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Abstract

We present Gradient-SDF, a novel representation for 3D
geometry that combines the advantages of implict and ex-
plicit representations. By storing at every voxel both the
signed distance field as well as its gradient vector field,
we enhance the capability of implicit representations with
approaches originally formulated for explicit surfaces. As
concrete examples, we show that (1) the Gradient-SDF al-
lows us to perform direct SDF tracking from depth images,
using efficient storage schemes like hash maps, and that
(2) the Gradient-SDF representation enables us to perform
photometric bundle adjustment directly in a voxel represen-
tation (without transforming into a point cloud or mesh),
naturally a fully implicit optimization of geometry and cam-
era poses and easy geometry upsampling. Experimental
results confirm that this leads to significantly sharper re-
constructions. Since the overall SDF voxel structure is still
respected, the proposed Gradient-SDF is equally suited for
(GPU) parallelization as related approaches.

1. Introduction

The representation of 3D geometry in computer vision is
a long-studied research topic. Mathematically, a surface is
a 2D manifold embedded in R3. However, when it comes
to implementing this on a computer, the question of dis-
cretization comes up: how can we represent a surface with
possibly infinite amount of detail and large extent with a fi-
nite amount of memory and variables with finite precision?
Different answers to this question exist, and which one is
most suitable highly depends on the concrete problem one
wants to solve.

On the one hand, there are explicit representations, such
as point clouds, surfel clouds or polygon meshes. They di-
rectly sample points on the surface together with additional
information like surface normals or point radius (for sur-
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Figure 1. Our Gradient-SDF (middle) is a hybrid representation
between standard signed distance fields stored in a voxel grid
(left) and the explicit geometry representation using surfels (right):
while we inherit the implicit nature of standard SDF voxels, we
store gradients per voxel, which is similar to the surface normal
property of a surfel. This combines the advantages of implicit rep-
resentations, such as the possibility for direct SDF tracking, with
those of explicit ones, for instance the possibility to perform bun-
dle adjustment.

fels), or connectivity of points (for meshes). This is useful
for applications such as bundle adjustment, where surface
points are reprojected into different camera frames.

On the other hand, we have implicit representations, that
take a different approach: the surface is encoded implicitly
by assigning each point p in the ambient space R3 a scalar
value, such as a binary occupancy, or a (signed) distance
to the nearest surface point. Signed distance fields (SDFs)
have some useful properties, for instance, unlike explicit
representations, they allow for changes of surface topology,
and they can be updated very easily. There are different
ways to store SDFs, the more traditional one being a voxel
grid, where 3D space is partitioned into voxels, i.e., cubes of
a given size. Each voxel contains the SDF value of its cen-
ter point, sometimes truncated to a certain value. Such voxel
grids can be stored either densely, or sparsely using e.g. oc-
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trees or hash maps. Extracting a surface from an implicit
representation requires an additional step, marching cubes
being a popular choice [17]. Only recently, implicit param-
eterizations of implicit representations have become more
popular. Neural networks regress the SDF value for a sur-
face at any point, and the set of network weights uniquely
characterizes the surface geometry. While these doubly im-
plicit representations are very elegant as they theoretically
provide an infinite level of detail, updating the geometry
is less trivial than for voxel-based implicit representations,
and surface extraction often requires voxelization.

In this work, we propose a hybrid between explicit
and implicit representations called Gradient-SDF: we use
a voxel-based implicit SDF representation, and augment it
with the SDF gradient. To summarize, we propose the fol-
lowing contributions:

• We propose Gradient-SDF as an implicit geometry
representation with explicit features. It exploits first-
order Taylor expansion to perform interpolation with-
out accessing several voxels.

• We prove that our stored Gradient-SDF vectors are
significantly more accurate than gradients obtained by
standard finite difference schemes.

• We show theoretically and experimentally how
Gradient-SDF can be used in a depth-based tracking
and mapping system, where efficient storage in a hash
map is combined with direct SDF tracking.

• We provide a formulation for photometric bundle ad-
justment (BA) on our implicit voxel-based Gradient-
SDF representation and evaluate the benefits of this.

2. Related Work
ICP tracking and SDF-based mapping In KinectFu-
sion [19], the depth camera is tracked by the iterative closest
point (ICP) algorithm, where the incoming depth map point
cloud is registered to a point cloud extracted from the cur-
rent SDF model via raycasting. Many methods build on this
idea and focus on improving different aspects, most notably
on reducing the high memory requirements imposed by the
need for a volumetric voxel grid. The voxel hashing ap-
proach set the basis for lower memory requirements [20],
and others followed and further improved this [12, 13, 32].
In TextureFusion [16], the voxel hashing data structure
is augmented by a texture tile in order to compute high-
resolution texture within an RGB-D scanning setup. While
these KinectFusion-like approaches work very well and can
be efficiently implemented on a GPU, they switch between
different representations of 3D geometry: the voxel grid
stores the SDF and is used for mapping, and a 3D point
cloud obtained by raycasting is used for tracking.

SDF-based tracking and mapping Few works have ad-
dressed this issue of representation switching, most notably
Bylow et al. [6] and Canelhas et al. [7], who directly min-
imize a sum of squared SDFs to estimate the camera pose,
rather than converting the SDF to a point cloud. Slavcheva
et al. [24] also convert the input depth map to a volumetric
SDF prior to camera pose estimation. Both types of ap-
proaches converge better than KinectFusion-like methods,
while avoiding the change of representation. However, they
heavily rely on the voxel being stored cohesively in mem-
ory, as the tracking step involves interpolation and gradient
computation of the SDF, which needs to access at least eight
voxels for one single lookup.

Surfel-based tracking and mapping Surfel-based meth-
ods can also achieve impressive results for 3D tracking and
mapping from depth images. Keller et al. [14] use surfels,
i.e., points together with their normals and some additional
properties, to reconstruct 3D scenes from depth sensors. To
find surfels that correspond to pixels in an incoming image,
they use index maps and align the incoming depth map with
a virtual model depth map using ICP. One particular advan-
tage of explicit representations is the fact that dense photo-
metric bundle adjustment [10] can be easily integrated into
a tracking and mapping pipeline, a recent example being
BAD SLAM [22]. Thanks to SurfelMeshing [23], it is even
possible to extract meshes from a surfel representation, us-
ing a lazily updated octree to store and easily access surfels.

Neural networks for tracking and mapping In the last
years, neural networks have been used increasingly for
tracking and mapping, as the representation of geometry
using learned parameters has proven very successful [4, 11,
18, 21]. In RoutedFusion [30], the SDF is still stored as
discrete voxel grid values, but the SDF update for a new
incoming depth image is learned. The later NeuralFusion
work [31] also represents geometry in a latent space. Simi-
lar approaches are also taken in more recent work [2, 28].

3. Geometry Representations for 3D Vision

3.1. Surfels or voxels?

SDFs defined on a voxel grid have been used for decades
to store and efficiently update 3D geometry [9]. A subset Ω
of R3 is subdivided into a discrete set of voxels with po-
sitions vj ∈ R3, each of which stores the distance ψj to
its closest surface point, see also Figure 1 (left). The sign
indicates if the voxel location is free space (ψj < 0) or in-
side an object (ψj > 0). Such a free-space classification is
useful for collision avoidance in navigation tasks. Given an
SDF representation and a new distance estimate d(vj) for a
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voxel located at vj , ψj is easily updated:

ψj ←
Wjψj + w(vj)d(vj)

Wj + w(vj)
, (1)

Wj ←Wj + w(vj) , (2)

with w(vj) a weight indicating how reliable the estimate
is, and Wj the current weight estimate. The set of voxels
vj is usually arranged on a regular 3D grid, vj = vsmj

with voxel size vs and mj ∈ Z3. If stored volumetri-
cally, ψj and Wj can be accessed very quickly, but memory
grows cubically with the scene size. The memory footprint
can be significantly reduced using hierarchical tree struc-
tures [25, 26] or hash maps [20]. For those, however, cer-
tain operations in the SDF, such as tri-linear interpolation
or gradient computation (i.e., normal estimation) can be-
come costly, as multiple voxels need to be accessed. This
is an issue, even if voxel blocks as in [20] are used: for a
voxel block of size 83, only 63 voxels lie fully inside the
block. For these, neighbors can be accessed similarly to
a volumetrically stored SDF. However, for the 57.8% of
voxels (83 − 63) in the block that have neighbors outside
their block, neighbor lookup still means additional hash ta-
ble lookups. Furthermore, to fully exploit the regular struc-
ture inside blocks, we would have to introduce a distinction
between voxel types (fully inside/face/edge/corner). In ad-
dition, in hash maps it is possible that not all eight voxel
corners exist, meaning we need rules to perform the inter-
polation given only a subset of neighbors.

On the other side of the spectrum, there are surfels: the
surface is explicitly represented by a set of points p on
the surface, together with surface normals n, see Figure 1
(right). Surfels may have more properties, such as a radius,
some visual descriptor, or timestamps [22], that can be used
to define update rules in specific tracking or mapping appli-
cations. Surfel location and normal can be updated similarly
to (1) in a running weighted average fashion. Normal esti-
mation in a surfel representation is trivial, as normals are
stored inside the surfel data structure. However, computing
the distance to the closest surface point for a given point
p ∈ R3 can become quite costly, as it typically involves
a nearest-neighbor search. Furthermore, surfel representa-
tions don’t have an easy way to classify non-surface points
in R3, so they cannot be used for tasks in which we want to
distinguish between free and occupied space.

3.2. Gradient-SDF: the best of both worlds

We propose Gradient-SDF as a hybrid solution that com-
bines the best of the implicit voxel world and the explicit
surfel world: we augment the voxel structure by an addi-
tional 3D vector, namely a scaled gradient gj of the SDF at
that point.

This proposed data structure is visualized in Figure 1.
For a signed distance function, the gradient at a point p is

equal to the inwards-pointing surface normal at the closest
surface point, and the negative of the outwards-pointing sur-
face normal. Thus, similarly to the update in (1), gj can be
updated in a straightforward way:

gj ← gj + w(vj)n(vj) . (3)

In most applications, normals are already computed from
the incoming data (e.g., depth maps) for filtering or render-
ing, so the computation of n(vj) does not introduce any
computational overhead. We normalize the weighted sum
gj to get the actual gradient estimate ĝj at vj .

Storing the gradients together with the distances allows
for easy computation of the closest surface point ps of a
voxel vj :

ps(vj) = vj − ψj ĝj . (4)

As each vj can be uniquely mapped to a surfel with point
ps(vj) and normal −ĝj , we can interpret our storage
scheme as a voxelized way to store surfels.

Just like traditional voxel SDFs, our Gradient-SDF can
be stored either volumetrically, or using optimized struc-
tures like trees or hash maps. Since memory per voxel
is increased by the use of Gradient-SDF, we focus our
analysis on sparse voxel storage schemes. Combining a
voxel representation with components of a surfel represen-
tation (namely, the SDF gradient/surface normal), Gradient-
SDF overcomes the issues that pure voxel or surfel repre-
sentations may have, in particular when voxels are stored
sparsely. We demonstrate this on a range of example appli-
cations.

4. Example Applications in 3D Vision
4.1. Camera tracking using depth images

To find the rigid body transformation (R, t) of an incom-
ing point cloud with points pk to a global surface model S,
we aim to minimize a weighted least squares energy

E(R, t) =
∑
k

wkdS(Rpk + t)2 , (5)

where wk is a weight and dS(p) denotes the (possibly
signed) distance from the point p to the surface:

|dS(p)| = min
ps∈S

∥p− ps∥ . (6)

An energy of this form is usually minimized using Gauss-
Newton or Levenberg-Marquardt optimization, which need
dS and ∇dS in every iteration of the algorithm. To empha-
size the benefits of Gradient-SDF, we briefly review how the
two most common approaches—the iterative closest point
(ICP) algorithm, and direct SDF tracking—estimate these
quantities.
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ICP-based tracking If the surface S is represented by a
point or surfel cloud, i.e., using a discrete set of points ql ∈
S, possibly with normals nl, the distance dS and its gradient
can be estimated either using the (unsigned) point-to-point
approximation

dpt-pt
S (p) = ∥p− ql∗∥ , (7)

∇dpt-pt
S (p) =

p− ql∗

∥p− ql∗∥
, (8)

or the (signed) point-to-plane approximation

dpt-pl
S (p) = n⊤

l∗(p− ql∗) , (9)

∇dpt-pl
S (p) = nl∗ , (10)

with
l∗ = argmin

l
∥p− ql∥ . (11)

Both require a nearest neighbor search for each evaluation
of dS and ∇dS , which can be implemented using a kD-
tree, or more efficiently by searching the pixel neighbor-
hood in the depth image. In approaches like [19,20], where
a discrete SDF representation is used to store the global 3D
model, each camera pose estimation step needs to convert
the SDF representation to a point cloud in order to apply
ICP, which is inconsistent and not elegant.

Direct SDF tracking Approaches like [6, 7], by contrast,
directly use the SDF voxels (vj , ψj) to approximate dS us-
ing interpolation:

dsdf
S (p) =

∑
vj∈N (p)

ψjω(p,vj) , (12)

whereN (p) is a neighborhood of p, and ω(p,vj) are inter-
polation coefficients. For tri-linear interpolation, |N (p)| =
8. The gradient of dsdf

S can be computed by finite differences
over the regular grid of sample points vj :

∇dsdf
S (p) =

∑
vj∈N ′(p)

ψj

τx(p,vj)
τy(p,vj)
τz(p,vj)

 . (13)

The coefficients τx,y,z(p,vj) and the neighborhood N ′(p)
depend on which type of interpolation and which type of
finite difference scheme is chosen.

The advantage of such direct approaches over ICP-based
ones is that the same volumetric representation that is used
for mapping can also be used for pose estimation without
any conversion, resulting in a very elegant solution that is
easy to implement. However, to evaluate (12) and (13) at
least 8 voxels need to be read in order to get dsdf

S and its gra-
dient. This is most efficient when voxels are stored contigu-
ously in memory, which restricts the reconstruction volume
to small to medium sizes (typically at most 5123).

Tracking using Gradient-SDF With our data structure,
we can easily approximate both dS and ∇dS with only one
single voxel look-up, using a first-order Taylor expansion:

dour
S (p) = ψ0 + (p− vj∗)

⊤ĝj∗ , (14)
∇dour

S (p) = ĝj∗ , (15)
j∗ = argmin

j
∥p− vj∥ . (16)

This looks very similar to the ICP-based formulation, but in
our case j∗ can be computed without any neighbor search
simply by rounding p/vs, as we know that the vj are sam-
pled on a regular grid in R3.

As a consequence, contiguous memory storage that is so
beneficial for volumetric direct SDF tracking approaches is
no longer as important, and we can use a hash map instead
to compactly store our voxels, while still staying within one
geometry representation. This allows us to store larger vol-
umes just like in [20], where voxels far from the surface (i.e.
with zero weight) are not explicitly stored.

4.2. Pose optimization and bundle adjustment

Typically, bundle adjustment is performed on a sparse
set of points [1, 29], as computational cost grows with the
number of points. In online approaches, also the number
of cameras is usually limited to a sliding window. With
the introduction of BAD SLAM [22], these limitations are
lifted: the use of depth data for bundle adjustment together
with some smart optimization allows for actually perform-
ing bundle adjustment on a more dense level. Naturally the
question comes up if bundle adjustment can also be per-
formed in implicit dense geometry representations such as
signed distance fields. This is where Gradient-SDF comes
in handy: while it is very hard to come up with a meaningful
bundle adjustment energy in standard SDF representations,
we can exploit (4) to define points on the surface for which
we want to adjust bundles. Together with the finding of [22]
that optimization can be limited to the normal direction, we
can set up an implicit photometric BA cost:

E({Ri, ti}, ψ) =
∑
i,j,c

νijΦ
(
Icij − 1

Nj

∑
k

νkjI
c
kj

)
, (17)

where νij denotes the visibility of voxel vj in frame i (Nj =∑
i νij), c ∈ {r, g, b}, and Φ is a robust cost function. Icij is

given by

Icij({Ri, ti}, ψj) = Ici
(
π(R⊤

i (vj − ψj ĝj − ti))
)
, (18)

with π the perspective projection from R3 to the image do-
main. In the optimization, we abstract the original mean-
ing of ĝj as gradient of ψj , and keep it fixed while chang-
ing ψj . Following [22], for strongly connected problems,
the optimization of poses and distances can be performed
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alternatingly to reduce computational cost. We can limit
the pose optimization part to voxels that actually contain
surface points to reduce computations. Depending on the
scene, this approach can be further accelerated by limiting
the optimization to the camera poses (Ri, ti). Rather than
projecting voxel centers vj into the RGB images Ii (as done
in e.g. [6, 20]), we project the real surface point vj − ψj ĝj .
This is not easily possible in a standard SDF representation,
and while the effect for simple BA optimization is small, it
opens up new applications such as high-resolution surface
optimization using shading and lighting information to im-
prove approaches like [5]. Gradient-SDF thus allows for
(photometric) bundle adjustment in an implicit voxel-based
representation.

Different cost formulations exist for photometric BA,
and we chose (17) which is similar to [10] rather than a
sum of pairwise squared intensity differences, because we
appreciate the natural interpretation that this provides: for
Φ(r) = r2, the energy E can be rewritten as

E({Ri, ti}, ψ) =
∑
j,c

Nj ·Var
i
({Icij}) , (19)

a weighted sum of the intensity variance of each voxel’s
closest surface point. As we do not store the color per voxel
in contrast to [22], (17) couples all camera poses, making
pose optimization quadratically dependent on the number
of frames used. We lift this limitation by decoupling the
original energy cost and simultaneously minimizing

Ei(Ri, ti, ψ) =
∑
j,c

νijΦ
(
Icij − 1

Nj

∑
k

νkjI
c
kj

)
. (20)

This makes the pose optimization step linear in the number
of frames. The simultaneous (rather than alternating) min-
imization of pose energies means that even though each of
the energies contains an average of all residuals Icij , this av-
erage does not impose any additional computation in prac-
tice. We show in the evaluation that the simplification in-
troduced in (20) has nearly no effect on results. After min-
imizing E w.r.t. ψj and (Ri, ti), we can compute the color
ρcj at voxel vj as the mean

ρcj =
1

Nj

∑
i

νijI
c
ij (21)

Since we have the projection to the closest surface point
implicitly encoded in the cost function (17), and do not store
an explicit estimate of voxel color, we avoid the correspon-
dence estimation between geometry and texture that is used
in TextureFusion [16].

4.3. Surface extraction from a Gradient-SDF

In order to eventually extract a surface from the implicit
TSDF representation, we have two choices: we can extract

a set of surfels, or we run marching cubes to extract a mesh.
We discuss both approaches and present ways to efficiently
implement them given our specific data structure.

Oriented point cloud extraction A very fast way to ex-
tract a surface representation from our gradient-augmented
SDF representation is to extract surface points ps(vj) to-
gether with their normals −ĝj from all voxels that have
|ψj ĝj | ≤ vs

2 (component-wise). This results in a homoge-
neously sampled, consistently oriented point cloud of reso-
lution vs

2 . Re-sampling for more regularly distributed sur-
fels such as in [32] is not necessary in our Gradient-SDF
representation. Regular geometry upsampling of this point
cloud is also very easy: we subdivide each voxel into four
subvoxels, determine their distance using the Taylor ex-
pansion (14), and then extract surfels from subvoxels with
|ψj ĝj | ≤ vs

4 instead.

Layered Marching Cubes for mesh extraction Extract-
ing a mesh rather than a set of surfels is also easy for an
implicit SDF representation like ours: we can use the well-
known marching cubes (MC) algorithm [17]. In the case
where voxels are not stored volumetrically in memory, but
in a hash map, we can traverse the hash map and check
for each voxel if the eight corners of the cube next to it
(going in positive x-, y- and z-direction) are allocated. If
yes, we can extract the corresponding triangle face from
the MC lookup table. This, however, requires a complete
re-implementation of the meshing algorithm. We use a dif-
ferent approach that can be more seamlessly integrated in
an existing MC implementation: in our layered marching
cubes, we first extract the minimum and maximum x, y and
z coordinates of all voxels to obtain an axis-aligned bound-
ing box. Then, starting from (without loss of generality)
minimal z, we allocate memory for two voxel layers of size
(xmax−xmin)× (ymax−ymin), and fill it with the first two
z-layers for weights, colors, and distance values. We now
apply Marching Cubes on the layer interface. After this,
we re-fill the first layer with the next z-values and proceed.
This way, we avoid a cubic memory usage.

5. Evaluation

To demonstrate the potential of Gradient-SDF, we anal-
yse our stored gradients and show two example applications
where we use Gradient-SDF to store the underlying 3D ge-
ometry: a simple tracking and mapping system using depth
images, and photometric bundle adjustment together with
subsampling on a Gradient-SDF initialized from our track-
ing system.
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Figure 2. Qualitative reconstruction results for SDF Tracker [7]
with 5123 = 1.34 × 108 voxels (left) and our tracker using
a Gradient-SDF hash map (right) on the 00577 sofa sequence
from [8]. Shown are the meshes after running marching cubes.
The visual quality of results is largely comparable, but our hash
map-based method needs more than 20× less memory than the
dense storage of [7], despite having three more entries per voxel.

5.1. Implementation

Our code is available on https://github.com/c-

sommer/gradient-sdf. Our data structure is imple-
mented in C++ with single-precision floats, and our
GradSdfVoxels are stored in a hash map, one voxel per
entry. We found that for a CPU implementation, the dif-
ference in performance compared to hashing blocks of size
83 is marginal. For pose optimization both in the tracker
and in the bundle adjustment, we use Gauss-Newton and
solve the resulting linear system using Cholesky decompo-
sition. Optimizing the BA cost (20), we do not store the
three variables for voxel color, which is in contrast to [6,20].
All experiments were performed on an Intel Xeon CPU @
3.60GHz, using OpenMP with four threads, and no GPU.

5.2. Gradient quality on synthetic data

Setup We start our evaluation with an analysis of the gra-
dients ĝj that we store in our voxels, and compare them and
finite difference gradients to ground truth gradients. Five
random spheres with different radii are randomly rendered
into a sequence of depth images augmented with Kinect-
like sensor noise [15]. We perform (Gradient-)SDF fu-
sion according to the formulas in (1)–(3) using ground truth
poses. For a sphere with center c, the (ground truth) SDF
gradient at point p is p−c

∥p−c∥ . Furthermore, we have the
stored gradient and we can compute a central finite differ-
ence gradient from the accumulated SDF.

Results Figure 3 shows the angular deviation of gradient
vectors to ground truth, for our stored gradients and for
finite differences. Our gradients are clearly much closer
to the ground truth ones—both for surface voxels, and
throughout the whole truncation region. Additional visual-
izations in the supplement show that our gradient estimate is
much smoother than the one using finite differences. Thus,
not only does Gradient-SDF enable easier interpolation of
dS(p), it also produces much better gradient estimates than

Figure 3. Quality of gradient estimates. For all voxels closer than
x voxels to the surface, the y-value of the curves specify mean,
median and 95th percentile of the angular deviation from ground
truth gradients in degrees. Solid lines are Gradient-SDF vectors,
and dashed lines central finite differences. Our gradients are sig-
nificantly more accurate than those computed using finite differ-
ences, e.g. the mean angular deviation of voxels within 10vs from
the surface is nearly twice as big for central differences (9.49◦) as
for our stored gradients (5.07◦).
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fr1/desk 6.8 3.5 3.9 5.6
fr1/desk2 63.5 6.2 6.6 6.6
fr1/xyz 2.5 2.3 1.7 2.0
fr1/rpy 8.1 4.2 3.9 4.9
fr1/plant 28.1 4.3 5.5 11.2
fr1/teddy 33.7 8.0 10.1 11.3
fr3/household 6.1 4.0 3.8 5.2

Table 1. RMSE of the absolute trajectory error (ATE) in cm on
sequences from [27], errors above 25 cm are marked red. On
fr1/floor, all methods have an ATE above 50 cm, thus we exluded
that sequence. While very slow, in terms of ATE our baseline
implementation of direct SDF tracking using a hash map is on
par with [6]. Gradient-SDF is much faster and still consistently
outperforms KinectFusion and is comparable to standard direct
SDF tracking. Results for KinFu and the direct tracker are taken
from [6].

a standard finite difference scheme.

5.3. Camera tracking using depth images

Our first real-world application is a 3D scanning sys-
tem that uses depth images to track the camera and build
up an implicit 3D model, just like KinectFusion or direct
SDF tracking.

Setup We take the general system setup from [6], with a
linear weight, and cut off depth values at 3.5m. We choose

6285



a voxel size of vs = 2 cm and truncated at 5vs. Since a
hash map representation does not allow for a straightfor-
ward voxel-wise SDF update [20], we update voxels based
on depth image pixels: for each pixel, we update all voxels
along the viewing ray that are within the truncation distance.
In case the pixel size at the given depth is larger than one
voxel, this can lead to some voxels not being updated, thus
it is important to not choose the voxel size too small. Nor-
mals are estimated using the FALS method from [3], and
only points whose angle between normal and viewing ray is
less than 75◦ are integrated into the final Gradient-SDF. To
have a fair comparison against KinectFusion and direct SDF
tracking, we do not use the color values as in [20]. In order
to evaluate the benefits compared to a direct SDF tracker
with a hash map implementation, we implemented such a
tracker as a baseline. This hash map SDF tracker stores vox-
els sparsely, but still uses tri-linear interpolation to evaluate
dS and ∇dS , which means each function/gradient evalua-
tion needs eight hash table lookups.

Results In Table 1, we summarize results on the TUM
RGB-D dataset [27]. To make this quantitative evaluation
reproducible, we switched off OpenMP to generate the ta-
ble. [6, 19] on average perform best for a 5123 voxel recon-
struction volume [6], so we report numbers for that setting.
In terms of average pose error, using a Gradient-SDF and in-
terpolating using Taylor expansion rather than tri-linear in-
terpolation is comparable to the other methods, while being
superior in terms of representation consistency for sparse
storage schemes. In addition, we show qualitative results
in Figure 2 and the supplement. For this qualitative com-
parison, we use the open-sourced SDF tracker code with
a volume of 5123 voxels, and the same parameters as our
Gradient-SDF tracker. The SDF tracker implementation has
been extended to give access to the SDF volume, which al-
lows us to run marching cubes on the raw data.

Runtime and memory Pose estimation takes about 30–
40ms per frame, compared to 100–120ms for the hash
map direct SDF tracker we implemented as baseline. This
clearly shows the superiority of Taylor interpolation over
tri-linear for sparse storage schemes. Integration into the
SDF volume takes on average 80ms and is about 7% (5ms)
slower than the baseline implementation which does not
integrate the gradients. Thus, the gains in tracking more
than compensate for the marginal overhead introduced in
the mapping phase, and a GPU implementation of Gradient-
SDF has the potential to run in real time.

The dense reconstruction volume of [6] and [19] consists
of 5123 voxels, which means memory for 1.34×108 voxels
and thus 2.68 × 108 floating point variables (weights and
distances per voxel) is required. This is in contrast to on av-
erage 2×106 voxels for hash map-based storage. Our base-

BAD SLAM (630K points, RMSE 1.5 cm)

Gradient-SDF final (470K points, RMSE 0.6 cm)

Figure 4. Colored point cloud produced by BAD SLAM (top), and
after optimization of the BA cost on our Gradient-SDF (bottom),
fr3/long office household [27]: the very low root mean squared
pose error becomes apparent on the reprojected average colors of
the surface points, for our Gradient-SDF even more than for BAD
SLAM.

line hash map direct SDF tracker thus needs about 4 × 106

floats. Gradient-SDF stores gradients in addition, so it has
in total five values per voxel, resulting in about 107 vari-
ables. Despite one single voxel being 2.5× larger than for a
standard SDF, in total this is still more than 20× less mem-
ory than volumetric storage. Additionally, for volumetric
storage we need to know in advance where the reconstruc-
tion volume shall be placed, making those approaches less
flexible in unknown environments.

5.4. Bundle adjustment and pose optimization

Our second set of experiments demonstrates the power
of our implicit photometric bundle adjustment/pose opti-
mization formulation: on different sequences from [27],
we minimize the bundle adjustment cost from (17) for 30
keyframes over 10 seconds, i.e. a keyframe ratio of 10%, as
in BAD SLAM, and a regularizer weight of 0.01cm−2. The
initial geometry is obtained from our depth-based tracker.

Quantitative results All results are summarized in Ta-
ble 2: We first perform photometric BA by minimizing (17).
Poses improve substantially after optimization, while geom-
etry only changes marginally, which we attribute to the good
initial estimate that our depth tracker provides. Thus, we
run a version with pose-only optimization, which is faster
and achieves on-par pose errors, plus looks equally good vi-
sually (note that we do not have ground truth for geometry).
We perform the same set of experiments for pose optimiza-
tion decoupled as in (20), and find that we get nearly the
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before optimization 2.8 6.8 1.8 2.7 2.1

full BA, poses coupled 1.0 4.4 1.0 2.5 0.6
pose only, poses coupled 1.0 4.3 1.1 2.4 0.7
full BA, decoupled 1.2 4.6 1.0 2.5 0.6
pose only, decoupled 1.1 4.3 1.0 2.4 0.6

BAD SLAM [22] 1.8 3.7 1.3 0.9 1.5

Table 2. RMSE [cm] of translation pose error on 30 keyframes,
sequences from [27]: even with a number of computational op-
timizations (see main text), we are able to keep the error in our
implicit bundle adjustment very low compared to the initial er-
ror after depth tracking. For reference, we provide numbers for
BAD SLAM as an example of an explicit dense bundle adjustment
approach. Overall, our errors are comparable to those of BAD
SLAM.

same improvement on poses, while keeping the computa-
tional complexity linear in the number of keyframes. With
these optimizations, in total we can minimize the BA cost
in 20–30ms per iteration and pose using a single-threaded
CPU implementation, meaning there is good potential for
real-time capability on a GPU. As surfel-based reference
method, we run BAD SLAM and use their pose estimates
for quantitative evaluation.

Qualitative results We show qualitative results for our
photometric optimization (using decoupled poses) and
BAD SLAM’s built-in surface reconstruction, again with
the 30 keyframes out of 300 frames, in Figures 4
(fr3/household) and 5 (fr1/teddy). We extract the geometry
in double resolution as outlined in 4.3 to get a denser point
cloud that has a number of points comparable to the BAD
SLAM result. For other sequences, see supplement. The
better poses and distances are adjusted, the lower the vari-
ance of the mean reprojected color in (21) will be, and thus
the sharper the texture. For this reason, we show colored
point clouds for qualitative visualization. Since we have
depth and color input decoupled – one is used for the tracker
only, one for the photometric optimization, we nowhere as-
sume synchronized data and can obtain very sharp textures
even for unsynchronized datasets like TUM RGB-D [27].
This is in contrast to BAD SLAM and many other RGB-D
scanning systems, which assume synchronized data in their
model.

BAD SLAM
(800K points, RMSE 3.7 cm)

Gradient-SDF final
(1M points, RMSE 4.3 cm)

Figure 5. Colored point cloud produced by BAD SLAM (top), and
after optimization of the BA cost on our Gradient-SDF (bottom),
fr1/teddy [27]: despite slightly larger root mean squared pose er-
ror, our final texture is much sharper than that of BAD SLAM.

6. Discussion

While the memory overhead compared to hash map-
based SDFs without gradients is not critical for a typical
indoor scene, we still aim to reduce memory. Our next step
is thus to exploit the fact that unit norm gradients are in S2.
We will investigate how to parameterize ĝj with two vari-
ables and still keep the update rule simple. The shown appli-
cations of Gradient-SDF are exemplary, the representation
can be used to store any 3D geometry. Thus, we kept our
set of experiments small and instead focused on the theoret-
ical description of how Gradient-SDF can be used. In the
future we will explore the benefits of our Gradient-SDF for
tracking and mapping in neural geometry representations.

Conclusion We proposed Gradient-SDF as a hybrid rep-
resentation for 3D geometry that combines the advantages
of explicit and implicit representations. By enhancing the
classical implicit signed distance function (SDF) with the
gradient value, we achieve capacities of explicit representa-
tions including direct photometric bundle adjustment. In
several experiments we demonstrate these advantages—
in particular, our gradients are much more accurate than
finite difference approximations, and 3D scanning using
Gradient-SDF produces impressively sharp reconstructions.
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