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Abstract

We propose a novel probabilistic method employing
Bayesian Model Averaging and self-cycle regularization for
spatio-temporal correspondence learning in videos within
a self-supervised learning framework. Most existing meth-
ods for self-supervised correspondence learning suffer from
noisy labels that come with the data for free, and the pres-
ence of occlusion exacerbates the problem. We tackle this
issue within a probabilistic framework that handles model
uncertainty inherent in the path selection problem built on
a complete graph. We propose a self-cycle regularization to
consider a cycle-consistency property on individual edges
in order to prevent converging on noisy matching or trivial
solutions. We also utilize a mixture of sequential Bayesian
filters to estimate posterior distribution for targets. In ad-
dition, we present a domain contrastive loss to learn dis-
criminative representation among videos. Our algorithm is
evaluated on various datasets for video label propagation
tasks including DAVIS2017, VIP and JHMDB, and shows
outstanding performances compared to the state-of-the-art
self-supervised learning based video correspondence algo-
rithms. Moreover, our method converges significantly faster
than previous methods.

1. Introduction
With recent advances in deep neural networks and

contrastive learning, there have been rapid and substan-
tial progress in self-supervised visual representation learn-
ing [3, 10, 11, 13, 15, 16, 33, 35]. This approach explores
implicit supervisory patterns capture in massive unlabeled
images or videos. Recently, it has succeeded to learn much
richer representations compared to the strong supervised
learning approaches. Yet, it has not lead to advances in
learning temporal correspondences from video.

Learning representations for visual correspondence
across space and time is a one of fundamental problems
in computer vision, and closely related to many vision
tasks, such as video object tracking [1, 40, 46], video ob-
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Figure 1. Procedure of proposed model-averaged filtering with
multiple paths. Our model conducts a (a) complete graph from
given a video clip, and (b) finds palindrome sequences starting
from the first frame (red circles). (c) Self-cycle edges (dashed
arrows) are selected in a stochastic manner. (d) All chain models
are averaged to obtain the final posterior.

ject segmentation [2,32,43], and optical flow estimation [9,
21]. The collection of large-scale visual correspondence
dataset, however, is dreadfully labor-intensive, and the qual-
ity of labels depends on human annotators. Recently, self-
supervised visual correspondence learning becomes one so-
lution to handle this problem by leveraging a large amount
of raw videos for training [22,23,29–31,44,47,49,53]. This
self-supervised visual correspondence problem is formu-
lated by a query-target matching problem in videos, which
finds an affinity between the query frame and the target
frame to match corresponding points.

Most of recent advanced methods, however, rely on
noisy labels captured from colors [29, 30, 44], cycle-
consistency constraint [22, 31, 47, 49, 53], positive/negative
sample mining [23], or frame-level similarity [50] during
training. Directions of these approaches are promising, but
they often rely on sophisticated manners or ambiguous su-
pervisions that may lead to falling in local optima and over-
fitting to the noisy labels. To alleviate this problem, a prob-
abilistic method [22] is proposed to find paths through the
graph by performing a random walk between query and tar-
get nodes. The problem, however, is that it may suffer from
occlusions since the graph in [22] is modeled by the first-
order Markov chain where the edge is linked between two
consecutive frames. The very recent approach [23] tackles

14679



those issues by collecting well-defined samples by solving
optimal transport problem and measuring their uncertain-
ties. Although this method tries to handle uncertainties by
collecting positive samples, it still suffers from ambiguity
of labels since positive and negative samples are selected
by their similarity scores only.

Another limitation of most self-supervised correspon-
dence learning methods [22, 23, 29, 30, 49, 53, 53] in videos
is that they focus only on contrastive learning within a given
video. Intra-inter consistency loss in [47] is proposed to en-
courage both positive feature invariance and negative video
embedding separation, but it uses an indirect reconstruction
loss rather than a contrastive loss, and its performance is
far from the state-of-the-art one. Meanwhile, [50] focuses
on contrastive learning at video frame-level representations.
This method, however, only discriminates the coarse frame-
level representations within and across the videos without
considering fine patch-level representations.

We propose a new self-cycle regularization method that
implies a cycle-consistency constraint for each edge in the
graph, which help preventing an overfitting by incorrect
matching at the early stage on training. This simple self-
cycle edge preserves a cycle-consistency constraint within
individual edges as well as a whole path. However, since it
is intractable to handle all possible paths having self-cycle
edges, we use stochastic sampling to reduce complexity and
address lack of model diversity.

In addition, we propose a novel Bayesian framework
that learns visual representations for dense correspondences
using a complete space-time graph from an input video.
The complete space-time graph is constructed from a video
clip where nodes correspond to grid patches in frames, and
edges connect two nodes between all different frames. We
then extract a path set including all possible paths start-
ing from the first frame and returning back to the first
frame again. This is called the palindrome sequence as
in [22]. Since we cannot identify where occlusions exist
during training, we leverage the Bayesian Model Averaging
(BMA) [18] to handle uncertainty inherent in the model se-
lection process. By averaging all possible competing paths
by BMA, we can alleviate overfitting and uncertainty prob-
lems in the model. In Figure 1, we illustrate a simplified
procedure of our model-average filtering on multiple paths
extracted on a complete graph.

Furthermore, we present a domain contrastive loss that
discriminates learned representations of different videos in
the embedding space. Most methods typically focus on
learning similar representation for positive matches and dis-
tant one for negative matches within a video. In order to
learn more comprehensive representations for multiple do-
mains which correspond to videos, we aggregate all features
within a video and then apply the domain-wise contrastive
loss to distinguish them. This can be viewed as coarse-to-

fine contrastive learning for videos.
Our contributions are summarized as follows:

• We propose self-cycle edges that implicitly deal with
cycle-consistency in a single edge and mitigate a prob-
lem of falling into local optima in earlier training stage.

• A mixture of sequential Bayesian filters is used to
formulate space-time correspondences on multiple
paths considering multi-hops in a complete graph con-
structed from a video. It can handle model uncertainty
by considering all paths in the graph simultaneously.

• Our batch-wise domain contrastive loss discriminates
negative pairs not only in the same video but also be-
tween different videos. It leads to learn fine-grained
visual representations for dense correspondences.

• Our method not only outperforms the state-of-the-art
algorithms but also converges much faster on various
video benchmarks.

2. Related Works
Self-supervised Visual Representation Learning Self-
supervised learning supports to learn task-agnostic visual
representations with different pretext tasks. Early works
for self-supervised representation learning have focused
on pretext tasks exploiting some property of the data [3,
8, 10, 28, 35, 48] without any human supervision. Re-
cent works focs on contrastive learning using Siamese net-
work [4, 5, 13, 16] that encourages positive image pairs to
be close together and negative image pairs to stay away
from each other. Recently, the representations captured by
self-supervised learning have outperformed supervised ones
on several downstream tasks. The method that firstly has
outperformed the supervised one in multiple downstream
recognition tasks is MoCo [16], where a momentum net-
work is used to encode the large number of negatives as well
as a positive one by contrastive learning. BYOL [13] have
utilized a diverse data augmentation technique to enlarge
the size of datasets. In this paper, we adopt this image-level
contrastive learning in our new domain contrastive loss.

Space-Time Dense Correspondence Learning in Videos
Most recently, several works have focused on self-
supervised learning to find dense correspondences in un-
labeled videos [22, 23, 29–31, 44, 50, 53]. The first attempt
was to learn temporal correspondence between two frames
by comparing original colors of the future frame with prop-
agated colors from the current frame to the future frame by
their affinity [44]. Followed by this, CorrFlow [30] pro-
posed a restricted attention [30] which reduces computa-
tional costs of computing affinity, and MAST [29] proposed
memory-augmented learning [29] utilizing memory bank.
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Figure 2. Comparison with self-supervised correspondence learning methods in terms of their losses and correspondences between frames.
Green, blue, and red circles denote queries, positive samples, and negative samples, respectively. Darker reds denote more hard negative
samples. Dashed boxes in (a) and (c) denotes local search windows for training. Our method takes advantages of both cycle-consistency
and hard negatives in consideration of multi-hop concurrent paths.

Those works have used colors as their self-supervisions
and the goal of the task is to reconstruct colors. Concur-
rently, methods focusing on reconstructing images using
auto-encoder have proposed [31, 47]. Another approach
to learn visual representations has used cycle-consistency
constraint [22,49,53] as self-supervision where good corre-
spondences should match points bi-directionally. [22] pro-
posed a probabilistic framework utilizing contrastive ran-
dom walk where pairwise similarity defines transition prob-
ability of a random walk between two consecutive frames.
Recently, [23] proposed a method collecting good positive
samples by solving optimal transport problem, and hard
negative ones by controlling their hardness during training.
In contrast, our method deals with all pairs of frames to
compute optimal posterior by model averaging, and handles
hard negatives within a cycle-consistency constraint. More-
over, We focus on discriminating representations across
videos in order to learn course-to-fine similarity. We illus-
trate the major difference between recent advanced methods
compared and our method in Figure 2.

Regularization on deep learning Deep neural network
often suffers from an overfitting problem arising from its
nature of overparametrization. There have been numerous
methods that focus on alleviating this problem by regular-
ization techniques [7, 20, 27, 34, 38, 39, 42, 51, 52]. In par-
ticular, dropout [42], dropconnect [45], and dropedge [39]
have employed binary random selection to hidden units or
connections of neural networks or graphs. Learning with
stochastic depth [14, 20] can be interpreted as a regulariza-

tion method by noise injection into model architecture. Data
augmentation [7, 51, 52] has been also used to avoid over-
fitting. In this paper, we focus on regularization to alleviate
an overfitting problem due to noisy matching and early con-
vergence to a trivial solutions.

3. Method
This section describes our probabilistic framework based

on Bayesian Model Averaging (BMA) and self-cycle regu-
larization for space-time correspondence learning. In Fig-
ure 3, the overall framework of our method is described.

3.1. Algorithm Overview

We first start with constructing a complete graph in space
and time domain to handle multiple hypothesis paths and
existence of occlusions. A complete graph Gd

t = (V d
t , E

d
t )

is constructed with the K number of key frames starting
from t in a given video domain d, where each node in the
graph is connected to all other nodes in all key frames in
videos, V d

t = ∪K
k=1X

d
t+k−1, and Xd

k denotes the k-th frame
in a video. Once a complete graph, Gd

t , is constructed, a set
of all possible palindrome paths Ωd

t on Gd
t is extracted by

Ωd
t = {p|p = ([v1, . . . , vkl−1

], vkl
, rev([v1, . . . , vkl−1

])),

vkl
∈ Xd

t+kl−1, kl > kl−1, 1 < l ≤ k}, (1)

where vkl
is the node in the Xt+kl−1 frame, kl is a keyframe

index, and rev([·]) is the function that returns a list in a re-
verse order of the given list. This set only contains paths
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Figure 3. Overall framework for training our network using proposed losses. Our minibatch consists of D number of different videos with
K number of keyframes for each video.

in a monotonic and palindromic order starting at the first
frame in a given video clip. For examples, a path p ∈ Ωd

t

can be a sequence of (v1, v2, v4, v2, v1), but cannot be either
(v1, v4, v3, v4, v1) or (v2, v3, v2).

After extracting all possible paths Ωd
t in the graph Gd

t ,
we randomly select self-cycle edges in the given paths
where the probability of selection is drawn from Bernoulli
distribution. This self-cycle edge has a cycle between two
nodes linked by a given edge. (We will discuss this in Sec-
tion 3.3)

We then follow [22] to construct an affinity matrix. Each
element of an affinity matrix, A(t,t′) ∈ Rn×n, between two
frames Xt and Xt′ , which is a pairwise similarity by ap-
plying a softmax function with temperature τ , is given by

A(t,t′)
ij = P (Xd

t′ = j|Xd
t = i)

=
exp(f(xi)

T f(xj)/τ)∑
j exp(f(xi)T f(xj)/τ)

, (2)

where xi ∈ Xd
t and xj ∈ Xd

t′ are nodes in frame Xt

and frame Xt′ , respectively, n is the number of nodes in
the frame, i, j are the node indexes, and f(·) denotes an
encoder network. Note that, our affinity is computed not
only between two consecutive frames but also frames that
are far apart from each other. Then, by utilizing Bayesian
model averaging, we compute posterior probability in the
last frame which is identical to the first frame by consider-
ing all paths in Ωd

t . (This will be covered in Section 3.2.)
The whole encoder network is then trained using a cycle-

consistency contrastive loss with hard negatives and a do-
main contrastive loss as shown in Figure 3. These loss func-
tions will be discussed in Section 3.4

3.2. Bayesian Model Averaging

We design all palindrome paths p in Ωd
t as a Markov

chain model. However, selecting the best one out of all pos-
sible paths is not straightforward since it is uncertain that

which one is good for matching. For this reason, we adopt a
model averaging strategy [18, 19], where the final posterior
is determined by averaging estimate of all possible chain
models instead of choosing one.

Let yk be the target state in the k-th frame in Ωd
t , where k

is the last node as well as the first frame in the video. Given
all possible paths p ∈ Ωd

t , by Bayesian model averaging
strategy, the posterior of yk is given by

P̄ (yk) =
∑
p∈Ωd

t

P (yk|p, zk)P (p), (3)

where zk = (z1, . . . , zk) is an observation variable, and we
assume that prior of the paths is given by a uniform dis-
tribution, P (p) = 1/|Ωd

t |. Since each palindrome path is
modeled by the first order Markov chain, we can use Bayes
theorem as follow:

P (yk|p, zk)

∝
∫

P (zk|yk)P (yk|yl)P (yl|pl, zl)dyl. (4)

where, l denotes the second last element in p. We can now
estimate the posterior of ytk in a simple and recursive fash-
ion, and we approximate it by sampling as which is formally
given by

P̄ (yk) ∝
1

|Ωd
t |

∑
p∈Ωd

t

P (zk|yk)

∫
P (yk|yl)P̄ (yl)dyl

≈ 1

|Ωd
t |

∑
p∈Ωd

t

∑
yi
l∈Sl

P (zk|yk)P (yk|yi
l), (5)

where Sl denotes a set of grid samples drawn from P̄ (yl).
Since our method does not have any predefined appearance
model, the transition model and likelihood are jointly de-
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Figure 4. Examples of self-cycle edges by unrolling the edge to
have a sequential order. Dashed arrows indicate self-cycle edges.
The paths in (a) are equivalent to ones in (b). Those self-cycle
edges are selected from Bernoulli distribution.

fined by affinity between two frames given p as follows,∑
yi
l∈Sl

P (zk|yk)P (yk|yi
l)

= (
∏

(u,v)∈Ep\(l,k)

A(u,v))A(l,k), (6)

where Ep = {(u,w)|u = vl, w = vl+1, l = (1, . . . , |p| −
1)} is an edge set for a path p. We then rewrite Eq. (5)
using Eq. (6) to obtain a matrix form of the final posterior
probability regarding all grid locations for a given Ωd

t which
corresponds to the similarity matrix Sd ∈ Rn×n:

Sd = P̄ (yk) ≈
1

|Ωd
t |

∑
p∈Ωd

t

∏
(u,v)∈Ep

A(u,v), (7)

where n is the number of nodes in each frame and d denotes
a video index.

Although our method relies only on an affinity matrix
between frames, the problem due to occlusions or drifting
can be alleviated by aggregating all the propagated densities
through Bayesian model averaging. This leads to reduce the
risk of overfitting in the presence of extreme noise in self-
supervisory during training. More detailed derivations are
provided in our supplementary material.

3.3. Self-cycle Regularization

As we mentioned in Section 3.1, we define a self-cycle
edge that additionally includes backward and forward paths
for a given edge:

Â(u,v) =

{
A(u,v)A(v,u)A(u,v). if α = 1
A(v,u) otherwise,

(8)

where α is a binary random variable. However, constructing
a complete graph including all self-cycle edges is computa-
tionally expensive. For example, if we have |E| number of
edges in a given path p ∈ Ωd

t , then the total number of paths
taking into account cycles is 2|E|. Thus, due to the com-
putational limitation, we randomly select self-cycle edges

among all edges in the path p using α. Specifically, if we
assume that there exist ep edges in the path p, the binary
random variable αe(e = 1, . . . , ep) is obtained by

αe ∼ Bernoulli(βe), (9)

where βe is the parameter of Bernoulli distribution corre-
sponding to the e-th edge. The binary variable αe indicates
whether the e-th edge is to be selected for an edge having a
self-cycle. Figure 4 shows examples of paths with self-cycle
edges and their unrolling paths having sequential order.

We then rewrite Eq. (7) considering self-cycle edges as
follows

Sd = P̄ (yk) ≈
1

|Ω̂d
t |

∑
p∈Ω̂d

t

∏
(u,v)∈Ep

Â(u,v), (10)

where Ω̂d
t is a set of all possible paths in which self-cycle

edges are selected by stochastic sampling. This simple cy-
cle preserves a cycle-consistency constraint within interme-
diate edges as well as a whole path, and mitigates overfitting
problems.

3.4. Losses for Self-supervised Learning

Our goal is now to learn dense correspondences in the
large amount of raw videos without human supervisions.
Our network is trained using the loss function:

Ltotal = Lcyc hn + Ldomain, (11)

where Lcyc hn and Ldomain denote a cycle-consistency con-
trastive loss with hard negatives and a domain contrastive
loss, respectively.

Cycle-Consistency Loss with Hard Negatives For train-
ing, we follow [22] that explores cycle-consistency in time,
where the target of the query node should be located in its
original position. In addition to a cycle-consistency con-
straint, we use hard negative mining strategy to avoid trivial
solutions during training. Since the target of positive sam-
ple should be its original position, diagonal elements in Sd

become positive samples. For mining hard negatives, akin
to [23], we define semi-hard negatives using their ranks as

Ni = {Sd
ij |m1 < r(Sd

ij) < m2, i ̸= j}, (12)

where r(·) computes a normalized rank of Sd
i which is the

i-th row in S sorted in descending order. Then our cycle-
consistency loss with hard negatives is defined as

Lcyc hn =
∑
d

∑
i

− log
exp(Sd

ii)

exp(Sd
ii) +

∑
|Ni| exp(S

d
iNi

)
, (13)

where d is the index of a video. Note that, unlike [23], we do
not use any sophisticated curriculum learning for negative
mining.
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Table 1. Quantitative results on the DAVIS2017 [37] validation set. We illustrate the results of the state-of-the-art self-supervised corre-
spondence learning methods, image-level self-supervised contrastive learning method, as well as some supervised methods in comparison
of our method. We also show backbones and datasets used for training. † denotes that backbone networks are initially pre-trained on
ImageNet [6] dataset. Attributes are provided for several types for self-supervisions, where C = Color (RGB or Lab), F = Features, I =
Images, P = Position, S = Strong supervision.

Method Backbone Dataset Attribute J&Fmean Jmean Jrecall Fmean Frecall

Colorization [44] ResNet-18 Kinetics C 34.0 34.6 34.1 32.7 26.8
CorrFlow [30] ResNet-18 OxUvA C 50.3 48.4 53.2 52.2 56.0

MAST [29] ResNet-18 YT-VOS C 65.5 63.3 73.2 67.6 77.7
UVC [31] ResNet-18 Kinetics I/P 60.9 59.3 68.8 62.7 70.9
CRW [22] ResNet-18 Kinetics F 67.6 64.8 76.1 70.2 82.1

ContrastCorr [8] ResNet-18 Kinetics I/F 63.0 60.5 - 65.5 -
VFS-18 [50] ResNet-18 Kinetics F 66.7 64.0 - 69.4 -

NRG [53] ResNet-18 Kinetics F/P 68.7 65.8 77.7 71.6 84.3
MBS [23] ResNet-18 YT-VOS F 70.3 67.9 78.2 72.6 83.7

Ours ResNet-18 Kinetics F 70.5 67.4 78.8 73.6 84.6
TimeCycle [49] ResNet-50 VLOG F/P 48.7 46.4 50.0 50.0 48.0

VFS-50 [50] ResNet-50 Kinetics F 68.9 66.5 - 71.3 -
OSVOS [2] VGG-16 DAVIS† S 60.3 56.6 63.8 63.9 73.8

FEELVOS [43] Xception-65 COCO/DAVIS/YT-VOS† S 71.5 69.1 79.1 74.0 83.8
STM [36] ResNet-50 DAVIS/YT-VOS† S 81.8 79.2 - 84.3 -

VINCE [12] ResNet-50 Kinetics F 60.4 57.9 66.2 62.8 71.5
MoCo [16] ResNet-50 ImageNet F 65.4 63.2 73.0 67.6 78.7

Domain Contrastive Loss Since our cycle consistency
loss only considers representation learning within a single
video, we further propose a new loss for separating learned
representations between videos. In order to obtain holistic
representations for a video d, we apply a Global Average
Pooling (GAP) to final output features of given frames, and
average these features with respect to frames:

vd =
1

K

K−1∑
k=0

(GAP(f(Xd
t+k))), (14)

where GAP(·) is a global average pooling operation, We
then compute similarity Ŝ between all videos as

Ŝdd′ =
exp(⟨vd,vd′⟩/τ)∑
d′ exp(⟨vd,vd′⟩/τ)

, Ŝ ∈ RD×D, (15)

where τ is a temperature hyper-parameter as same in
Eq. (2). Finally, our domain contrastive loss Ldomain is de-
fined as follows:

Ldomain =
∑
d

− log
exp(Ŝdd)∑
d′ exp(Ŝdd′)

. (16)

4. Implementation Details
Encoder We adopt ResNet-18 [17] network architecture
as our backbone where the strides of last two residual blocks
are modified to one in order to increase the spatial resolution
of the feature map and fuse the last two layer. Then we
apply linear projection and l2 normalization to compute the
final embedding vector.

Training The input image size is 256 × 256 for training,
where the size of patches are 64 × 64 sampled on 7 × 7
grid, like [22]. The input images and patches are spatially
jittered. We apply Edge Dropout to the transition matrix A
and re-normalize followed by [22] with rate 0.1. We use
the Kinetics dataset [25] for self-supervised training which
consists of 240k training videos. We train our network us-
ing the Adam optimizer [26] with 25 epochs and a learn-
ing rate of 10−4. Temperature τ is set to 0.05 in Eq. (2).
We threshold affinity by 0.5. The number of keyframes K
for training is set to 4 with a framerate of 8. A self-cycle
edge is selected based on αe from a Bernoulli distribution
with βe = 0.5. The ranges for negative mining are set to
m1 = 0.6, m2 = 0.9 in Eq. (12). Note that, in our experi-
ments, most of hyper-parameters are followed by CRW [22]
which is the baseline of our method.

Inference We follow the testing protocols in [22] for all
tasks. In order to evaluate the learned representation, we
test on several video label propagation tasks, where ground-
truths of the targets in a video are given at the first frame.
Those labels are propagated to the rest of the frames by
affinity, where propagated labels at the next frame are com-
puted by a weighted average of labels at the previous frame
with their affinity scores.

5. Experiments
We evaluate our learned representation on various dense

correspondence benchmarks including DAVIS2017 [37],
JHMDB [24], and VIP [54], which are tasks for video ob-
ject segmentation, human pose key-point tracking and hu-
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Table 2. Quantitative results on the DAVIS2017 test-dev set.
Sup. J&Fmean Jmean Fmean

CRW [22] ✗ 55.9 52.3 59.6
VFS [50] ✗ 57.3 53.1 61.6

Ours ✗ 59.9 55.9 64.0
OSVOS [2] ✓ 50.9 47.0 54.8

FEELVOS [43] ✓ 57.8 55.1 60.4

Table 3. Quantitative results for Human Part segmentation and
Pose Tracking tasks on VIP and JHMDB datasets, respectively.

Method Sup. VIP [54] JHMDB [24]
mIoU PCK@0.1 PCK@0.2

UVC [31] ✗ 34.1 58.6 79.6
CRW [22] ✗ 38.6 59.3 84.9

ContrastCorr [8] ✗ 37.4 61.1 80.8
MBS [23] ✗ 37.8 60.5 82.3

VFS-18 [50] ✗ 39.9 60.5 79.5
NRG [53] ✗ 40.2 61.4 85.3

Ours ✗ 40.8 61.7 82.6
ATEN [55] ✓ 37.9 - -
TSN [41] ✓ - 68.7 92.1

man body-part propagation, respectively. Our method is
compared with the state-of-the-art dense correspondence
algorithms based on self-supervised learning, including
Colorization [44], CorrFlow [30], MAST [29], TimeCy-
cle [49], UVC [31], CRW [22], VFS [50], NRG [53], and
MBS [23]. We also compare our model with several su-
pervised video object segmentation algorithms, including
OSVOS [2], FEELVOS [43] and STM [36]. In addition,
image- and video-level self-supervised contrastive learning
methods including MoCo [16] and VINCE [12] are com-
pared. ATEN [55] and TSN [41] are compared for human
part segmentation and pose tracking tasks on VIP and JH-
MDB datasets, respectively.

5.1. Results

Video Object Segmentation We first compare our dense
temporal correspondence results to the state-of-the-art
methods on the validation set of DAVIS2017 [37], which
is the most popular benchmark for a video object segmen-
tation task. The segmentation masks for the multiple target
objects are given at the first frame, then the outputs for this
task is to find the segmentation masks for the targets in the
rest of frames in video. The performances are evaluate by
the mean and recall of Jaccard Index J and contour accu-
racy F following the benchmark protocol. J&Fmean is an
average of J and F . To evaluate on DAVIS2017 validation
set, we use the resolution of 480p for an input image, We
report J , F performances as well as several attributes for
the state-of-the-art self-supervised methods in Table 1.

As shown in Table 1, our method outperforms all other
state-of-the-art self-supervised methods. We also compare
our method to regular self-supervised contrastive learning
methods such as MoCo [16] and VINCE [12] as well as

Table 4. Ablation studies for our model on the DAVIS2017 val
dataset. DCL, SC, BMA and HN denote domain contrastive loss,
self-cycle edges, Bayesian model averaging and hard negatives,
respectively.

a) DCL b) SC c) BMA d) HN J&Fmean

✓ ✓ ✓ ✓ 70.5
✓ ✓ ✓ ✗ 70.1
✓ ✓ ✗ ✗ 69.4
✓ ✗ ✗ ✗ 68.0
✗ ✗ ✗ ✗ 67.6

several strong supervised approaches for the video object
segmentation task. Our method surpass some supervised
methods such as OSVOS [2]. Also, the performance of our
method is similar to FEELVOS [43] which is trained with
a large amount of densely annotated datasets. In Figure 5,
we illustrate our video object segmentation results in the fist
two rows.

We also evaluate our method on DAVIS2017 test-dev set,
and report the results in Table 2. It clearly shows that our
method also outperforms CRW, VFS and some fully super-
vised methods [2, 43] with a large margin.

Video Part Segmentation We also evaluate our method
on a video part segmentation task using Video Instance
Parsing (VIP) [54] dataset, which contains 20 parts of hu-
man body. The image size is resized to resolution of
560p. The evaluation metrics are mean intersection-over-
union (IoU) which is equivalent to Jmean. As shown in
Table 3, our method outperforms other stat-of-the-art self-
supervised learning based methods as well as a strong su-
pervised method [55].

Human Pose Tracking To evaluate our methods on JH-
MDB [24] dataset for human keypoints tracking. We fol-
low the protocol of [22], resizing the input image into 320p
resolution images for testing. We use the evaluation met-
ric of the possibility of correct keypoints (PCK) [41] which
computes the percentage of keypoints close to ground-truth
in different thresholds (e.g. 0.1 or 0.2). In Table 3, we
show that the performance of our model surpasses others
in PCK@0.1 metric.

5.2. Ablation Study on DAVIS2017

Convergence Analysis We show the performances over
0.5M training iterations in comparison with CRW [22] and
MBN [23] in Figure 6a. Our method converges significantly
faster than other two methods. We also show the conver-
gence rate on variants of our method in Figure 6b. In par-
ticular, our method achieves 67.6% within two epoch which
is the best performance of [22]. We borrow the graph in [23]
to compare convergence rate.
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Figure 5. Qualitative results of our method on several label propagation tasks. (a) Video object segmentation on DAVIS2017 [37] dataset,
(b) Human part propagation on VIP [54] dataset, (c) Human pose tracking on JHMDB [24] dataset.

(a) (b)
Figure 6. Convergence Analysis on DAVIS2017 [37] validation
set. We show performance convergence plots compared to (a)
other SOTA methods [22, 23] and (b) variants of our method.

(a) (b) (c) (d)

Figure 7. Visualization of affinity between two frames. (a) and (b)
are affinities before training without and with a self-cycle edge,
respectively. (c) and (d) shows affinities after training without and
with a self-cycle edge, respectively.

Component Analysis We analyze each component of our
model in Table 4. Our self-cycle edges improve the perfor-
mance by 1.4% in J&Fmean, and our domain contrastive
loss by 0.4%. By employing Bayesian model averaging on
multiple paths and hard-negative mining, the performance
is improved by 0.7% and 0.4%, respectively. This clearly
shows that each component of our method contributes to
performance improvements.

Effect of Self-cycle Edges In Figure 7, we visualize
affinities to show the effect of our self-cycle edges. As
we shown in (a) and (c) in Figure 7, affinities without self-

cycle edges have many noises even after training. How-
ever, when we use self-cycle edges, the affinities become
more sparse but smoothed. This effect is similar to solv-
ing optimal transport in [23]. While [23] solves optimal
transport problem to find the best matching point for a pos-
itive sample, our self-cycle edges regularize the affinity to
consider multiple paths as many as possible. We observe
that this strategy is helpful to improve accuracy and train-
ing convergence. We believe that the slow convergence rate
of CRW [22] and MBS [23] than ours may come from this
ambiguous matching at the early stage of training. With
regularized affinity scores, our self-cycle edges can have an
ability to avoid overfitting from noisy matching and prevent
a trivial solutions. This simple idea also allows affinity to
take into account a cyclic consistency in a single edge.

6. Conclusions

We present a new method for self-supervised dense cor-
respondence learning in video within a probabilistic frame-
work. We adopt a mixture of sequential Bayesian filters on
multiple paths with self-cycle edges on a video to handle
uncertainty problems due to the nature of self-supervised
learning. Proposed domain contrastive loss also contribute
to performance gains by regularizing and fine-grained learn-
ing. The outstanding performances and an extremely faster
convergence rate in training are proved in intensive experi-
ments on various label propagation tasks.
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