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Abstract

A camera begins to sense light the moment we press the
shutter button. During the exposure interval, relative mo-
tion between the scene and the camera causes motion blur, a
common undesirable visual artifact. This paper presents E-
CIR, which converts a blurry image into a sharp video rep-
resented as a parametric function from time to intensity. E-
CIR leverages events as an auxiliary input. We discuss how
to exploit the temporal event structure to construct the para-
metric bases. We demonstrate how to train a deep learning
model to predict the function coefficients. To improve the
appearance consistency, we further introduce a refinement
module to propagate visual features among consecutive
frames. Compared to state-of-the-art event-enhanced de-
blurring approaches, E-CIR generates smoother and more
realistic results. The implementation of E-CIR is available
at https://github.com/chensong1995/E-CIR.

1. Introduction

The shutter speed, or the length of the exposure in-
terval, controls how much light reaches the image sensor
from the environment. If the exposure interval is too short,
the camera only has the time to capture very few pho-
tons. Consequently, the resulting image is not only unil-
luminated but also lacks fine details. On the other hand, if
the exposure interval is too long, the relative motion be-
tween the scene and the camera may potentially be very
significant. The resulting image is then the temporal aver-
age of a moving trajectory, causing blurry artifacts. Tra-
ditionally, it is presumed that any motion during the ex-
posure interval, including both camera shake and subject
movement, is unwanted and should therefore be removed.
Over the past several decades, researchers have studied
extensively how to convert a blurry image into a sharp
one [1, 5, 6, 10, 11, 13–16, 27, 32, 34, 41, 42]. It is only until
recently when several works that reconstruct the complete
motion trajectory have received profound attention [9, 28].
These works introduce algorithms that convert a blurry im-
age into a sharp video describing the exact movement that
causes the blurry artifact.

Our Approach

event stream

blurry frame

  sharp video

Figure 1. Problem Description. In this imaginary scene, we place
a white square along the edge of a black disk. The image taken
by the conventional camera is blurry because the disk rotates at
a fast speed. It is as if the perimeter of the disk somehow grows
into a gray collar. During the exposure interval, the event sensor
produces a spiral of events. Our approach takes the blurry frame
and the events as input and produces a sharp video sequence as
output. The output video explains the motion blur by entailing the
complete motion trajectory of the rotating disk.

Sharp video reconstruction is an ill-posed problem be-
cause there are infinitely many motion trajectories whose
temporal averages correspond to the same blurry frame. To
compensate for the ambiguity, previous works [7, 8, 20, 24,
25, 35, 39, 40, 43] exploit event data as an auxiliary input,
which provides additional information during the exposure
interval at a finer temporal resolution, as shown in Figure 1.
Even with the event input, difficult challenges remain. The
events fail to capture the complete motion information. The
video reconstruction quality is determined not only by the
appearance of each individual frame but also the temporal
smoothness. The immense density of events creates another
obstacle for effective and efficient processing. The success
of video deblurring depends on how the blurry image, the
events, and priors about video sequences are integrated to-
gether. This calls for suitable video representations and pre-
diction algorithms.

This paper makes fundamental contributions in video
representations and methodologies for recovering accurate
and temporally consistent videos. Specifically, we propose
a continuous video representation whose coefficients are
highly interpretable and easy to learn, due to their strong
correlation to the events. For every pixel (x, y), we rep-

7803



resent its intensity as a parametric polynomial function
Lxy(t), allowing us to render the sharp image at any given
timestamp t during the exposure interval. We show how
to choose the polynomial bases such that the derivative of
Lxy(t) interpolates the significant intensity changes. We
also demonstrate how to train a deep neural network that
regresses the polynomial coefficients. Instead of processing
the video as a volume and implicitly encoding motions in
convolutional filters, our approach explicitly asks the model
to elaborate the motions that have already been described
by the events. To further polish the frame quality, we in-
troduce a refinement module that propagates the visual fea-
tures among consecutive frames, which can be trained in an
end-to-end manner with the rest of the model. The proposed
regress-and-refine paradigm nicely combines the strength of
recurrent modules for enforcing temporal smoothness and
the strength of regression for drifting avoidance.

We quantitatively evaluate our method on the synthetic
REDS dataset [21]. In terms of reconstruction quality, E-
CIR achieves an MSE of 0.114, representing a 37.4% im-
provement from state-of-the-art algorithms. We also present
a qualitative evaluation on the real captures provided by Pan
et al. [25]. Compared with baseline approaches, our method
is less noisy, more realistic, and temporally smoother.

In summary, our key contributions are:

1. We represent a video by per-pixel parametric polyno-
mials. We discuss why this representation integrates
easily with the event mechanism by showing the par-
allelism between function derivatives and events.

2. From a blurry image and its associated events in the
exposure interval, we demonstrate how to use a deep
learning model to predict a sharp video represented by
the proposed parametric polynomials.

3. To overcome the limitations of the polynomial repre-
sentation, we discuss how to formulate a refinement
objective and encourage the temporal propagation of
sharp visual features.

4. We provide source code and documentation for con-
verting the original REDS dataset into the event for-
mat. This clears the vagueness of the evaluation
dataset in previous works and establishes an open-
source benchmark for future comparisons.

2. Related Work
2.1. Event-Enhanced Deblurring

First commercialized in 2006 [18], event cameras are an
emerging type of vision sensor that models the environment
evolution as intensity changes and represents the scene as
events. Each event is a 4-tuple (x, y, t, p) that contains the
location, time, and polarity of an intensity change. This

simple representation allows event cameras to support a fast
data rate (up to 1 MHz), orders of magnitude higher than the
frame rate of conventional cameras. The density of events
during the exposure interval provides valuable motion in-
formation to explain the blurred image.

Pan et al. propose the Event-based Double Integral (EDI)
model [24, 25] that analytically reconstructs a high frame-
rate sharp video from a blurry frame and its associated
events. Jiang et al. [8] formulate a Maximum-a-Posteriori
problem and solve for the latent sharp images under the
Markov assumption with the help of deep neural networks.
Lin et al. [20] believe it is inadequate to calculate the in-
tensity residual between sharp and blurry frames directly
from the event threshold and propose to predict the inten-
sity residual using deep learning. Meanwhile, the structural
similarity between the EDI model and the blur kernel for-
mulation has inspired Wang et al. [39] to represent sharp im-
ages as sparse codes in a learnable dictionary and optimize
them using an iterative network. Shang et al. [35] assume
that the input sequence contains a mixture of blurry and
sharp frames and propose to wrap sharp frames to deblur
the blurry frame. Zhang et al. [43] emphasize the temporal
correlation among consecutive frames and design a multi-
patch convolutional LSTM to exploit such correlation. Han
et al. [7] extend this idea by modeling the intensity residual
between neighboring sharp frames. Xu et al. [40] also iden-
tify the importance of temporal correlation and propose to
utilize the optical flow estimation instead.

Closely related to deblurring, event-enhanced frame in-
terpolation has also attracted increasing attention [23, 38].
While both tasks aim at constructing a high frame-rate
video, frame interpolation methods typically assume the in-
put frames are free of motion blur. Several works have at-
tempted to reconstruct a high frame-rate video directly from
the events without the conventional frame input [4, 30, 31]
as well. However, these event-only methods are less robust
than their dual-input counterparts [20, 43].

2.2. Video Representation

To the best of our knowledge, most existing works in
computer vision process videos as discrete collections of
frames. The only exception is Vid-ODE [26], which repre-
sent videos by continuous latent states. The latent state can
be evaluated at any given timestamp, allowing the video to
be rendered with an infinitely high frame rate.

With the help of per-pixel parametric polynomials, our
proposed representation also supports infinitely high rate
rendering and enjoys two additional advantages. First, the
polynomial bases are chosen to closely mimic the event
mechanism, which makes the algorithm robust to domain
differences between synthetic training data and real testing
data. Second, the polynomial coefficients are more inter-
pretable than the latent code hidden inside a deep network.
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This allows humans to easily explain and debug the model.

3. Preliminaries
3.1. Event Camera Model

Let Lxy(t) be the latent intensity of pixel (x, y) at time
t. In the natural logarithmic space, the temporal contrast
between tref and t is given by [18]:

∆ln[Lxy(t)] = ln[Lxy(t)]− ln[Lxy(tref)] (1)

where tref denotes the timestamp of the last event asso-
ciated with pixel (x, y). The magnitude of ∆ln[Lxy(t)]
determines whether the hardware produces an event. Let
(x, y, t, p) denote an event, where p ∈ {−1,+1} is the po-
larity of the intensity change [18]:

p =


+1 ∆ln[Lxy(t)] ≥ c+

0 (no event) c− < ∆ln[Lxy(t)] < c+

−1 ∆ln[Lxy(t)] ≤ c−
(2)

Here, c+ and c− are thresholds controlling the sensitivity of
positive and negative events, respectively. It is commonly
assumed that c+ and c− are stochastic variables [19, 29].

During an exposure interval [−T
2 ,

T
2 ] with length T , let

Bh×w = {Bxy} be the blurry output from the conventional
camera. The relation between the blurry frame and the la-
tent frames is given by temporal averaging [25, 29]:

Bxy =
1

T

∫ T
2

−T
2

Lxy(t)dt (3)

3.2. Task Description

The input to the task has two components:

1. The blurry intensity Bxy for all pixels (x, y);

2. A collection of events during the exposure interval
{ei = (xi, yi, ti, pi)| − T

2 ≤ ti ≤ T
2 }.

Given an arbitrary timestamp t ∈ [−T
2 ,

T
2 ], the goal

of the task is to construct the corresponding latent frame
Lh×w(t) = {Lxy(t)}.

3.3. Challenges

Intensity reconstruction is a highly ill-posed problem be-
cause there are infinitely many motion trajectories whose
temporal averages correspond to the same blurry frame.
Specifically, we face three challenges:

First, the events fails to capture complete motion infor-
mation during the exposure interval. Equation (2) states that
when an event happens, the magnitude of ∆ln[Lxy(t)] is
greater than the event threshold. It remains unclear exactly
how much ∆ln[Lxy(t)] exceeds the threshold. Imagine a

scene with two edges moving in the same pattern. The first
edge has a strong contrast to the background and generates
significant intensity changes for its movement. The second
edge has a weak contrast to the background and generates
small intensity changes. Suppose these two sets of intensity
changes both exceed the event threshold. This means the
number of events generated by the camera is determined
only by the edge length. These two edges will yield the
same number of events, as long as their lengths are equal,
even though the absolute change in intensity of the first edge
is several times higher than that of the second edge.

Second, the reconstruction quality is determined not only
by the appearance of each individual frame but also the tem-
poral smoothness. A naive model that independently op-
timizes each latent frame’s quality may lead to unrealistic
motion trajectories and cause frequent jitter. We refer read-
ers to the supplementary animations for a demonstration of
how some of our baseline approaches fail to solve this issue.

Third, the event format is incompatible with popular
deep learning models. One possible remedy is to aggre-
gate the events into a histogram.This method ignores the
event camera model and trains a network as if the inputs are
merely some unexplained features. It remains unclear how
to properly instill human knowledge about the bio-inspired
event mechanism, such as the correlation between an event
and an intensity change, into the model design.

While previous works fail to address some or all of these
challenges, the next section discusses how the proposed E-
CIR handles them effectively.

4. Method
4.1. Parametric Intensity Function

For each pixel (x, y), we propose to approximate the
function Lxy(t) as a continuously differentiable mapping
from the time domain to the intensity domain: [−T

2 ,
T
2 ] →

[0, 1]. Inspired by the Taylor’s theorem, we parameterize the
mapping as a degree-n polynomial. Let α0, α1, α2, · · · , αn

be the n+1 polynomial coefficients. The simplest parame-
terization uses the standard polynomial bases:

Lxy(t) = α0 + α1t+ α2t
2 + · · ·+ αnt

n (4)

Most real-life videos do not have frequent oscillations.
This means a realistic intensity curve does not have very
high-order derivative information. For a small change in t,
the variation in Lxy(t) should not be too big. The fact that
|α0| ≈ |α1| > |α2| > · · · ≫ |αn| suggests that the standard
representation is prone to numerical issues since high-order
coefficients are expected to be very close to zero.

The temporal derivative of Lxy(t) reveals how the in-
tensity changes across time. The events associated with
pixel (x, y) provide a set of timestamps where the intensity
change considerably. The derivatives at these timestamps
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Figure 2. Keypoint Selection Algorithm. (a) Imagine there are
n = 5 different events scattered across the exposure interval rep-
resented by blue circles. We first sample n evenly spaced pivots
from the exposure interval [−T

2
, T

2
] (the orange crosses). We then

shift the pivots to their closest events and obtain n keypoints (green
triangles). This selection scheme not only caters to the temporal
event structure but also provides support to regions not covered by
events. (b) At each keypoint, exactly one of the Lagrange bases
has a value of 1, while all other Lagrange bases have a value of 0.
We use a neural network to predict the value of dLxy

dt
(t) at these

n keypoints. Their interpolation gives a degree-(n − 1) polyno-
mial, which is used to recover the primitive intensity signal Lxy(t)
through indefinite integral. Under the Lagrangian representation,
the polynomial coefficients coincide with predicted derivatives.

are expected to have significant magnitudes. The key idea
of our proposed parameterization is to interpolate the tem-
poral derivative of the intensity signal at event timestamps.
The number of events associated with each pixel is differ-
ent, presenting a challenge to efficient computation. To ad-
dress this issue, we extract a fixed number of n keypoints
for each pixel, regardless of how many events the pixel ini-
tially possesses. The details of our keypoint extraction algo-
rithm are presented in Figure 2(a). This algorithm ensures
the selected keypoints are in correspondence to the event
timestamps and as distant to each other as possible. The use
of the uniform pivots further establishes spatial consistency
in the keypoint choices among different pixels. Let the set
of n keypoints for pixel (x, y) be:

Kxy = {(ti,
dLxy

dt
(ti))|1 ≤ i ≤ n} (5)

where −T
2 ≤ t1 < t2 < · · · < tn ≤ T

2 . As shown in Fig-
ure 2(b), we parameterize the intensity derivative dLxy

dt (t)
as the polynomial interpolation of these n keypoints:

dLxy

dt
(t) =

n∑
i=1

dLxy

dt
(ti) · βxyi(t) (6)

Here, βxyi(t), 1 ≤ i ≤ n are the Lagrange bases of degree
n− 1:

βxyi(t) =
(t− t1) · · · (t− ti−1)(t− ti+1) · · · (t− tn)

(ti − t1) · · · (ti − ti−1)(ti − ti+1) · · · (ti − tn)

The Lagrange bases have the characteristic that
βxyi(ti) = 1 and ∀j ̸= i, βxyj(ti) = 0. This ensures the

continuous function dLxy

dt (t) passes through the n discrete
keypoints (ti,

dLxy

dt (ti)), where 1 ≤ i ≤ n.
We can then recover the primitive intensity signal Lxy(t)

from its derivative dLxy

dt (t) by taking the indefinite integral:

Lxy(t) =

∫
dLxy

dt
(t)dt+ axy (7)

where axy is a constant that can be solved from Equa-
tion (3).

Compared to the conventional frame-based representa-
tion, the main advantage of the proposed polynomial rep-
resentation is that it closely mimics the event mechanism.
We leverage event timestamps to construct the polynomial
bases and allow the polynomial coefficients to be inter-
preted as the intensity changes that trigger the input events.
The regression target of our model, the polynomial coef-
ficients, is therefore highly correlated to the input events.
While the input events characterize the locations of the edge
features, the output polynomial coefficients reveal exactly
how significant the edges are. Section 5.4 presents an em-
pirical verification of the advantage of our representation.

4.2. Prediction Pipeline

We illustrate the overall prediction pipeline in Figure 3,
which consists of the initialization stage and the refinement
stage. The initialization stage regresses the polynomial co-
efficients, evaluates predicted parametric functions, and ob-
tains coarse video reconstruction. The refinement stage
further polishes the details in the initial reconstruction by
learning and enforcing motion priors. This methodology
nicely combines the strength of motion priors for recover-
ing temporally smooth videos and the strength of regressing
the volumetric output to avoid drifting.
Initialization: Polynomial Coefficient Regression. We
assemble the n keypoint timestamps associated with each
pixel into an n×h×w tensor K, where h×w is the spatial
frame resolution. Following eSL-Net [39], we voxelize the
event stream by creating an m×h×w histogram tensor E,
where m = 40 is the number of temporal bins. We adopt the
U-Net [33] architecture as the backbone prediction network.
As shown in Figure 3, the U-Net takes the blurry frame, the
keypoints, and the events as input and regresses the polyno-
mial coefficients for Lxy(t) represented under the Lagrange
bases of its derivative. Let t = {ti} be the d-dimensional
vector collecting all timestamps of interest. With the help
of Equation (7), the predicted coefficients allow us to re-
construct d initial frames {L̂(ti)}. At training time, d = 14
is set to the number of available ground-truth latent frames.
At inference time, d can be an arbitrary positive integer.
Refinement: Temporal Feature Propagation. When
played as a video, the initialization results show an accurate
motion reconstruction. Different parts of the scene move ac-
cording to their respectively trajectories. Nonetheless, we
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Figure 3. The overall pipeline. We use the U-Net [33] model to regress the polynomial coefficients. The network takes three inputs: the
blurry frame B, the keypoint timestamps K, and the event histogram E. The network then outputs the intensity derivatives dL

dt
. Given an

arbitrary timestamp t, the integrator follows Equation (7) and calculates the initial frame reconstruction L̂(t). The refinement module takes
L̂(t) and E as input and outputs the final frame reconstruction L(t). In this figure, m,n, d, h, w represent the number of histogram bins,
the number of keypoints, the number of frames in the output video, the frame height, and the frame width, respectively.

Algorithm 1 Refinement

Input: Initial reconstruction: {L̂(ti)|1 ≤ i ≤ d}
Input: All events: {(x, y, t, p)| − T

2 ≤ t ≤ T
2 }

Output: Final reconstruction: {L(ti)|1 ≤ i ≤ d}
1: loop Imax iterations
2: for i = 1 to d− 1 do ▷ Residual Prediction
3: E← VOXELIZE(events from ti to ti+1)
4: if i == 1 then
5: Ri ← gRθ1(E, L̂(ti), L̂(ti+1),

6: ∇L̂(ti),∇L̂(ti+1))
7: else
8: Ri ← gRθ2(Ri−1,E, L̂(ti), L̂(ti+1),

9: ∇L̂(ti),∇L̂(ti+1))
10: end if
11: end for
12: for i = 1 to d do ▷ Apply Updates
13: Ai ← gAϕ (L̂(ti))

14: Di ← ∂f(R1,··· ,Rd−1,L̂(t1),··· ,L̂(td),L(t1),··· ,L(td))
∂L(ti)

15: L̂(ti)← L̂(ti)−Ai ⊙Di

16: end for
17: end loop
18: for i = 1 to d do ▷ Final Polishing
19: L(ti)← gLγ (L̂(ti))
20: end for

observe that the initial reconstruction occasionally fails to
recover temporally consistent features. This initial temporal
inconsistency is expected and addressed by the refinement.

There are two factors that contribute to the temporal in-
consistency. First, the polynomial function is a continuous
signal that smooths sharp features and makes them visually
blurry. Second, visual features may only move during a
small part of the exposure interval. When the feature is ac-
tively moving, the reconstruction is usually sharp because
there are input events in the spatial neighborhood depicting
the edge locations. When the feature is not moving, how-

ever, the reconstruction becomes blurry due to the lack of
associated events and difficulty for volumetric filters used
in regression to capture motion priors that are critical for
deblurring.

In the refinement stage, we solve the first issue by opti-
mizing the frames independent of polynomial formulation.
We solve the second issue by encouraging visual features to
propagate between consecutive frames (i.e., enforcing mo-
tion priors), a popular technique used extensively in video
synthesis via optical flows [3, 40], residuals [7, 17], or de-
formable convolutional kernels [36, 37]. Details of our re-
finement process are presented as Algorithm 1. Specifically,
we use a recurrent network to predict the residual Ri be-
tween adjacent frames L(ti) and L(ti+1). The inputs to the
network include the previous residual Ri−1 between frames
L(ti−1) and L(ti), the events from ti to ti+1, the initial
reconstructions L̂(ti) and L̂(ti+1), as well as their spatial
gradients∇L̂(ti) and∇L̂(ti+1). Algorithm 1 refers this re-
current network as gRθ1 (for the residual prediction between
the first two frames) and gRθ2 (for the rest of residuals).

The recurrent architecture allows the residual to be grad-
ually updated according to the relevant events and intensity
reconstruction. We augment the inputs to include∇L̂(ti) =
(dL̂(ti)

dx , dL̂(ti)
dy ) and ∇L̂(ti+1) = (dL̂(ti+1)

dx , dL̂(ti+1)
dy ). This

is because both the spatial gradients and the temporal resid-
uals are highly related to the edge features.

Consider the objective function in Equation (8), where
L(·, ·) represents the distance between two matrices.

f =

d−1∑
i=1

L(L(ti) +Ri,L(ti+1)) + λ

d∑
i=1

L(L(ti), L̂(ti))

(8)
The free variables are the refined frames L(ti)’s. The

first objective term ensures the refinement output follows
the residual flow. The second term discourages the refine-
ment from deviating too far from the initialization. The
trade-off parameter λ balances these two terms. We expect

7807



both terms to have small residuals throughout the optimiza-
tion process and the final result to be in local proximity to
the initial frames. This leads us to choose the L2-distance as
L(·, ·) for its numerical stability. As shown in Algorithm 1,
we apply gradient descent to update the refinement result
for Imax iterations. Different pixels may have different step
sizes for the update, which are predicted by a convolutional
network referred to as gAϕ . After the gradient descent termi-
nates, we use another convolutional network gLγ to perform
final polishing on each individual frame.

4.3. Training Objective

Derivative Loss. We use Ld to supervise the output poly-
nomial coefficients directly in the derivative domain:

Ld = |(dL
dt

)gt − (
dL

dt
)pred|1 (9)

Primitive Loss. We first recover the primitive intensity sig-
nal from Equation (7) and then use Lp to supervise the poly-
nomial coefficients indirectly in the primitive domain:

Lp = |Lgt − Lpred|1 (10)

Refinement Loss. We use Lref to supervise the refinement
output:

Lref =
∑
t

|Lgt(t)− Lpred(t)|1 (11)

Residual Loss. We use Lres to supervise the residual pre-
diction in the refinement stage. Note that Lres uses weighted
L1-norm with ρ = 5 because the intensity residual between
consecutive frames is sparse.

Lres =
∑
i

(exp(ρ · |Rigt |1)⊙ |Rigt −Ripred |1) (12)

Total Objective. The final training objective is the
weighted sum of the losses introduced above:

Ltotal = λdLd + λpLp + λrefLref + λresLres (13)

where λd, λp, λref, λres are constant trade-off factors. The
U-Net and the prediction networks in the refinement stage
(gRθ1 , g

R
θ2
, gAϕ , gLγ ) are trained in an end-to-end manner.

5. Evaluation
5.1. Datasets

REDS [21] is a standard deblurring benchmark dataset
designed for conventional cameras. The dataset contains
240 training videos and 30 validation videos and is publicly
available under the CC BY 4.0 license. These videos are
captured at 120 fps and are sharp and clear. We use the
frame interpolation algorithm [22] to further increase the
frame rate to 960 fps. After that, we convert the videos

Methods MSE ↓ PSNR ↑ SSIM ↑
EDI [25] 0.182 21.663 0.664

eSL-Net [39] (official) 0.203 20.640 0.601
eSL-Net [39] (re-trained) 0.201 20.748 0.646

Ours 0.114 25.531 0.819

Table 1. Quantitative evaluation on the REDS [21] dataset.

to grayscale and resize the frames to 240×180, consis-
tent with the DAVIS2401 [2] sensor resolution. We apply
the ESIM [29] simulator to generate events and synthesize
blurry frames according to Equation (3) with an exposure
interval of 120 milliseconds. We use least-squares to fit
polynomial coefficients to the resized 960 fps sharp frames
during each exposure interval. These coefficients are used
to supervise network training. This process is an effort to re-
produce the synthetic dataset described by Wang et al. [39],
who have released the model weights after training but have
not disclosed data processing or training scripts.

5.2. Baseline Approaches

For quantitative evaluation, we compare our model with
eSL-Net [39] using both the official weights released by
Wang et al. and the weights re-trained on our synthetic
data. We take EDI [25] as an additional baseline model.
At the submission time, they are the only two approaches
with open-source implementation available online.

For qualitative evaluation, we also visualize the results
on real event captures provided by Pan et al. [25]. The blur-
riness of real captures comes from the physical sensor in-
stead of simulated temporal averaging. Therefore, there is a
lack of “ground-truth” sharp images, and we are unable to
numerically evaluate the performance of each algorithm.

5.3. Training Details

The trade-off parameters for the derivative (Ld), primi-
tive (Lp), refinement (Lref), and residual (Lres) losses are 1,
10, 10, and 0.5, respectively. We use the Adam [12] opti-
mizer with a batch size of 96 and train the network for 50
epochs. The initial learning rate is 0.0001 and is halved at
the end of the 20th and the 40th epochs. The degree of the
polynomial functions we use is n = 10.

5.4. Analysis of Results

Baseline Comparison. We present a quantitative evalu-
ation of our approach in Table 1. Compared to baseline
models, our method obtains lower MSE, higher PSNR, and
higher SSIM. Specifically, the proposed E-CIR improves
the current state-of-the-art algorithm by 37.4% in MSE,
17.8% in PSNR, and 23.3% in SSIM.

Qualitatively, we compare E-CIR with baseline models
in Figure 4 and Figure 5. Visually, our results are not only

1DAVIS240 is a popular camera that records grayscale conventional
frames and events simultaneously.
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Input Ground Truth EDI [25] eSL-Net [39] Ours

Figure 4. Qualitative visualization on the REDS [21] dataset.

Input EDI [25] eSL-Net [39] Ours

Figure 5. Qualitative visualization on real captures by Pan et al. [25].
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Row Input Sources Video Format Stages Performance Metrics
Frame Events Poly. Frame Initialization Refinement MSE ↓ PSNR ↑ SSIM ↑

1 ✗ ✓ ✓ ✗ ✓ ✗ 0.134 24.210 0.767
2 ✓ ✗ ✓ ✗ ✓ ✗ 0.180 21.721 0.654
3 ✓ ✓ ✓ ✗ ✓ ✗ 0.125 24.807 0.787
4 ✓ ✓ ✗ ✓ ✓ ✗ 0.136 23.504 0.723
5 ✓ ✓ ✓ ✗ ✓ ✓ 0.114 25.531 0.819

Table 2. On the REDS [21] dataset, we use ablation studies to demonstrate the importance of using a dual-stream input, the power of the
polynomial representation, and the strength of the refinement module.

sharper but also less noisy than the EDI [24] reconstruction.
The blurriness of EDI can be explained by their use of total
variation as an image quality prior, which penalizes spatial
edge features. By contrast, our method implicitly learns a
deep prior from the sharp images in the training dataset. In
terms of the noises, EDI assumes the event threshold can
precisely characterize all intensity changes. As discussed
in Section 3.3, this assumption is inaccurate and susceptible
to artifacts. Compared to eSL-Net [39], our model does not
over exaggerate visual features. As shown in the second row
of Figure 4, the eSL-Net output contains a distorted patch
in the bottom-right corner, an overemphasis of the floor tile.
The excessive amount of noise makes eSL-Net unfavorable
in the quantitative evaluation, even though subjectively, it
reconstructs sharper frames than EDI. We also invite readers
to watch our supplementary animations. These animations
demonstrate that our method generates temporally smooth
reconstruction, while the baseline approaches suffer from
trajectory discontinuity to varying degrees.
Ablation Study. The input to our model has two compo-
nents: the blurry frame and the events. Prior works have
approached the video reconstruction problem using both the
blurry frame alone [9, 28] and the events alone [4, 30, 31].
We begin our ablation study by examining the benefit of
using a dual-stream input. As shown the first three rows
in Table 2, removing either input from the pipeline leads to
noticeable performance degradation. For example, the MSE
of the dual-input model is 6.7% lower than the event-only
model and 30.6% lower than the frame-only model. This
suggests that conventional frames and events are comple-
mentary to each other, and our proposed E-CIR is able to
take collaborative advantage of the combined information.

To examine if the polynomial video representation is in-
deed superior to the traditional frame-based representation,
we use the same U-Net architecture to regress the d = 14
ground-truth sharp frames directly. The comparison be-
tween the third and fourth rows in Table 2 shows that our
proposed polynomial representation outperforms the frame-
based baseline by 8.1% in MSE. This result demonstrates
power of explicit derivative modeling in event data.

Finally, we examine the effectiveness of refinement. Be-
tween the third and the fifth row in Table 2, we observe
that the refinement module improves the initialization by

8.8% in MSE. The supplementary material includes an ani-
mated comparison between the initialization and refinement
frames. While the initialization results successfully recov-
ers the motion trajectory, the visual features are occasion-
ally not sharp enough. The refinement algorithm is able to
sharpen the initial results by encouraging high-quality vi-
sual features to propagate among consecutive frames.

6. Limitations
We point out that standard image quality metrics have

a negative bias towards approaches that generate sharp but
noisy results, such as eSL-Net [39]. Ideally, we would like
to separate the visual signal and the noise and measure them
independently. Practically, we have to resort to distance-
based metrics without the disentanglement. Readers are en-
couraged to compare our approach with the baselines visu-
ally while using the quantitative evaluation as a reference.

7. Conclusion
This paper introduces E-CIR, a novel event-enhanced de-

blurring approach that represents the intensity signal as a
continuous parametric function. Experiments show that E-
CIR outperforms current state-of-the-art models in recon-
struction quality. In the future, we plan to extend the ap-
proach and integrate spatial continuity into the formulation.
Another possible direction is to explore probabilistic infer-
ence since each blurry image corresponds to more than one
possible realistic motion trajectory.
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