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Abstract

Recently, significant progress has been made applying
machine learning to the problem of table structure inference
and extraction from unstructured documents. However, one
of the greatest challenges remains the creation of datasets
with complete, unambiguous ground truth at scale. To ad-
dress this, we develop a new, more comprehensive dataset
for table extraction, called PubTables-1M. PubTables-1M
contains nearly one million tables from scientific articles,
supports multiple input modalities, and contains detailed
header and location information for table structures, mak-
ing it useful for a wide variety of modeling approaches. It
also addresses a significant source of ground truth incon-
sistency observed in prior datasets called oversegmentation,
using a novel canonicalization procedure. We demonstrate
that these improvements lead to a significant increase in
training performance and a more reliable estimate of model
performance at evaluation for table structure recognition.
Further, we show that transformer-based object detection
models trained on PubTables-1M produce excellent results
for all three tasks of detection, structure recognition, and
functional analysis without the need for any special cus-
tomization for these tasks. Data and code will be released at
https://github.com/microsoft/table-transformer.

1. Introduction

A table is a compact, structured representation for storing
and communicating data in documents and other manners of
presentation. In its presented form, however, a table, such
as the one in Fig. 1, may not explicitly represent its logical
structure. This is a significant problem as a large amount of
data is communicated through documents, and the absence
of structure information can impede this data’s use.

Inferring a table’s structure from its presentation and
converting it to a structured form is known as table extraction
(TE). TE entails three subtasks [5], which we illustrate in

Figure 1. An example presentation table whose underlying logical
structure is missing and must be inferred.

Fig. 2: table detection (TD), which locates the table; table
structure recognition (TSR), which recognizes a table’s rows,
columns, and cells; and functional analysis (FA), which
recognizes a table’s keys and values. TE is challenging for
automated systems [8, 11, 16, 22] due to the wide variety of
formats, styles, and layouts found in presented tables.

Recently, there has been a shift in the research litera-
ture from traditional rule-based methods [3,10,17] for TE to
data-driven methods based on deep learning (DL) [13,16,21].
The primary advantage of DL methods is that they can learn
to be more robust to the wide variety of table presentation
formats. However, manually annotating tables for TSR is
a difficult and time-consuming process [6]. To overcome
this, researchers have turned recently to crowd-sourcing to
construct larger datasets [8, 21, 22]. These datasets are as-
sembled from documents created by thousands of authors,
where each table’s structure and content is annotated in a
markup format such as HTML, XML, or LaTeX.

While crowd-sourcing solves the problem of dataset size,
repurposing annotations unintended for TE and automati-
cally converting these to ground truth presents its own chal-
lenges with respect to the completeness, consistency, quality,
and explicitness of information. For instance, markup does
not encode spatial coordinates for cells and encodes logical
relationships implicitly through cues such as layout [19].
This lack of explicit information limits not only the range of
potential modeling approaches, but also the quality control
that can be done to verify the annotations’ correctness.
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Figure 2. Illustration of the three subtasks of table extraction addressed by the PubTables-1M dataset.

Another significant challenge for the use of crowd-
sourced markup annotations is that their structures often
exhibit an issue we refer to as oversegmentation. Over-
segmentation occurs when a spanning cell in a header is
incorrectly split into multiple grid cells. We illustrate this
in Fig. 3. Oversegmentation in markup has no effect on
how a presentation table appears when borders between cells
are absent, leaving the implicit logical structure and inter-
pretation unaffected. However, oversegmentation can lead
to significant issues when used as ground truth for model
training and evaluation.

The first issue is that an oversegmented annotation contra-
dicts the logical interpretation of a table that its presentation
is meant to suggest. For instance, oversegmenting a cell
may indicate that its text applies to only one row when its
presentation form suggests its text is meant to apply to sev-
eral rows, as in the cell in column 1, row 3 in Fig. 3. This
is problematic for use as ground truth to train a machine
learning model to interpret a table’s structure. Even if over-
segmented annotations were considered a valid interpretation
of a table’s structure, allowing them leads to inconsistent
ground truth, due to there then being multiple possible valid
interpretations for a table’s structure, as in Fig. 3. This vio-
lates the standard modeling assumption that there is exactly
one correct ground truth for each table. Thus, datasets that
contain oversegmented annotations lead to inconsistent, con-
tradictory feedback during training and an underestimate of
performance during evaluation.

To address these and other challenges, we develop a new
large-scale dataset for table extraction called PubTables-1M.
PubTables-1M contains nearly one million tables from scien-
tific articles in the PubMed Central Open Access1 (PMCOA)

1https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/

database. Among our contributions:

• PubTables-1M is nearly twice as large as the current
largest comparable dataset and addresses all three tasks
of table detection (TD), table structure recognition
(TSR), and functional analysis (FA).

• Compared to prior datasets, PubTables-1M contains
richer annotation information, including annotations
for projected row headers and bounding boxes for all
rows, columns, and cells, including blank cells. It also
includes annotations on their original source documents,
which supports multiple input modalities and enables a
wide range of potential model architectures.

• We introduce a novel canonicalization procedure that
corrects oversegmentation and whose goal is to ensure
each table has a unique, unambiguous structure inter-
pretation.

• To reduce additional sources of error, we implement
several quality verification and control steps and pro-
vide measurable guarantees about the quality of the
ground truth.

• We show that data improvements alone lead to a sig-
nificant increase in performance for TSR, due both to
improved training and a more reliable estimate of per-
formance at evaluation.

• We apply the Detection Transformer (DETR) [1] for
the first time to TD, TSR, and FA, and demonstrate how
with PubTables-1M all three tasks can be addressed
with a transformer-based object detection framework
without any special customization for these tasks.
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(a) Oversegmented structure annotation (b) Canonical structure annotation

Figure 3. In this example, the structure annotation on the left is oversegmented, creating extra blank cells in the row and column headers.
The canonical structure annotation on the right merges these cells and captures the table’s true logical structure. The blank cells in the top
left corner are not part of the table and can be structured using any consistent scheme.

2. Related Work
Structure recognition datasets The first dataset to ad-
dress all three TE tasks was the ICDAR-2013 dataset [5].
It remains popular for benchmarking due to its quality and
relative completeness compared to other datasets. However,
as a source of training data it is limited, containing only 257
tables for TD and TSR and 92 tables for FA.

Recently, larger datasets [2, 8, 21, 22] for TSR have been
created by collecting crowd-sourced annotations automat-
ically from existing documents. We summarize these in
Tab. 1. The content and structure of each table is annotated
in a markup format such as HTML. Various methods are used
to determine each table’s spatial location within its contain-
ing document to create a correspondence between its markup
and presentation. From there, datasets commonly frame the
TSR task as: given an input table, output the structure—the
assignment of cells to rows and columns—and text content
for each cell, with image and HTML being example input
and output formats, respectively, for these.

Most recently, two large datasets, FinTabNet and an en-
hanced version of PubTabNet, have added location infor-
mation for cells, similar to ICDAR-2013. Adding location
information enables the TSR task to be framed as outputting
cell location instead of cell content, with cell content ex-
traction being a trivial subsequent step. This increases the
range of possible supervised modeling approaches. How-
ever, the bounding boxes for cells defined by these datasets
cover only the text portion of each cell and exclude any ad-
ditional whitespace that a cell might contain. This has a
few implications, such as leaving bounding boxes for blank
cells undefined and obscuring attributes of text contributed
by whitespace, such as indentation and alignment. There-
fore, one question left open by prior work is how to define
bounding boxes for all cells, including blank cells.

There are additional challenges related to annotation
completeness and quality that have not been addressed by
prior datasets. In terms of completeness, prior large-scale
datasets have also not included bounding boxes for rows and
columns. Additionally, most datasets do not annotate the col-
umn header, and no large-scale dataset exists that specifies

the row header of a table. This not only limits the range of
modeling approaches that can be applied to TSR but limits
how completely the overall TE task can be solved.

Another open challenge is automated verification and
measurement of annotation quality, which is important due
to the impracticality of large-scale manual verification. Fi-
nally, prior datasets have not addressed the issue of overseg-
mented annotations. These are significant issues, as noise
and mistakes in training data potentially harm learning, and
in evaluation data potentially lead to an underestimate of
model performance. Currently the extent to which these
issues affect model training and evaluation is unexplored.

Modeling approaches One of the most common mod-
eling approaches for TSR is to frame the task as some
form of object detection [13, 16, 21]. Other approaches
include those based on image-to-text [8] and graph-based
approaches [2,14]. While a number of general-purpose archi-
tectures, such as Faster R-CNN [15], exist for these model
patterns, the unique characteristics of tables and the relative
lack of training data have both contributed to the commonly
observed underperformance of these models when applied
to TSR out-of-the-box.

To get around deficiencies in training data, some ap-
proaches model TSR in ways that are only partial solutions
to the task, such as row and column detection in Deep-
DeSRT [16], which ignores spanning cells, or image-to-
markup without text content, as in models trained on Table-
Bank [8]. Other approaches use custom pipelines that branch
to consider different cases separately, such as training sep-
arate models to recognize tables with and without visible
borders surrounding every cell [13, 21]. Many of the pre-
viously mentioned approaches also use engineered model
components or custom training procedures, and incorporate
rules or other unlearned processing stages tailored to the TSR
task, which brings in prior knowledge to lessen the burden
placed on learning the task from data. Currently, no solution
exists that uses a simple supervised learning approach with
an off-the-shelf architecture, solves the TSR task completely,
and achieves state-of-the-art performance.
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Table 1. Comparison of crowd-sourced datasets for table structure recognition.

Dataset Input
Modality # Tables Cell

Topology
Cell

Content
Cell

Location
Row & Column

Location
Canonical
Structure

TableBank [8] Image 145K ✓
SciTSR [2] PDF∗ 15K ✓ ✓
PubTabNet [21, 22] Image 510K‡ ✓ ✓ ✓†

FinTabNet [21] PDF∗ 113K ✓ ✓ ✓†

PubTables-1M (ours) PDF∗ 948K ✓ ✓ ✓ ✓ ✓

∗Multiple input modalities, such as image or text, can be derived from annotated PDF data.
‡The authors release annotations for 510K of the 568K total tables in their dataset.
†For these datasets, cell bounding boxes are given for non-blank cells only and exclude any non-text portion of a cell.

3. PubTables-1M

In this section, we describe the process used to develop
PubTables-1M. To obtain a large source of annotated tables,
we choose the PMCOA corpus, which consists of millions of
public scientific articles. In the PMCOA corpus, each article
is given in two forms: as a PDF document, which visually
presents the article, and as an XML document, which pro-
vides a semantic description and hierarchical organization of
the document’s elements. Each table’s content and structure
is specified using standard HTML tags. However, because
this data was not intended for use as ground truth for table
extraction modeling, it does not explicitly label or guarantee
multiple things that would be helpful for this purpose. For
instance, although the same tables appear in both documents,
no direct correspondence between them is given, like the
location of each table. In terms of data quality, while tables
are generally annotated reliably, it is not guaranteed that
column headers are annotated completely or that text content
as annotated exactly matches the text content as it appears
in the PDF. Finally, some labels, such as the row header for
each table, are not annotated at all.

The basic approach we take to overcome these issues is
first we attempt to reliably infer as much missing annotation
information as possible (for instance, the spatial location
of each table) from the information that is present, then we
verify that each annotation meets certain requirements for
consistency. In some cases, we correct an annotation to
attempt to make it more consistent, such as merging cells
that are oversegmented. We consider certain requirements
to be strict and samples whose annotations violate these are
removed. This provides a set of conditions for quality and
consistency that the annotations are guaranteed to meet. In
the rest of this section, we describe these conditions and the
steps we take to derive ground truth that meets them.

Alignment Text in a PDF document has location
[xmin, ymin, xmax, ymax], while text in an XML document ap-
pears inside semantically labeled tags. Because the cor-
respondence between these is not given, the first step in

creating PubTables-1M is to match the text content from
both. We process the PDF document into a sequence of
characters each with their associated bounding box and use
the Needleman-Wunsch algorithm [9] to align this with the
character sequence for the text extracted from each table
HTML. This connects the text within each HTML tag to its
location with the PDF document. For each cell with text,
we compute the text cell bounding box as the union of the
bounding boxes for each character.

Completion Following alignment, we complete the spatial
annotations to define bounding boxes for rows, columns, and
the entire table. The bounding box for the table is defined as
the union of all text cell bounding boxes. The xmin and xmax
of the bounding box for each row are defined as the xmin
and xmax of the table, giving every row the same horizontal
length. The ymin and ymax of the bounding box for each row,
m, are defined as the ymin and ymax of the union of the text
cells for each cell whose starting row or ending row is m.
Similarly, the ymin and ymax of the bounding box for each
column are defined as the ymin and ymax of the table. The
xmin and xmax of the bounding box for each column, n, are
defined as the xmin and xmax of the union of the text cell for
each cell whose starting column or ending column is n. From
these definitions, the grid cell for each cell is defined as the
union of the bounding boxes of the cell’s rows intersected
with the union of the bounding boxes for its columns. Unlike
the text cell, the grid cell is defined even for blank cells.

Canonicalization The primary goal of the canonicaliza-
tion step is to correct oversegmentation in a table’s structure
annotations. To do this we need to make assumptions about a
table’s intended structure. As the canonicalization algorithm
itself is relatively simple, we first describe it, then detail the
assumptions that motivate it. Put simply, canonicalization
amounts to merging adjacent cells under certain conditions.
The algorithm is given in Algorithm 1. But because it only
operates on cells in the headers, HTML does not have a tag
for a table’s row header, and we observed that the column
headers for tables in the PMCOA corpus are not always cor-
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rect, we also include steps for inferring additional header
cells that we believe can be reliably inferred in PMCOA
annotations. These additional steps significantly increase
the number of cells whose oversegmentation we are able to
correct.

Algorithm 1 PubTables-1M Canonicalization
1: ADD CELLS TO THE COLUMN AND ROW HEADERS

2: Split every blank spanning cell into blank grid cells
3: if the first row starts with a blank cell then add the first row

to the column header
4: if there is at least one row labeled as part of the column

header then
5: while every column in the column header does not have

at least one complete cell that only spans that column do:
add the next row to the column header

6: end if
7: for each row do: if the row is not in the column header and

has exactly one non-blank cell that occupies the first column
then label it a projected row header

8: if any cell in the first column below the column header is
a spanning cell or blank then add the column (below the
column header) to the row header

9: MERGE CELLS

10: for each cell in the column header do recursively merge the
cell with any adjacent cells above and below in the column
header that span the exact same columns

11: for each cell in the column header do recursively merge the
cell with any adjacent blank cells below it if every adjacent
cell below it is blank and in the column header

12: for each cell in the column header do recursively merge the
cell with any adjacent blank cells above it if every adjacent
cell above it is blank

13: for each projected row header do merge all of the cells in
the row into a single cell

14: for each cell in the row header do recursively merge the cell
with any adjacent blank cells below it

We first assume that each table has an intended structure
consistent with the Wang model [20], which in a study Wang
found was true for 97 percent of observed tables. Under
this model, the headers of the table each have a hierarchical
structure that corresponds logically to a tree. We assert that
for a structure annotation to be consistent with a table’s
logical structure, there should be exactly one cell for every
tree node. We also assume that each value in the table is
indexed by a unique set of keys. We interpret this to mean
that each column in the body of the table corresponds to a
unique leaf node in the column header tree, and similarly that
each row in the body corresponds to a unique leaf node in the
row header tree (the index of a row or column can serve as a
key if necessary). These assumptions enable us to determine
if a row or column header is only partially annotated and if
so, to extend it to additional columns or rows, respectively.
However, to keep the precision of the algorithm high, for

row headers we only attempt to infer projected row headers
(PRHs, also known as projected multi-level row headers [7],
section headers [12], or super-rows [19]) and to infer cells
that are in the first column of the header. The PRHs of a
table can be identified using the rule in Line 7. Inference of
the full row header is considered outside the scope of this
work.

We also assume that any internal node in a header tree has
at least two children. If not, ambiguity could arise in a table’s
logical structure because an internal node could optionally
be split into a parent node and a single child node. The final
assumptions we make are in regards to the root cause of
oversegmentation in markup annotations. We assume that
cells will only be oversegmented if an oversegmentation
is consistent with the table’s appearance. In practice, this
means that cells with centered text will not be oversegmented
in the direction of the alignment because this is likely to alter
the table’s appearance. For non-centered text, we expect
that when cells in either header are oversegmented, this
will happen vertically, as in Fig. 3b, and not horizontally
due to the fact that text fills horizontal space before it fills
vertical space, leaving more vertical space unused. Further,
we expect that oversegmented cells in the row header will
have text that is top aligned. Finally, we expect that when
projected row headers are oversegmented, this will happen
horizontally, not vertically, as a projected row header already
occupies only one row.

Finally, there are two additional cases that we must handle
by convention. One case is when one or more rows of blank
grid cells are between a parent cell and all of its children
cells in the column header. In this case, we can choose either
to merge all of the blank cells with the parent cell above
it or each with the child cell below it, and we choose the
convention to merge all of the blank cells with the child,
which occurs in Line 10. The final case is when a table
has a blank stub head (according to the Wang model) in its
top-left corner. In this case, the blank cells are not part of the
table, so the assumptions about table structure do not suggest
how they should be grouped. We choose by convention to
merge all blank cells in the same column in a blank stub
head, which is consistent with the scheme in Line 10.

Limitations While the stated goal of canonicalization is
applicable to any table structure annotation, we note that
Algorithm 1 is designed to achieve this specifically for anno-
tations in the PMCOA dataset. Canonicalizing tables from
other datasets may require additional assumptions and is
considered outside the scope of this work. Finally, it should
be noted that canonicalization does not guarantee mistake-
free annotations. Remaining issues are addressed using the
automated quality control procedure described next.
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Table 2. Diversity and complexity of table instances in datasets for table structure recognition.

Dataset # Tables‡ # Unique Cell
Topologies

Avg. # Tables
Per Topology

Avg. Rows
Per Table

Avg. Columns
Per Table

Avg. Spanning Cells
Per Table

SciTSR 14,933 2,622 5.70 9.28 5.19 0.77
PubTabNet 502,887 121,649 4.13 14.05 5.39 2.24
FinTabNet 112,826 9,565 11.80 11.93 4.36 1.01

PubTables-1M 947,642 250,910 3.78 13.41 5.46 3.01
‡The number of ground truth tables in the dataset that we were able to successfully read and process.

Table 3. Estimated measure of oversegmentation for projected row headers (PRHs) by dataset. As PRHs are only one type of cell that can be
oversegmented, this is a partial survey of the total oversegmentation in these datasets.

Dataset Total Tables
Investigated†

Total Tables
with a PRH∗

Tables with an Oversegmented PRH

Total % (of Total with a PRH) % (of Total Investigated)

SciTSR 10,431 342 54 15.79% 0.52%
PubTabNet 422,491 100,159 58,747 58.65% 13.90%
FinTabNet 70,028 25,637 25,348 98.87% 36.20%

PubTables-1M 761,262 153,705 0 0% 0%
†We exclude tables with fewer than five rows; to avoid column header rows we skip the first four rows when searching for PRHs.
∗PRH = projected row header; these can be reliably detected in datasets without any prior row or column header annotations.

Quality control Because PubTables-1M is too large to be
verified manually, we check for errors automatically and
filter these from the data. First, as tables rendered from
markup should not contain overlapping rows or overlapping
columns, we discard any table where this occurs, as these are
likely due to errors in the source markup or introduced by the
alignment process. Next, to ensure text annotation quality,
we compare the edit distance between the non-whitespace
text for every cell in the original XML annotations with the
text extracted from the PDF inside the grid cell bounding
box. We filter out any tables for which the normalized edit
distance between these averaged over every cell is above
0.05. We do not force the text from each to be exactly equal,
as the PDF text can differ even when everything is annotated
correctly, due to things like word wrapping, which may add
hyphens that are not in the table’s source text. When dis-
crepancies remain, we choose to consider the PDF text to be
the ground truth. As tables with correct location information
provide an unambiguous assignment of all words in the table
to cells, we also compute the average fraction of overlap
between each word lying within the boundary of the table
and its most overlapping grid cell, and discard tables with an
average below 0.9. Finally, we count the number of objects
in a table (defined in Sec. 4) and remove tables with more
than 100 as outliers, which discards less than 0.1% of tables.

PubTables-1M is the first dataset that verifies annotations
at the cell level and provides a measurable assurance of
consistency for the ground truth. Thus improving the explic-
itness of information is valuable in part because it leads to
more opportunities for catching inconsistencies and errors
embedded within the data.

Dataset statistics and splits In total, PubTables-1M con-
tains 947,642 tables for TSR, of which 52.7% are complex
(have at least one spanning cell). Prior to canonicalization,
40.1% of the tables were originally annotated as complex.
Canonicalization adjusted the annotations in some way for
34.7% of all tables, or 65.8% of complex tables.

In Tab. 2, we compare the diversity and complexity of
PubTables-1M’s samples to other datasets. To measure di-
versity, we count the number of unique table structure lay-
outs (or cell topologies) in each dataset. As can be seen,
PubTables-1M includes more diversity per sample, a wider
range of table structures, and layouts that are more complex
overall compared to prior datasets.

In Tab. 3, we attempt to measure and compare the amount
of oversegmentation present in each dataset. Precisely mea-
suring this requires annotations for the row and column
headers. But because other datasets lack these, we instead
measure just oversegmented projected row headers (PRHs),
which can be detected reliably without explicit annotations
using the rule in Line 7. To account for missing column
header annotations, we do not start looking for PRHs until
at least the fifth row, which assumes the column header oc-
cupies at most four rows, and we simply exclude any tables
that have fewer than five rows. In case there are un-annotated
footers, we also do not count any detected PRHs that are the
last rows of the table. A detected PRH is oversegmented if
its row contains a blank cell. As can be seen, a significant
amount of oversegmentation is present in crowd-sourced
datasets that have not been canonicalized. While a dataset
with oversegmentation can be self-consistent, like FinTab-
Net, combining datasets with different annotation schemes
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Figure 4. An example table with dilated bounding box annotations
for different object classes for jointly modeling table structure
recognition and functional analysis.

could exacerbate inconsistency or even lead to overfitting.
We split PubTables-1M randomly into train, validation,

and test sets at the document level using an 80/10/10 split.
For TSR and FA, this results in 758,849 tables for training;
94,959 for validation; and 93,834 for testing. For TD, there
are 460,589 pages containing tables for training; 57,591 for
validation; and 57,125 for testing. Note that these tables
each span one page only—tables that span multiple pages
are considered outside the scope of this work.

4. Proposed Model

We model all three tasks of TD, TSR, and FA as object
detection with images as input. For TD, we use two object
classes: table and table rotated. The table rotated class
corresponds to tables that are rotated counterclockwise 90
degrees.

TSR and FA model We use a novel approach that models
TSR and FA jointly using six object classes: table, table
column, table row, table column header, table projected row
header, and table spanning cell. We illustrate these classes
in Fig. 4. The intersection of each pair of table column
and table row objects can be considered to form a seventh
implicit class, table grid cell. These objects model a table’s
hierarchical structure through physical overlap.

For the TSR and FA model, we use bounding boxes that
are dilated. To create dilated bounding boxes, for each pair
of adjacent rows and each pair of adjacent columns, we
expand their boundaries until they meet halfway, which fills
the empty space in between them. Similarly we expand the
objects from the other classes so their boundaries match
the adjustments made to the rows and columns they occupy.
After, there are no gaps or overlap between rows, between
columns, or between cells.

Table 4. Test performance of models on PubTables-1M using object
detection metrics.

Task Model AP AP50 AP75 AR

TD Faster R-CNN 0.825 0.985 0.927 0.866
DETR 0.970 0.995 0.989 0.985

TSR + FA Faster R-CNN 0.722 0.815 0.785 0.762
DETR 0.912 0.971 0.948 0.942

To demonstrate the proposed dataset and the object detec-
tion modeling approach, we apply the Detection Transformer
(DETR) [1] to all three TE tasks. We train one DETR model
for TD and one DETR model for both TSR and FA. For com-
parison, we also train a Faster R-CNN [15] baseline model
for the same tasks. All models use a ResNet-18 backbone
pre-trained on ImageNet with the first few layers frozen. We
avoid custom engineering the models and training proce-
dures for each task, using default settings wherever possible
to allow the data to drive the result.

5. Experiments
In this section, we report the results of training the

baseline models for all three tasks on data derived from
PubTables-1M. We report the performance of the models for
table detection in Tab. 4. For TD, DETR slightly outperforms
Faster R-CNN on AP50 but significantly outperforms on AP,
demonstrating superior performance for table localization.
This gap suggests that the dataset is not trivial to learn, yet is
large and consistent enough for a model to learn effectively.

For TSR and FA, we train three baseline models: Faster
R-CNN and DETR on the canonicalized data, and DETR
on the original, non-canonical (NC) annotations (DETR-
NC). We report the results using object detection metrics for
models trained on canonical data in Tab. 4, which measures
performance jointly on TSR and FA, and report results for
all models using TSR-only metrics in Tab. 5. We evaluate
DETR-NC on both canonical and non-canonical test data.

For assessing TSR performance, we report several metrics
including the table content accuracy metric (AccCon), which
is the percentage of tables whose text content matches the
ground truth exactly for every cell, the F-score of the directed
adjacency relations (DARCon) metric [4], and the recently
proposed GriTS [18] metrics for partial table correctness.
GriTS assesses cell topology recognition (GriTSTop), cell
content recognition (GriTSCon), and cell location recognition
(GriTSLoc) using the same overall form,

GriTSf (A,B) =
2 ·

∑
i,j f(Ãi,j , B̃i,j)

|A|+ |B|
. (1)

where A and B are the ground truth and predicted matrices
of grid cells, respectively.
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Table 5. Test performance of the TSR + FA models on PubTables-1M using TSR-specific metrics.

Test Data Model Table Category AccCon GriTSTop GriTSCon GriTSLoc DARCon

Non-Canonical DETR-NC Simple 0.8678 0.9872 0.9859 0.9821 0.9801
Complex 0.5360 0.9600 0.9618 0.9444 0.9505
All 0.7336 0.9762 0.9761 0.9668 0.9681

Canonical DETR-NC Simple 0.9349 0.9933 0.9920 0.9900 0.9865
Complex 0.2712 0.9257 0.9290 0.9044 0.9162
All 0.5851 0.9576 0.9588 0.9449 0.9494

Faster R-CNN Simple 0.0867 0.8682 0.8571 0.6869 0.8024
Complex 0.1193 0.8556 0.8507 0.7518 0.7734
All 0.1039 0.8616 0.8538 0.7211 0.7871

DETR Simple 0.9468 0.9949 0.9938 0.9922 0.9893
Complex 0.6944 0.9752 0.9763 0.9654 0.9667
All 0.8138 0.9845 0.9846 0.9781 0.9774

We observe that DETR trained on the canonical data
produces strong results for TSR and FA, outperforming all
of the other baseline models. Comparing DETR-NC trained
and evaluated on NC ground truth versus DETR trained
and evaluated on canonical ground truth, we observe that
the use of canonicalized data improves performance across
both simple and complex tables. This is even more apparent
in exact match accuracy, where canonicalized data boosts
performance from 0.5360 to 0.6944 for complex tables.

To consider the impact that canonicalization has on facil-
itating a more reliable evaluation, we compare DETR-NC
evaluated on canonical versus NC data. Even though it is
trained on NC data, accuracy for simple tables is much higher
when DETR-NC is evaluated on canonical data (0.9349)
than when it is evaluated on NC data (0.8678). This clearly
demonstrates that the canonical data is less noisy and con-
tributes to a more reliable evaluation.

Finally, for DETR-NC we observe a significant drop
across all metrics on complex tables when the evaluation
is changed from NC data to canonical data. Setting aside
the amount of self-consistency present within each set of
annotations, this gap further highlights how much the two
sets are simply different. To the extent that canonical struc-
ture annotations are considered more useful, models trained
on canonical data can also be considered more useful, in
addition to being more consistent.

6. Conclusion
In this paper, we introduced PubTables-1M, a new dataset

for table extraction in unstructured documents that addresses
the challenge of creating complete, reliable ground truth at
scale. We called attention to the problem that oversegmenta-
tion in markup annotations leads to ambiguous ground truth
in crowd-sourced datasets, and proposed a novel canoni-
calization procedure to address this. We demonstrated that
improvements to the ground truth have a significant positive
impact on model performance. Finally, we adopted DETR

for all three table extraction tasks and showed for the first
time that it is possible to achieve state-of-the-art performance
within a standard object detection framework without the
need for any special customization for these tasks. While we
do not believe this work raises any issues regarding negative
impacts to society, we welcome a discussion on any potential
impacts raised by others.

7. Future Work

In the future, we hope to expand the proposed methods
and canonicalization from tables in scientific articles to addi-
tional domains such as financial documents. We also hope
to address the open challenge of accurately annotating row
headers in large-scale datasets, which will enable even more
complete solutions for table extraction. Finally, table extrac-
tion is often just one stage in larger pipelines for document
understanding and information retrieval, and developing end-
to-end systems in these areas is an important direction with
its own challenges. We hope that releasing a large pool of
detailed annotations from the PMCOA corpus in particular
can further progress in this area.
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