaceForensics 2562 [53]. Our method (denoted by
?) shows that video generators can be as efficient and as good in
terms of image quality as traditional image based generators (like,
StyleGAN2 [30], denoted with the dashed line).

t 2 R+ into an image frame x(t) = xt 2 R3⇥h⇥w. Conse-
quently, we develop a GAN-based continuous video synthe-
sis framework by extending the recent paradigm of neural
representations [38, 58, 64] to the video generation domain.

Developing such a framework comes with three chal-
lenges. First, sine/cosine positional embeddings are peri-
odic by design and depend only on the input coordinates.
This does not suit video generation, where temporal infor-
mation should be aperiodic (otherwise, videos will be cy-
cled) and different for different samples. Next, since videos
are perceived as infinite continuous signals, one needs to de-
velop an appropriate sampling scheme to use them in a prac-
tical framework. Finally, one needs to accordingly redesign
the discriminator to work with the new sampling scheme.

To solve the first issue, we develop positional embed-
dings with time-varying wave parameters which depend on
motion information, sampled uniquely for different videos.
This motion information is represented as a sequence of
motion codes produced by a padding-less conv1d-based
model. We prefer it over the usual LSTM network [3, 55,
65, 67] to alleviate the RNN’s instability when unrolled to
large depths and to produce frames non-autoregressively.

Next, we investigate the question of how many samples
are needed to learn a meaningful video generator. We argue
that it can be learned from extremely sparse videos (as few
as 2 frames per clip), and justify it with a simple theoretical

exposition (§3.3) and practical experiments (see Table 2).
Finally, since our model sees only 2-4 randomly sampled

frames per video, it is highly redundant to use expensive
conv3d-blocks in the discriminator, which are designed
to operate on long sequences of equidistant frames. That’s
why we replace it with a conv2d-based model, which ag-
gregates information temporarily via simple concatenation
and is conditioned on the time distances between its input
frames. Such redesign improves training efficiency (see Ta-
ble 1), provides more informative gradient signal to the gen-
erator (see Fig 4) and simplifies the overall pipeline (see
§3.2), since we no longer need two different discriminators
to operate on image and video levels separately, as modern
video synthesis models do (e.g., [13, 55, 67]).

We build our model, named StyleGAN-V, on top of the
image-based StyleGAN2 [30]. It is able to produce arbi-
trarily long videos at arbitrarily high frame-rate in a non-
autoregressive manner and enjoys great training efficiency
— it is only ⇡5% costlier than the classical image-based

StyleGAN2 model [30], while having only ⇡10% worse
plain image quality in terms of FID [23] (see Fig 3). This
allows us to easily scale it to HQ datasets and we demon-
strate that it is directly trainable on 10242 resolution.

For empirical evaluation, we use 5 benchmarks: Face-
Forensics 2562 [53], SkyTimelapse 2562 [78], UCF101
2562 [62], RainbowJelly 2562 (introduced in our work) and
MEAD 10242 [72]. Apart from our model, we train from
scratch 5 different methods and measure their performance
using the same evaluation protocol. Frechet Video Distance
(FVD) [68] serves as the main metric for video synthesis,
but there is no complete official implementation for it (see
§4 and Appx C). This leads to discrepancies in the eval-
uation procedures used by different works because FVD,
similarly to FID [23], is very sensitive to data format and
sampling strategy [46]. That’s why we implement, docu-
ment and release our complete FVD evaluation protocol.
In terms of sheer metrics, our method performs on average
⇡30% better than the closest runner-up.

2. Related work
Video synthesis. Early works on video synthesis mainly

focused on video prediction [34, 70], i.e. generating fu-

3627



ture frames given a sequence of the previously seen ones.
Early approaches for this problem typically employed re-
current convolutional models trained with reconstruction
objective [16,52,63], but later adversarial losses were intro-
duced to improve the synthesis quality [35,69,73]. Some re-
cent works explore autoregressive video prediction with re-
current or attention-based models (e.g., [26, 51, 71, 76, 79]).
Another close line of research is video interpolation, i.e. in-
creasing the frame rate of a given video (e.g., [6, 24, 42]).
In our work, we study video generation, which is a more
challenging problem than video prediction since it seeks to
synthesize videos from scratch, i.e. without using the ex-
pressive conditioning on previous frames. Classical meth-
ods in this direction are typically based on GANs [19].
MoCoGAN [67] and TGAN [54] decompose generator’s in-
put noise into a content code and motion codes, which be-
came a standard strategy for many subsequent works (e.g.,
[3, 40, 55, 65]). Several approaches consider video genera-
tion from a single clip (e.g., [5, 20, 21]).

Some recent works also consider high-resolution video
synthesis [17, 65], but only with training in the latent space
of a pretrained image generator. StyleGAN-V is trained on
extremely sparse videos. This makes it related to [10,55,75],
which use a pyramid of discriminators operating on differ-
ent temporal resolutions (with a subsampling factor of up to
⇥8). Our model builds on the time continuity, which in the
context of video synthesis was also explored by [45].

To the best of our knowledge, all modern video synthesis
approaches utilize expensive conv3d blocks either in their
decoder and/or encoder components (e.g., [2, 13, 25, 40, 55,
65,67]). Often, GAN-based approaches utilize two discrim-
inators, operating on image and video levels independently,
where the video discriminator operates at a low resolution
to save computation (e.g., [13, 65, 67, 74]). In our work, we
aggregate the temporal information via a simple concatena-
tion of feature vectors extracted from the frames and this
strategy suffices to build a state-of-the-art video generator.

Neural Representations. Neural representations is a re-
cent paradigm that uses neural networks to represent con-
tinuous signals, such as images, videos, audios, 3D objects
and scenes (e.g., [18, 38, 58, 59, 64]). It is mostly pop-
ular for 3D reconstruction and geometry processing tasks
(e.g., [33,37,41,43,48]), including video-based reconstruc-
tion [32, 44, 49, 77]. Several recent projects explored the
task of building generative models over such representa-
tions to synthesize images (e.g., [4, 60, 61]), 3D objects
(e.g., [11,31,56]) or multi-modal signals (e.g., [14,15]), and
our work extends this line of research to video generation.

Concurrent works. The development of neural
representations-based approaches moves extremely fast and
there are two concurrent works which propose ideas similar
to our ones. DIGAN [80] is a concurrent project that ex-
plores the same direction of using neural-based representa-

O
ur
s

M
oC
oG
A
N
-H
D

Figure 4. Visualizing the gradient signal to G at ⇡50% of train-
ing from conv3d-based discriminator of MoCoGAN-HD (upper
row) and our one (lower row) at t = 0, 2, 4, 6, 8, 12 timesteps.

tions for continuous video synthesis and shares a lot of ideas
with our work. The authors also consider a continuous-time
generator, trained by a discriminator without conv3d lay-
ers. The core difference with our work is that they use a
different parametrization of motions and use a dual discrim-
inator D: one operates on (x1,x2,�t) and the second one
on individual images. We enumerate the differences and
similarities in Appx H. NeRV [12] uses convolutional neu-
ral representations of videos for compression and denoising
tasks. GEM [14] utilizes generative latent optimization [7]
to build a multi-modal generative model.

3. Model
Our model is based on the paradigm of neural represen-

tations [38, 58, 64], i.e. representing signals as neural net-
works. We treat each video as a function xt = x(t) which
is continuous in time t 2 R+. In this manner, the training
dataset D is a set of subsampled signals D = {x(i)}Ni=1 =

{(x(i)
t0 , ...,x

(i)
t`i

)}Ni=1, where N denotes the total number of
videos, tj denotes the time position of the j-th frame and `i
is the amount of frames in the i-th video.2 Note that each
video might have a different length `i and in practice these
lengths vary a lot (see Appx E for datasets statistics). Our
goal is to train a generative model over video signals, having
only their subsampled versions. To achieve this, we develop
the following framework.

We build the model on top of StyleGAN2 [28] and re-
design its generator and discriminator networks for video
synthesis with minimal modifications. Our generator is
conceptually similar to MoCoGAN [67], i.e., we separate
latent information into content code zc and motion tra-
jectory vt = v(t). In contrast to MoCoGAN, our mo-
tion codes vt are continuous in time t 2 R+ and we de-
scribe their design in §3.1. The only modification we do
on top of StyleGAN2’s generator is the concatenation of
our continuous motion codes vt to its constant input ten-
sor. The discriminator model D takes k frames xt1 , ...,xtk

of a sparsely sampled video, independently extracts features

2To simplify the notation, we assume that all videos have the same
frame-rate and that all the videos were sampled starting at t = t0.

3628



zm
t0 , ..., z

m
tn ⇠ N (0, I)

Synthesis Block 322
Synthesis Block 162
Synthesis Block 82
Synthesis Block 42

Synthesis Block 5122
Synthesis Block 2562
Synthesis Block 1282
Synthesis Block 642

Synthesis Block 10242

zc ⇠ N (0, I)

Linear

Linear

Normalize

w

Conv1d

Conv1d

Acyclic PE

Tile to 4x4

ModConv2d

ModConv2d

Conv2d
upsample

upsample

A

Fm

Fc

S

timet
0

t
00

t
000

vt0 vt00 vt000

xt0 xt00 xt000

Const 4x4x512

Motion 4x4x512

+

— content mapping network

— motion mapping network

— synthesis network

A — affine layer

+ — element-wise summation
— generated frame

S

Fc

Fm

(initialized with zeros)

PE — positional encoding

Figure 5. Generator architecture: the only change we do on top
of StyleGAN2 generator’s synthesis network S is the concatena-
tion of our motion codes to the constant input tensor. S produces
frames xt non-autoregressively using the content code w and mo-
tion code vt.

ht1 , ...,htk from them, concatenates those features together
channel-wise into a global video descriptor h and predicts
the real/fake class from it. We condition D on the time dis-
tances �xi = ti+1 � ti between frames to make it easier for
it to operate on different frame rates.

3.1. Generator structure
Overview. Generator consists of three components:

content mapping network Fc, motion mapping network Fm
and synthesis network S. Fc and S are borrowed from Style-
GAN2 and we only modify S by tiling and concatenating
motion codes vt to its constant input tensor.

A video is generated the following way. First, we sam-
ple the content noise zc ⇠ N (0, I) and, following Style-
GAN2, transform it into latent code w = Fc(zc) 2 R512.
It is shared for all timesteps t 2 R+ of a video. Then,
to generate a frame xt in the specified time location t, we
first compute its motion code vt, which is done in three
steps. First, we sample a discrete sequence of equidistant
trajectory noise zm

t0 , ..., z
m
tn ⇠ N (0, I) (we assume t0 = 0

everywhere), positioned at distance �z = ti+1 � ti from
one another. The number of tokens n is determined by the
condition t < tn, i.e. it should be long enough to cover
the desired timestep t.3 Then, we process it with conv1d-
based motion mapping network Fm with a large kernel size
into the sequence ut0 , ...,utn . After that, we take a pair of
tokens u`,ur which t lies between (i.e. ` = ti for some
i 2 {0, 1, ..., n} and r = ti+1) and compute an acyclic po-
sitional embedding vt from them, described next. This po-
sitional embedding serves as the motion code for our gen-

3In practice, since Fm uses padding-less convolutions, this sequence is
slightly larger. We elaborate on this in Appx B.

erator. In fact, we do not need to sample all the motion
noise vectors zm

t0 , ..., z
m
tn to produce vt, but only those ones

which vt depends on. In this way, our generator can pro-
duce frames non-autoregressively.

Acyclic positional encoding. Traditional positional em-
beddings [58, 64] are cyclic by default. This does not cre-
ate problems in traditional applications (like image or scene
representations) because utilized spatial domain there never
exceeds the period length [38, 60]. But for video gener-
ation, cyclicity is not desirable, because it makes a video
getting looped at some point. To solve this issue, we de-
velop acyclic positional encoding.

A sine-based positional embedding vector p 2 Rd can
be expressed in the following form:

p(↵,!,⇢, t) = ↵� sin(! · t+ ⇢), (1)

where � denotes element-wise vector multiplication,
↵,!,⇢ 2 Rd are amplitudes, periods and phases of the cor-
responding waves, and the sine function is applied element-
wise. By default, these embeddings are periodic and al-
ways the same for any input [38, 58, 64], which is not de-
sirable for video synthesis, where natural videos contain
different motions and are typically aperiodic. To solve
this issue, we compute the wave parameters from motion
noise zm

t0 , ..., z
m
tn , ... the following way. First, “raw” motion

codes ṽt are computed using wave parameters ↵`,!`,⇢`

predicted from u`:

ṽt = ↵` � sin(!` · t+ ⇢`), (2)

where

↵` = W↵u`, !` = W!u`, ⇢` = W⇢u`, (3)

and W↵,W!,W⇢ 2 Rd⇥d are learnable weight matrices.
Using ṽt directly as motion codes does not lead to good
results since it contains discontinuities (see Fig 9d). That’s
why we “stitch” their start and end values via:

vt = ṽt � lerp(ṽ`, ṽr, t) + lerp(Wau`,Waur, t), (4)

where Wa 2 Rd⇥d is a learnable weight matrix and
lerp(x,y, t) is the element-wise linear interpolation be-
tween x and y using the time position t. The first subtrac-
tion in Eq (4) alters the positional embeddings to make them
converge to zero values at locations {t0, t1, ..., tn, ...}. This
limits the expressive power of the positional embeddings
and that’s why we add the “alignment” vectors a = Wau
to restore it. See Fig 9e in Appx B for the visualization.

In practice, we found it useful to compute periods as:

!t = (tanh(W!ut) + 1)� �, (5)

where 1 is a vector of ones and � are linearly-spaced scal-
ing coefficients. See Appx B and the source code for details.

3629



One could try using continuous codes ut =
lerp(u`,ur, t) directly as motion codes instead of vt.
This also eliminates cyclicity (in theory), but leads to poor
results in practice: if the distance �z is small, then the
motion trajectory will contain unnatural sharp transitions;
and when �z is increased, G loses its ability to properly
model high-frequency motions (like blinking) since the
codes change too slowly. We empirically validate this in
Tab 2 (also see samples on the project webpage).

3.2. Discriminator structure
Modern video generators typically utilize two separate

discriminators which operate on image and video levels sep-
arately [13, 65, 67]. But since we train on extremely sparse
videos and aim to have a computationally efficient model,
we propose to use a holistic discriminator D(xt1 , ...,xtk),
which is conditioned on the time distances between frames
�xi = ti+1 � ti. It consists of two parts: 1) feature extractor
backbone Db, which independently embeds an image frame
xt into a 3D feature vector hti 2 R512⇥16⇥16; and the con-
volutional head Dh, which takes the concatenation of all
the features h = concat[ht1 , ...,htk ] 2 R512k⇥16⇥16 and
outputs the real/fake logit y 2 R.

We input the time distances information �x1 , ..., �
x
k�1 be-

tween k frames xt1 , ...,xtk into D the following way. First,
we encode them with positional encoding, preprocess with
a 2-layer MLP into p(�x1 ), ...,p(�

x
k�1) 2 Rd and concate-

nate into a single vector p� 2 R(k�1)·d. After that, we use
the projection discriminator strategy [39] and compute the
output logit as a simple dot product between p� and the cor-
responding video feature vector. The overall architecture is
visualized in Fig 6.

Such a design is greatly more efficient than using both
image and video discriminators and provides a more infor-
mative learning signal to the generator (see Fig 4).

3.3. Implicit assumptions of sparse training
Consider the problem of learning a probability distri-

bution p(x) = p(x1, ..., xn) and consider that we utilize
sparse training, i.e. select k coordinates of vector x ran-
domly on each iteration of the optimization process. Then
the optimization objective is equivalent to learning all pos-
sible marginal distributions p(xi1 , ...., xxk) instead of learn-
ing joint p(x). When does learning marginals allow to ob-
tain the full joint distribution at the end? The following
simple statement adds some clarity to this question.

A trivial but serviceable statement. Let’s denote by J k
<i

a collection of sets Ji of up to k indices j s.t. 8Ji 2 J k
<i we

have j < i for all j 2 Ji. In other words, Ji is a set of up

to k indices j 2 [1, i). Then, p(x) can be represented as a

product of n marginals p(xi,xJi) for i 2 [1, n] if and only

if 8i there exists Ji 2 J k�1
<i s.t. p(xi|x<i) ⌘ p(xi|xJi).

ModDiscrBlock 2562

time

PosEnc

FC

FC

concat

ModDiscrBlock 162

ModDiscrBlock 82

DiscrEpilogue

real/fake

ModConv2d

Conv2d Conv2d
downsampledownsample

+

A

dot product

Conv2d
flatten

BatchStdLayer

xt1 xt2 xt3

p�

�x2�x1

concat

FC

FC

Figure 6. Discriminator architecture for k = 3 frames per video.
The only changes we do on top of the StyleGAN2 [30] discrimi-
nator are concatenating activations channel-wise at the 162 resolu-
tion and conditioning the model on the positional embeddings of
the time distances between frames.

The above statement is primitive (see the proof in
Appx F) but can provide useful practical intuition. For
video synthesis, it implies that one can learn a video gener-
ator by using only k frames per video only if for any frame
xi, there exists at most k � 1 previous frames sufficient to
properly predict it (see Appx F). And we argue that very
few frames suffice to make such a prediction for the mod-
ern video synthesis benchmarks. For example, in SkyTime-
lapse [78], the motions are typically unidirectional and thus
easily predictable from only 2 previous frames, which cor-
responds to training with k = 3 frames per video.

We treat videos as infinite continuous signals, but in
practice one has to set a limit on the maximum time lo-
cation T which can be seen during training. To the best
of our knowledge, previous methods use at most T = 64
[10, 55], but in our case we easily train the model with
T = 1024 since our generator is non-autoregressive and
our discriminator uses only the relative temporal informa-
tion. We set the maximum distance between t1 and tk to 32
to cover short and medium-term movements: otherwise, we
observed unstable training and abrupt motions. To sample
frames, we first sample the distance (tk�t1) ⇠ U [k�1, 32]
between them, and then sample the offset t1 ⇠ U [0, T�tk].
After that, frames locations ti for i 2 {2, ..., k � 1} are se-
lected at random without repetitions.

4. Experiments
Datasets. We test our model on 5 benchmarks: Face-

Forensics 2562 [53], SkyTimelapse 2562 [78], UCF101
2562 [62], RainbowJelly 2562 (introduced by us and de-
scribed in Appx E) and MEAD 10242 [72]. We used the

3630



O
ur
s

M
oC
oG
A
N
-H
D

D
IG
A
N

O
ur
s

M
oC
oG
A
N
-H
D

D
IG
A
N

O
ur
s

M
oC
oG
A
N
-H
D

D
IG
A
N

Figure 7. Random samples from the existing methods on FaceForensics 2562, SkyTimelapse 2562 and RainbowJelly 2562, respectively.
We sample a 64-frames video and display each 4-th frame, starting from t = 0.

train splits (when available) for all the datasets except for
UCF101, where we used train+test splits. We provide
the datasets details in Appx E.

Evaluation. Following prior work, we use Frechet
Video Distance (FVD) [68] and Inception Score (IS) as
our evaluation metrics with FVD being the main one since
FID (its image-based counterpart) better aligns with human-
perceived quality [23]. We use two versions of FVD:
FVD16 and FVD128, which use 16 and 128-frames-long
videos to compute the statistics. Inception Score is used
only to evaluate the generation quality on UCF-101 since it
uses a UCF-101-finetuned C3D model [54].

The official FVD implementation [68] does not provide a
complete evaluation pipeline, but rather an inference script
for a single batch of videos, which are required to be al-

ready resized to 2562 and loaded into memory. This creates
discrepancies in the evaluation protocols used by previous
works since FVD (similar to FID [46]) is very sensitive to
the subsampling and data processing procedures. We imple-
ment, document (see Appx C) and release a complete FVD
evaluation protocol and use it to evaluate all the methods.

Baselines. We use 5 baselines for comparison: MoCo-
GAN [67], MoCoGAN [67] with the StyleGAN2 [30]
backbone, VideoGPT [79], MoCoGAN-HD [65] and DI-

GAN [80]. For MoCoGAN with the StyleGAN2 back-
bone (denoted as MoCoGAN-SG2), we replaced its gener-
ator and image-based discriminator with the corresponding
StyleGAN2’s components, leaving its video discriminator
unchanged. We also used the training scheme and regu-
larizations from StyleGAN2. MoCoGAN was trained for
5 days on a single GPU since its lightweight DC-GAN [50]
backbone makes it fast to train, while MoCoGAN+SG2 was
trained for 2 days on ⇥4 GPUs to reach 25M real images
seen by its image-based discriminator. MoCoGAN-HD is
trained for ⇡4.5 days on ⇥4 v100 GPUs, as specified in the
original paper (Appx B of [65]). We trained VideoGPT for
the maximum affordable total time of 32 GPU-days in our
resource constraints. DIGAN [80] was trained for ⇡4 days
since after that its FVD score either did not change or ex-
ploded (on RainbowJelly). We also replaced its weighted
sampling strategy (selecting clips from longer videos with
higher probabilities) with the uniform one, which is used by
other methods [65, 67, 79]. For each method, we used the
checkpoint with the lowest FVD16 value.

4.1. Main experiments

For the main evaluation, we train our method and all
the baselines from scratch on the described 2562 datasets.

3631



Table 1. Quantitative performance and training cost of different methods. We trained all the methods from scratch on 2562 resolution
datasets using the official codebases and evaluated them under the unified evaluation protocol (see §4). Training was done on ⇥4 32 GB
NVidia V100 GPUs for all the methods except VideoGPT, which was trained on ⇥4 NVidia A6000 GPUs (with 48.5 GB of memory each)
due to its high memory consumption. For 2-stage methods, we report their training cost in the “X + Y ” format. †VideoGPT was trained
for our maximum resource constraint of 32 GPU-days which was detrimental to its performance on 2562 resolution. Vanilla StyleGAN2
training time on 2562 resolution (with mixed precision and optimizations [28]) is 7.72 GPU-days in our environment.

Method FaceForensics SkyTimelapse UCF101 RainbowJelly Training cost
(GPU-days)FVD16 FVD128 FVD16 FVD128 FVD16 FVD128 FVD16 FVD128

MoCoGAN [67] 124.7 257.3 206.6 575.9 2886.9 3679.0 1572.9 549.7 5
+ StyleGAN2 backbone 55.62 309.3 85.88 272.8 1821.4 2311.3 638.5 463.0 8

MoCoGAN-HD [65] 111.8 653.0 164.1 878.1 1729.6 2606.5 579.1 628.2 7.5 + 9
VideoGPT [79]† 185.9 N/A 222.7 N/A 2880.6 N/A 136.0 N/A 16 + 16
DIGAN [80] 62.5 1824.7 83.11 196.7 1630.2 2293.7 436.6 369.0 16
StyleGAN-V (ours) 47.41 89.34 79.52 197.0 1431.0 1773.4 195.4 262.5 8

Each model is trained on ⇥4 NVidia V100 32 GB GPUs,
except for VideoGPT, which is very demanding in terms
of GPU memory for 2562 resolution and we had to train it
on ⇥4 NVidia A6000 instead (with the overall batch size
of 4). For our method and MoCoGAN+SG2, we use ex-
actly the same optimization scheme as StyleGAN2, includ-
ing the loss function, Adam optimizer hyperparameters and
R1 regularization [36]. We reduce the learning rate by 10
for the DV module of MoCoGAN+SG2 since it does not
have equalized learning rate [27]. We use �z = 16 for all
the experiments except for SkyTimelapse, where we used
�z = 256. See other training details in Appx B. We eval-
uate all the methods under the same evaluation protocol,
described in Appx C and report the results in Table 1.

To measure the efficiency, we use the amount of GPU
days required to train a method. We build on top of the
official StyleGAN2 implementation.4 The training cost of
the image-based StyleGAN2 to reach its specified 25M im-
ages is 7.72 NVidia V100 GPU-days in our environment.
StyleGAN-V is trained for 2 days, which corresponds to
⇡23M real frames seen by the discriminator. MoCoGAN-
HD is built on top of stylegan2-pytorch’s code-
base5, which is ⇡2 times slower than the highly optimized
NVidia’s implementation. That’s why in Table 1 we report
its training cost reduced by a factor of 2 to account for this.

Our method significantly outperforms the existing ones
on almost all the benchmarks in terms FVD16 and FVD128.
We visualize the samples in Fig 1 and Fig 7. Our method is
able to generate hour-long plausibly looking videos, though
the motion diversity and global motion coherence for them
would be limited (see Appx A). MoCoGAN-HD suffers
from the LSTM instability when unrolled to large lengths
and does not produce diverse motions. DIGAN produces
high-quality videos on SkyTimelapse because its inductive

4https://github.com/NVlabs/stylegan2-ada-pytorch
5https://github.com/rosinality/stylegan2-pytorch

bias of having joint spatio-temporal positional information
is well suited for videos that have an entire scene moving.
But for FaceForensics, this leads to a “head flying away”
effect (see Appx H). To generate 1-hour long videos from
MoCoGAN-HD, we unroll its LSTM model to the required
depth (⇡90k steps) and synthesize frames only in the nec-
essary time positions, while DIGAN, similar to our method,
is able to generate frames non-autoregressively.

4.2. Ablations
To ablate the core components, we replaced G or D mod-

ules with their MoCoGAN+SG2 counterparts. In the both
cases, their removal leads to poor short-term and long-term
video quality, as specified by the corresponding metrics in
Table 2 and video samples in the supplementary.

Replacing continuous motion codes v(t) with u(t), pro-
duced by LSTM hurts the performance, especially when the
distance �z between motion codes is small. This happens
due to unnaturally abrupt transitions between frames and
we provide the corresponding samples in the supplemen-
tary. The corresponding results are in Table 2.

We also verify the importance of the conditioning in D
and denote the experiment where it’s disabled as “w/o time
conditioning” in Table 2. Removing the time conditioning
hurts the performance, because it constrains the ability of D
to understand the temporal scale it is currently operating on.

An important design choice is how many samples per
video one should use during training. We try different val-
ues of k for k = 2, 3, 4, 8 and 16 and report the correspond-
ing results in Table 3. As being discussed in §3.3, for ex-
isting video generation benchmarks, it might be enough to
sample only several frames per each video, and our exper-
iments confirm this observation. The performance is de-
creased for larger k, but this might be attributed to a weaker
temporal aggregation procedure of D, which simply con-
catenates features together. It is surprising to see that mod-
ern datasets can be fit with as few as 2 samples per video.

3632



0 1/4 sec 1/2 sec 1 sec 5 sec 1 min 1 hour

Figure 8. Generations on MEAD 10242 [72] for MoCoGAN-HD
[65] and our method. MoCoGAN-HD cannot preserve the identity
and diverges for long LSTM unrolling. (Note that all videos in the
dataset have static head positions — see Appx E).

4.3. Properties
Our generator is able to generate arbitrarily long videos.

Our design of motion codes allows StyleGAN-V not to suf-
fer from stability problems when unrolled to large (poten-
tially infinite) video lengths. This is verified by visualizing
the video clips for the extremely large timesteps in Fig 1 and
Fig 8. We also demonstrate its ability to produce videos in
arbitrarily high frame-rate in the supplementary.

Our model has the same latent space manipulation prop-

erties as StyleGAN2. To show this, we conduct two exper-
iments: embedding, editing and animating an off-the-shelf
image and editing and animating the first frame of a gener-
ated video. To embed an image, we used the optimization
procedure similar to [1], but considering it to be positioned
at t = 0. To edit an image with CLIP, we used the proce-
dure of [47]. The results of these experiments are visualized
in Fig 2 and we provide the details in Appx B and more ex-
amples in the supplementary. Apart from showing the good
properties of its latent space, these experiments demonstrate
the extrapolation potential of our generator.

StyleGAN-V has almost the same training efficiency and

image quality as StyleGAN2. In Fig 3, we plot the FID
scores (computed from 16-frames videos) and training costs
of modern video generators on FaceForensics 2562 by their
corresponding FVD16 scores. Our method comes very close
to StyleGAN2: it converges to FID of 9.44 in 8 GPU-
days compared to FID of 8.42 in 7.72 GPU-days for Style-
GAN2, which is only ⇡10% worse. This raises the question
whether video generators can be as computationally effi-
cient and good in terms of image quality as image ones.

Our model is the first one which is directly trainable on

10242 resolution. We provide the generations on MEAD
10242 for our method and for MoCoGAN-HD. MoCoGAN-
HD cannot preserve the identity of a speaker and diverges
for large video lengths, while our method achieves compa-
rable image quality and coherent motions. For this dataset,
our model was trained for 7 days on ⇥4 NVidia v100 GPUs
and obtained FID of 24.12 and FVD16 of 156.1. Image gen-
erator for MoCoGAN-HD was trained for 14 days on ⇥4
A6000 GPUs, while its video generator was trained for only
5 days since it didn’t require high-resolution training.

Table 2. Ablating architectural components of our model.

Method FaceForensics 2562 SkyTimelapse 2562

FVD16 FVD128 FVD16 FVD128

Default StyleGAN-V 47.41 89.34 79.52 197.0

w/o our G 65.88 41.77 109.1 240.2
w/o our D 154.0 139.1 236.9 258.0

w/o time conditioning in D 95.4 236.0 102.1 210.3

w LSTM codes, �z = 1 131.9 159.1 135.7 196.1
w LSTM codes, �z = 16 180.3 94.55 95.71 165.8

Table 3. Ablating the amount of frames k per clip used during
training. Sparse training provides better results for our method.

Number of frames FaceForensics 2562 SkyTimelapse 2562

FVD16 FVD128 FVD16 FVD128

k = 2 60.41 93.5 50.5 209.9
k = 3 (default) 47.41 89.34 79.52 197.0
k = 4 51.84 114.9 65.7 194.5
k = 8 101.9 211.4 73.12 215.9
k = 16 92.52 192.8 107.6 254.3

Our discriminator provides more informative learning

signal to G. Fig 4 visualizes the gradient signal to the
generator from our discriminator and the conv3d-based
video discriminator of MoCoGAN-HD, measured at ⇡50%
of training for our method (at 10M images seen by D) and
MoCoGAN-HD (at the 300-th epoch). In our case, one
can easily see fine-grained details of the face structure, per-
ceived by D, while in case of MoCoGAN-HD, most of the
gradient is redundant and lack any structural information.

Content and motion decomposition. Similar to MoCo-
GAN [67], our generator captures content and motion vari-
ations in a disentangled manner: altering motion codes
zm
t0 , ..., z

m
tn while fixing zc does not change the appear-

ance variations (like, a speaker’s identity). Similarly, re-
sampling zc does not influence motion patterns on a video,
but only its content. We provide the corresponding visual-
izations on the project website.

5. Conclusion
In this work, we provided a different perspective on time

for video synthesis and built a continuous video generator
using the paradigm of neural representations. For this, we
developed motion representations through the lens of posi-
tional embeddings, explored sparse training of video gen-
erators and redesigned a typical dual structure of a video
discriminator. Our model is built on top of StyleGAN2 and
features a lot of its perks, like efficient training, good image
quality and editable latent space. We hope that our work
would serve as a solid basis for building more powerful
video generators in the future. The limitations and poten-
tial negative impact are discussed in Appx A.

3633



References
[1] Rameen Abdal, Yipeng Qin, and Peter Wonka. Im-

age2stylegan: How to embed images into the stylegan latent
space? In Proceedings of the IEEE/CVF International Con-

ference on Computer Vision, pages 4432–4441, 2019. 8, 12,
13

[2] Dinesh Acharya, Zhiwu Huang, Danda Pani Paudel, and
Luc Van Gool. Towards high resolution video generation
with progressive growing of sliced wasserstein gans. arXiv

preprint arXiv:1810.02419, 2018. 3
[3] Abhishek Aich, Akash Gupta, Rameswar Panda, Rakib Hy-

der, M Salman Asif, and Amit K Roy-Chowdhury. Non-
adversarial video synthesis with learned priors. In Proceed-

ings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 6090–6099, 2020. 2, 3
[4] Ivan Anokhin, Kirill Demochkin, Taras Khakhulin, Gleb

Sterkin, Victor Lempitsky, and Denis Korzhenkov. Image
generators with conditionally-independent pixel synthesis.
In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 14278–14287, 2021.
3, 13

[5] Rajat Arora and Yong Jae Lee. Singan-gif: Learning a gen-
erative video model from a single gif. In Proceedings of the

IEEE/CVF Winter Conference on Applications of Computer

Vision (WACV), pages 1310–1319, January 2021. 3
[6] Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang,

Zhiyong Gao, and Ming-Hsuan Yang. Depth-aware video
frame interpolation. In IEEE Conferene on Computer Vision

and Pattern Recognition, 2019. 3
[7] Piotr Bojanowski, Armand Joulin, David Lopez-Paz, and

Arthur Szlam. Optimizing the latent space of generative net-
works. arXiv preprint arXiv:1707.05776, 2017. 3

[8] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large
scale gan training for high fidelity natural image synthesis.
arXiv preprint arXiv:1809.11096, 2018. 1

[9] Joao Carreira and Andrew Zisserman. Quo vadis, action
recognition? a new model and the kinetics dataset. In pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 6299–6308, 2017. 13
[10] Lluis Castrejon, Nicolas Ballas, and Aaron Courville. Hier-

archical video generation for complex data. arXiv preprint

arXiv:2106.02719, 2021. 3, 5
[11] Eric R Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu,

and Gordon Wetzstein. pi-gan: Periodic implicit generative
adversarial networks for 3d-aware image synthesis. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 5799–5809, 2021. 3
[12] Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim,

and Abhinav Shrivastava. Nerv: Neural representations for
videos. arXiv preprint arXiv:2110.13903, 2021. 3

[13] Aidan Clark, Jeff Donahue, and Karen Simonyan. Adver-
sarial video generation on complex datasets. arXiv preprint

arXiv:1907.06571, 2019. 1, 2, 3, 5
[14] Yilun Du, Katherine M. Collins, Joshua B. Tenenbaum, and

Vincent Sitzmann. Learning signal-agnostic implicit mani-
folds. In Thirty-Fifth Conference on Neural Information Pro-

cessing Systems, 2021. 3

[15] Emilien Dupont, Yee Whye Teh, and Arnaud Doucet. Gen-
erative models as distributions of functions. arXiv preprint

arXiv:2102.04776, 2021. 3
[16] Chelsea Finn, Ian Goodfellow, and Sergey Levine. Unsu-

pervised learning for physical interaction through video pre-
diction. Advances in neural information processing systems,
29:64–72, 2016. 3

[17] Gereon Fox, Ayush Tewari, Mohamed Elgharib, and
Christian Theobalt. Stylevideogan: A temporal genera-
tive model using a pretrained stylegan. arXiv preprint

arXiv:2107.07224, 2021. 3
[18] Kyle Genova, Forrester Cole, Daniel Vlasic, Aaron Sarna,

William T Freeman, and Thomas Funkhouser. Learn-
ing shape templates with structured implicit functions. In
Proceedings of the IEEE/CVF International Conference on

Computer Vision, pages 7154–7164, 2019. 3
[19] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. Advances in

neural information processing systems, 27, 2014. 3
[20] Shir Gur, Sagie Benaim, and Lior Wolf. Hierarchical patch

vae-gan: Generating diverse videos from a single sample,
2020. 3

[21] Niv Haim, Ben Feinstein, Niv Granot, Assaf Shocher, Shai
Bagon, Tali Dekel, and Michal Irani. Diverse genera-
tion from a single video made possible. arXiv preprint

arXiv:2109.08591, 2021. 3
[22] Amir Hertz, Or Perel, Raja Giryes, Olga Sorkine-hornung,

and Daniel Cohen-or. SAPE: Spatially-adaptive progressive
encoding for neural optimization. In Thirty-Fifth Conference

on Neural Information Processing Systems, 2021. 13, 15
[23] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,

Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilib-
rium. Advances in neural information processing systems,
30, 2017. 2, 6

[24] Huaizu Jiang, Deqing Sun, Varun Jampani, Ming-Hsuan
Yang, Erik Learned-Miller, and Jan Kautz. Super slomo:
High quality estimation of multiple intermediate frames for
video interpolation. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 9000–
9008, 2018. 3

[25] Emmanuel Kahembwe and Subramanian Ramamoorthy.
Lower dimensional kernels for video discriminators. Neu-

ral Networks, 132:506–520, 2020. 3
[26] Nal Kalchbrenner, Aäron Oord, Karen Simonyan, Ivo Dani-

helka, Oriol Vinyals, Alex Graves, and Koray Kavukcuoglu.
Video pixel networks. In International Conference on Ma-

chine Learning, pages 1771–1779. PMLR, 2017. 3
[27] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.

Progressive growing of gans for improved quality, stability,
and variation. arXiv preprint arXiv:1710.10196, 2017. 7, 12

[28] Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine,
Jaakko Lehtinen, and Timo Aila. Training generative
adversarial networks with limited data. arXiv preprint

arXiv:2006.06676, 2020. 1, 3, 7, 12, 13, 15
[29] Tero Karras, Samuli Laine, and Timo Aila. A style-based

generator architecture for generative adversarial networks. In

3634



Proceedings of the IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition, pages 4401–4410, 2019. 12,
14

[30] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and improv-
ing the image quality of stylegan. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 8110–8119, 2020. 2, 5, 6, 13
[31] Adam R Kosiorek, Heiko Strathmann, Daniel Zoran, Pol

Moreno, Rosalia Schneider, Soňa Mokrá, and Danilo J
Rezende. Nerf-vae: A geometry aware 3d scene generative
model. arXiv preprint arXiv:2104.00587, 2021. 3

[32] Zhengqi Li, Simon Niklaus, Noah Snavely, and Oliver Wang.
Neural scene flow fields for space-time view synthesis of dy-
namic scenes. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 6498–
6508, 2021. 3

[33] Gidi Littwin and Lior Wolf. Deep meta functionals for shape
representation. In Proceedings of the IEEE/CVF Interna-

tional Conference on Computer Vision, pages 1824–1833,
2019. 3

[34] Ce Liu, Jenny Yuen, and Antonio Torralba. Sift flow: Dense
correspondence across scenes and its applications. IEEE

transactions on pattern analysis and machine intelligence,
33(5):978–994, 2010. 2

[35] Michael Mathieu, Camille Couprie, and Yann LeCun. Deep
multi-scale video prediction beyond mean square error.
arXiv preprint arXiv:1511.05440, 2015. 3

[36] Lars Mescheder, Andreas Geiger, and Sebastian Nowozin.
Which training methods for gans do actually converge? In
International conference on machine learning, pages 3481–
3490. PMLR, 2018. 7

[37] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy networks:
Learning 3d reconstruction in function space. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition, pages 4460–4470, 2019. 3
[38] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,

Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In European conference on computer vision, pages
405–421. Springer, 2020. 2, 3, 4, 13, 19

[39] Takeru Miyato and Masanori Koyama. cgans with projection
discriminator. arXiv preprint arXiv:1802.05637, 2018. 5, 18

[40] Andres Munoz, Mohammadreza Zolfaghari, Max Argus, and
Thomas Brox. Temporal shift gan for large scale video gen-
eration. In Proceedings of the IEEE/CVF Winter Confer-

ence on Applications of Computer Vision, pages 3179–3188,
2021. 3

[41] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and
Andreas Geiger. Differentiable volumetric rendering: Learn-
ing implicit 3d representations without 3d supervision. In
Proceedings of the IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition, pages 3504–3515, 2020. 3
[42] Simon Niklaus, Long Mai, and Feng Liu. Video frame inter-

polation via adaptive separable convolution. In IEEE Inter-

national Conference on Computer Vision, 2017. 3

[43] Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. Deepsdf: Learning con-
tinuous signed distance functions for shape representation.
In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 165–174, 2019. 3
[44] Keunhong Park, Utkarsh Sinha, Jonathan T Barron, Sofien

Bouaziz, Dan B Goldman, Steven M Seitz, and Ricardo
Martin-Brualla. Deformable neural radiance fields. arXiv

preprint arXiv:2011.12948, 2020. 3, 13, 15
[45] Sunghyun Park, Kangyeol Kim, Junsoo Lee, Jaegul Choo,

Joonseok Lee, Sookyung Kim, and Edward Choi. Vid-ode:
Continuous-time video generation with neural ordinary dif-
ferential equation. arXiv preprint arXiv:2010.08188, page
online, 2021. 3

[46] Gaurav Parmar, Richard Zhang, and Jun-Yan Zhu. On buggy
resizing libraries and surprising subtleties in fid calculation.
arXiv preprint arXiv:2104.11222, 2021. 2, 6, 13, 14

[47] Or Patashnik, Zongze Wu, Eli Shechtman, Daniel Cohen-Or,
and Dani Lischinski. Styleclip: Text-driven manipulation of
stylegan imagery. In Proceedings of the IEEE/CVF Inter-

national Conference on Computer Vision, pages 2085–2094,
2021. 8, 13

[48] Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc
Pollefeys, and Andreas Geiger. Convolutional occupancy
networks. In Computer Vision–ECCV 2020: 16th European

Conference, Glasgow, UK, August 23–28, 2020, Proceed-

ings, Part III 16, pages 523–540. Springer, 2020. 3
[49] Albert Pumarola, Enric Corona, Gerard Pons-Moll, and

Francesc Moreno-Noguer. D-nerf: Neural radiance fields
for dynamic scenes. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages
10318–10327, 2021. 3

[50] Alec Radford, Luke Metz, and Soumith Chintala. Un-
supervised representation learning with deep convolu-
tional generative adversarial networks. arXiv preprint

arXiv:1511.06434, 2015. 6
[51] Ruslan Rakhimov, Denis Volkhonskiy, Alexey Artemov, De-

nis Zorin, and Evgeny Burnaev. Latent video transformer.
arXiv preprint arXiv:2006.10704, 2020. 3

[52] MarcAurelio Ranzato, Arthur Szlam, Joan Bruna, Michael
Mathieu, Ronan Collobert, and Sumit Chopra. Video (lan-
guage) modeling: a baseline for generative models of natural
videos. arXiv preprint arXiv:1412.6604, 2014. 3

[53] Andreas Rössler, Davide Cozzolino, Luisa Verdoliva, Chris-
tian Riess, Justus Thies, and Matthias Nießner. Faceforen-
sics: A large-scale video dataset for forgery detection in hu-
man faces. arXiv, 2018. 2, 5, 12, 16, 19

[54] Masaki Saito, Eiichi Matsumoto, and Shunta Saito. Tempo-
ral generative adversarial nets with singular value clipping.
In Proceedings of the IEEE international conference on com-

puter vision, pages 2830–2839, 2017. 1, 3, 6, 15
[55] Masaki Saito, Shunta Saito, Masanori Koyama, and So-

suke Kobayashi. Train sparsely, generate densely: Memory-
efficient unsupervised training of high-resolution temporal
gan. International Journal of Computer Vision, 128:2586–
2606, 2020. 1, 2, 3, 5

3635



[56] Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas
Geiger. Graf: Generative radiance fields for 3d-aware image
synthesis. arXiv preprint arXiv:2007.02442, 2020. 3

[57] Aliaksandr Siarohin, Stéphane Lathuilière, Sergey Tulyakov,
Elisa Ricci, and Nicu Sebe. First order motion model for im-
age animation. Advances in Neural Information Processing

Systems, 32:7137–7147, 2019. 15
[58] Vincent Sitzmann, Julien Martel, Alexander Bergman, David

Lindell, and Gordon Wetzstein. Implicit neural representa-
tions with periodic activation functions. Advances in Neural

Information Processing Systems, 33, 2020. 2, 3, 4, 13, 19
[59] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wet-

zstein. Scene representation networks: Continuous 3d-
structure-aware neural scene representations. In Advances

in Neural Information Processing Systems, 2019. 3
[60] Ivan Skorokhodov, Savva Ignatyev, and Mohamed Elho-

seiny. Adversarial generation of continuous images. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 10753–10764, 2021. 3, 4,
12, 13, 15, 18

[61] Ivan Skorokhodov, Grigorii Sotnikov, and Mohamed Elho-
seiny. Aligning latent and image spaces to connect the un-
connectable. arXiv preprint arXiv:2104.06954, 2021. 3, 12,
13

[62] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah.
Ucf101: A dataset of 101 human actions classes from videos
in the wild. arXiv preprint arXiv:1212.0402, 2012. 2, 5, 16,
19

[63] Nitish Srivastava, Elman Mansimov, and Ruslan Salakhudi-
nov. Unsupervised learning of video representations using
lstms. In International conference on machine learning,
pages 843–852. PMLR, 2015. 3

[64] Matthew Tancik, Pratul P Srinivasan, Ben Mildenhall, Sara
Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-
mamoorthi, Jonathan T Barron, and Ren Ng. Fourier features
let networks learn high frequency functions in low dimen-
sional domains. arXiv preprint arXiv:2006.10739, 2020. 2,
3, 4, 13, 19

[65] Yu Tian, Jian Ren, Menglei Chai, Kyle Olszewski, Xi Peng,
Dimitris N. Metaxas, and Sergey Tulyakov. A good image
generator is what you need for high-resolution video synthe-
sis. In International Conference on Learning Representa-

tions, 2021. 1, 2, 3, 5, 6, 7, 8, 15
[66] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani,

and Manohar Paluri. Learning spatiotemporal features with
3d convolutional networks. In Proceedings of the IEEE inter-

national conference on computer vision, pages 4489–4497,
2015. 15

[67] Sergey Tulyakov, Ming-Yu Liu, Xiaodong Yang, and Jan
Kautz. Mocogan: Decomposing motion and content for
video generation. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 1526–1535,
2018. 1, 2, 3, 5, 6, 7, 8, 15

[68] Thomas Unterthiner, Sjoerd van Steenkiste, Karol Kurach,
Raphael Marinier, Marcin Michalski, and Sylvain Gelly. To-
wards accurate generative models of video: A new metric &
challenges. arXiv preprint arXiv:1812.01717, 2018. 2, 6, 14

[69] Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba.
Generating videos with scene dynamics. Advances in neu-

ral information processing systems, 29:613–621, 2016. 3
[70] Jacob Walker, Abhinav Gupta, and Martial Hebert. Patch

to the future: Unsupervised visual prediction. In Proceed-

ings of the IEEE conference on Computer Vision and Pattern

Recognition, pages 3302–3309, 2014. 2
[71] Jacob Walker, Ali Razavi, and Aäron van den Oord. Pre-

dicting video with vqvae. arXiv preprint arXiv:2103.01950,
2021. 3

[72] Kaisiyuan Wang, Qianyi Wu, Linsen Song, Zhuoqian Yang,
Wayne Wu, Chen Qian, Ran He, Yu Qiao, and Chen Change
Loy. Mead: A large-scale audio-visual dataset for emotional
talking-face generation. In European Conference on Com-

puter Vision, pages 700–717. Springer, 2020. 2, 5, 8, 16,
19

[73] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Guilin Liu,
Andrew Tao, Jan Kautz, and Bryan Catanzaro. Video-to-
video synthesis. arXiv preprint arXiv:1808.06601, 2018. 3

[74] Yaohui Wang, Piotr Bilinski, Francois Bremond, and Antitza
Dantcheva. G3AN: Disentangling appearance and motion
for video generation. In IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), June 2020. 3
[75] Yaohui Wang, Francois Bremond, and Antitza Dantcheva.

Inmodegan: Interpretable motion decomposition generative
adversarial network for video generation. arXiv preprint

arXiv:2101.03049, 2021. 3
[76] Dirk Weissenborn, Oscar Täckström, and Jakob Uszkoreit.

Scaling autoregressive video models. In International Con-

ference on Learning Representations, 2020. 3
[77] Wenqi Xian, Jia-Bin Huang, Johannes Kopf, and Changil

Kim. Space-time neural irradiance fields for free-viewpoint
video. In Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, pages 9421–9431,
2021. 3

[78] Wei Xiong, Wenhan Luo, Lin Ma, Wei Liu, and Jiebo Luo.
Learning to generate time-lapse videos using multi-stage dy-
namic generative adversarial networks. In The IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),
June 2018. 2, 5, 12, 16, 19

[79] Wilson Yan, Yunzhi Zhang, Pieter Abbeel, and Aravind
Srinivas. Videogpt: Video generation using vq-vae and trans-
formers. arXiv preprint arXiv:2104.10157, 2021. 3, 6, 7, 13,
15

[80] Sihyun Yu, Jihoon Tack, Sangwoo Mo, Hyunsu Kim, Junho
Kim, Jung-Woo Ha, and Jinwoo Shin. Generating videos
with dynamics-aware implicit generative adversarial net-
works. In International Conference on Learning Represen-

tations, 2022. 1, 3, 6, 7, 12, 15, 17
[81] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,

and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In CVPR, 2018. 13

3636


