One Step at a Time:
Long-Horizon Vision-and-Language Navigation with Milestones

Chan Hee Song! Jihyung Kil!

Tai-Yu Pan'

Brian M. Sadler? Wei-Lun Chao!

Yu Su'

'The Ohio State University

2U.S. Army Research Laboratory

{song.1855, kil.5, pan.667, chao.209, su.809}Rosu.edu

brian.m.sadler6.civ@army.mil

Abstract

We study the problem of developing autonomous agents
that can follow human instructions to infer and perform a
sequence of actions to complete the underlying task. Sig-
nificant progress has been made in recent years, especially
for tasks with short horizons. However, when it comes
to long-horizon tasks with extended sequences of actions,
an agent can easily ignore some instructions or get stuck
in the middle of the long instructions and eventually fail
the task. To address this challenge, we propose a model-
agnostic milestone-based task tracker (M-TRACK) to guide
the agent and monitor its progress. Specifically, we pro-
pose a milestone builder that tags the instructions with nay-
igation and interaction milestones which the agent needs to
complete step by step, and a milestone checker that system-
ically checks the agent’s progress in its current milestone
and determines when to proceed to the next. On the chal-
lenging ALFRED dataset, our M-TRACK leads to a notable
33% and 52% relative improvement in unseen success rate
over two competitive base models.

1. Introduction

As autonomous agents (e.g., robots) become more inte-
grated into our daily life, it is increasingly important to de-
velop autonomous agents that can understand natural lan-
guage commands and carry out the corresponding tasks. To
facilitate such a goal, various benchmarks have been pro-
posed in the realm of robot instruction following such as
vision-and-language navigation (VLN) [1,3,4,9,13,28,29,

, 44], together with a number of novel algorithms that
consistently push forward the state of the art [20,21,34,37].
Specifically, to succeed in VLN, an agent must compre-
hend the language instruction, ground it into the partially-
observable environment with only visual perception, and
plan and perform navigation and interaction actions in the

Goal: "Put a hot potato on the counter to the right of the sink"

1 [Navigation: Fridge | 2 (Interaction: Potato, Fridge| 3 [Navigation: Microwave|

"Turn around and face the fridge" "Take a cold potate out of the fridge" "Take the potato to the microwave"

4 (Interaction: Microwave| 5 | Navigation: Counter | 6 | Interaction: Counter

"Cook the potato in the microwave" "Turn left and go to the counter "Put the cooked potato on the counter”
to the right of the sink"

Figure 1. Illustration of our M-TRACK approach. We show
an ALFRED task [30], which consists of an overall goal (text on
the top) and six subtasks (text below each image). The blue/red
text box within each image is our extracted navigation/interaction
milestones from the subtask instructions. An agent needs to reach
the milestone of the current subtask (e.g., reaching proximity to
the target object for navigation milestones, or having interacted
with the target objects for interaction milestone; masks for
target objects) before it can proceed to the next subtask.

environment to complete the task.

One critical challenge in VLN arises when the task hori-
zon becomes substantially longer [30]. That is, a task is so
complex that it essentially consists of multiple “subtasks”
that need to be completed sequentially to fulfill the whole
task. For example, in Figure 1 the task “put a hot potato
on the counter to the right of the sink” can be decomposed
into six subtasks. Moreover, the subtask “heat the potato”
must be carried out before the subtask “put the potato on
the counter”; otherwise, the final task is doomed to fail no
matter how accurate the subsequent planning is. Such a se-
quential dependency requires the agent to closely monitor
its progress and ensure it is staying on the right track when
carrying out a long-horizon task.

15482

At first glance, this challenge may seem trivial if the lan-
guage instruction is detailed enough (like in Figure 1), such
that it already defines the subtasks and their order. How-
ever, as shown in the literature [2, 14, 20, 31, 37,42] and
our experiments, an agent fed with detailed instructions still
frequently skips subtasks, or wanders around within a sub-
task even when it is already completed. In essence, what an
agent truly struggles with is the lack of awareness of where
it currently is in the long subtask sequence and how much
progress it has made within a subtask.

To address this issue, we propose to equip VLN agents
with an explicit task tracker, which keeps track of the
agent’s progress within a subtask and guides it for when to
move on to the next. Concretely, we propose the concept of
milestone, which renders the necessary condition of com-
pleting a subtask. Namely, for a subtask to be considered as
completed, the milestone must be reached. Take the subtask
“take a cold potato out of the fridge” in Figure 1 as exam-
ple. To complete it, the necessary condition is that the agent
must see the potato and the fridge, be close enough to them,
and perform an interaction action with the potato. We argue
that by explicitly extracting such milestones from the in-
structions and grounding them to the environment state, we
can systematically determine if the agent should continue
working on the current subtask or proceed to the next.

To this end, we propose the milestone-based task tracker
(M-TRACK), which consists of two components: milestone
builder and milestone checker. The milestone builder ex-
tracts the milestone (i.e., the necessary completion condi-
tion) of each subtask from the corresponding language in-
struction. We model it as a named entity recognition prob-
lem and train a BERT-CREF tagger [6, 32] to accurately ex-
tract both the target objects and their action type (i.e., nav-
igation or interaction). The milestone checker then tries to
ground (i.e., identify and localize) the extracted target ob-
jects in the perceived environment using an object detection
model [10] and checks if the agent is close enough to them
and/or is about to interact with them — to decide if the agent
is completing the current subtask and ready to move on. It
is worth noting that our M-TRACK only needs to access the
language instructions, the visual input to the agent, and the
agent’s action, not any internal states of the agent. Thus,
it is model-agnostic and can be easily integrated with any
agent model with minimal changes.

How can M-TRACK interacts with the agent to affect
its action (e.g., to not skip a subtask)? We propose two
simple yet effective ways. First, at any time step, we feed
the agent with only the part of the instructions that corre-
sponds to the current subtask determined by the milestone
tracker. This explicitly guides the agent to focus on the cur-
rent subtask. Second, and more importantly, we apply the
milestone checker proactively — before the agent executes
its predicted action — to reject actions that will lead to sub-

task failures. For instance, we reject the action of taking a
“sponge” if the milestone object is “fork” (Figure 2).

We validate M-TRACK on ALFRED [30], a recently
released large-scale VLN dataset for common household
tasks. The tasks in ALFRED are considered long-horizon
because on average each task needs 50 actions to com-
plete. In contrast, another popular dataset R2R [1] needs
only 5. We integrate M-TRACK into two baseline VLN
models LSTM [30] and VLNOBERT [12], and demonstrate
notable and consistent performance gains. When tested in
seen environments, M-TRACK leads to 16%—57% relative
improvement in success rate. In more challenging unseen
environments, the relative gain increases to 33%—52%. Our
ablation studies and qualitative results further verify that the
improvement indeed comes from agents able to better fol-
low the sequence of subtasks and stay on the right track.

2. Related Work

VLN datasets. Significant efforts have been devoted to cre-
ating simulated environments and datasets for VLN, where
a virtual agent has egocentric perception of the environment
and takes actions to navigate init[1,3,4,9,13,28,29,38,44].
However, most datasets do not consider interaction actions
with objects, significantly limiting the complexity of tasks
that an agent can perform. The recent ALFRED dataset [30]
is among the first to provide tasks that involve both naviga-
tion and interaction actions, providing a more challenging
benchmark with much longer task horizons.

VLN models. Most early VLN models follow an LSTM-
based sequence-to-sequence architecture, taking language
and visual sequences as input and predicting a sequence of
actions [1, 8, 16,20, 30, 34]. Because of the recent success
of the Transformer [35] in vision tasks, Transformer-based
models are increasingly adopted for VLN [12,17,22,27,33].
Our M-TRACK is model-agnostic and is compatible with
models of both types (cf. §4.3).

Natural language instructions. ALFRED provides each
task with both a high-level (i.e., goal) instruction and more
detailed low-level instructions. Most previous studies train
the agent with the whole instruction (i.e., concatenation
of the high-level and low-level instructions) at each time
step [15,27,30,31,33]. However, for long-horizon tasks
like those in ALFRED, the low-level instructions can be
quite long (six sentences on average). An agent fed with
the whole instruction thus could have difficulty digesting
the long instruction and easily lose track of the progress.
M-TRACK helps agents focus their attention on the most
pertinent instruction and reduce distraction.

Step-by-step language guidance. To address the issues
with long instructions, learning low-level instructions step
by step has been explored in several prior studies [5, 11,23,

,43]. BabyWalk [43] learns the low-level instruction step

15483

=10

3.7 sink < w-gbel: sink |}
.~ Reachability: False [l W8 ¥ Reachability: False

Predicted Actions MoveAhead —T

MoveAhead

=12 =13 =14

Reachabil ity: True
Label: fork

Label: sponge

Reachability: True
Label: fork

Reachability: True

RotateRight J m Piekuprspenge)

(Pickup, fork)

Milestone Checking [False | [False |

True [False | True

Milestones { (navigation, sink)

} { (interaction, fork) J

Low-level Instructions "Turn and go to the sink"

"Pick up fork from sink, to the right of the green sponge"

Figure 2. Overview of the milestone checking process. Milestones are extracted from the current low-level instruction by our milestone
builder (§4.1.1). After an action is predicted, our milestone checker (§4.1.2) examines, based on objects with reachability information (text
in images) from its object detector, if the resultant state satisfies the milestone. Only when the milestone is satisfied, the next low-level
instruction is provided to the agent. The agent is prevented from picking up a wrong object (sponge) by our proactive checking (§4.2).

by step using curriculum learning. HiTUT [42] decomposes
the whole instruction into hierarchical sub-problems and
learns sequentially with a hierarchical task network. Con-
current to this work, FILM [23] decomposes the instruction
into subtasks and learns them sequentially with the help of a
semantic map. M-TRACK shares a similar rationale. How-
ever, M-TRACK is notably different from existing meth-
ods, especially regarding when to feed the next low-level
instruction during fest time. First, M-TRACK explicitly
and systematically checks the agent’s progress, during both
training and test time, by 1) defining the completion con-
dition, i.e., the milestone, of each subtask and 2) verifying
the milestone by grounding it into the environment via a
visual object detector. In contrast, existing methods either
train a binary classifier to determine subtask completion [4],
or simply set an upper bound for the number of actions to
execute within each subtask [42,43], or only checks if the
agent needs to stop using a separate module [40]. As will
be seen in §5, M-TRACK notably outperforms these meth-
ods in tracking the agent’s progress and feeding the right
instruction. Second, M-TRACK also proactively guides the
agent for better action prediction, creating another gain in
performance (cf. §4.2). Finally, M-TRACK is not embedded
in any specific VLN model; it is model-agnostic and can be
easily integrated into different VLN models (cf. §4.3).

3. VLN Background

A VLN task is generally defined as follows: given a lan-
guage instruction I, an agent needs to infer and perform
a sequence of actions {ag, a1, - ,as,- - } in the environ-
ment F' to complete the task. In datasets like ALFRED [30],
the instruction [is composed of a high-level instruction /g
and a list of low-level instructions Iy, as exemplified in
Figure 1. A VLN task can thus be represented by a tuple
(I, E,G), in which G is the goal test of the task.

For an agent to perform the task, it will be placed in the
environment £ and have a certain pose at time step ¢, from
which it can receive a visual input v,. Based on v; and the
instruction I, the agent then predicts an action a;, which can
either be a navigation action that changes the agent’s pose
(e.g., MoveAhead) or an interaction action that interacts with
the environment (e.g., PickupObject). The agent also needs
to predict a binary mask for the target object if it predicts
an interaction action. Both types of actions can potentially
change the visual input vy of the next time step. The agent
will stop when it believes the task has been completed. The
final state of the environment is then compared with the goal
state (G to determine task completion.

Following ALFRED, we discretize an agent’s action
space into 5 navigation action (MoveAhead, RotateRight, Ro-
tateLeft, LookUp, and LookDown), 7 interaction actions (Pick-
upObject, PutObject, OpenObject, CloseObject, ToggleOnObject,
ToggleOffObject, and SliceObject), and 1 stop action (Stop).

Agent model. Without loss of generality, we define an
agent model as a; = f(v¢, Iy, hy), where h; is the mem-
ory from the previous time steps (e.g., the hidden state of
an LSTM). ay is a tuple (action, object mask); the mask is null
for stop and navigation actions. I is the instruction input at
time ¢, which can be the entire I or a portion of it.

4. Milestone-based Task Tracker (M-TRACK)

For long-horizon VLN tasks, an agent needs to complete
multiple subtasks, usually in a specific order, to complete
the whole task. More specifically, each low-level instruc-
tion in Iz, can be seen as a subtask. Agents then have to de-
cide, often implicitly, which subtask it is doing at each time
step and when to move on to the next subtask, which itself
is a challenging problem for the agent. To address that, we
introduce an auxiliary module, milestone-based task tracker

15484

