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Abstract

We study the problem of developing autonomous agents
that can follow human instructions to infer and perform a
sequence of actions to complete the underlying task. Sig-
nificant progress has been made in recent years, especially
for tasks with short horizons. However, when it comes
to long-horizon tasks with extended sequences of actions,
an agent can easily ignore some instructions or get stuck
in the middle of the long instructions and eventually fail
the task. To address this challenge, we propose a model-
agnostic milestone-based task tracker (M-TRACK) to guide
the agent and monitor its progress. Specifically, we pro-
pose a milestone builder that tags the instructions with nav-
igation and interaction milestones which the agent needs to
complete step by step, and a milestone checker that system-
ically checks the agent’s progress in its current milestone
and determines when to proceed to the next. On the chal-
lenging ALFRED dataset, our M-TRACK leads to a notable
33% and 52% relative improvement in unseen success rate
over two competitive base models.

1. Introduction

As autonomous agents (e.g., robots) become more inte-
grated into our daily life, it is increasingly important to de-
velop autonomous agents that can understand natural lan-
guage commands and carry out the corresponding tasks. To
facilitate such a goal, various benchmarks have been pro-
posed in the realm of robot instruction following such as
vision-and-language navigation (VLN) [1, 3, 4, 9, 13, 28, 29,
38, 44], together with a number of novel algorithms that
consistently push forward the state of the art [20,21,34,37].
Specifically, to succeed in VLN, an agent must compre-
hend the language instruction, ground it into the partially-
observable environment with only visual perception, and
plan and perform navigation and interaction actions in the
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Figure 1. Illustration of our M-TRACK approach. We show
an ALFRED task [30], which consists of an overall goal (text on
the top) and six subtasks (text below each image). The blue/red
text box within each image is our extracted navigation/interaction
milestones from the subtask instructions. An agent needs to reach
the milestone of the current subtask (e.g., reaching proximity to
the target object for navigation milestones, or having interacted
with the target objects for interaction milestone; green masks for
target objects) before it can proceed to the next subtask.

environment to complete the task.
One critical challenge in VLN arises when the task hori-

zon becomes substantially longer [30]. That is, a task is so
complex that it essentially consists of multiple “subtasks”
that need to be completed sequentially to fulfill the whole
task. For example, in Figure 1 the task “put a hot potato
on the counter to the right of the sink” can be decomposed
into six subtasks. Moreover, the subtask “heat the potato”
must be carried out before the subtask “put the potato on
the counter”; otherwise, the final task is doomed to fail no
matter how accurate the subsequent planning is. Such a se-
quential dependency requires the agent to closely monitor
its progress and ensure it is staying on the right track when
carrying out a long-horizon task.
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At first glance, this challenge may seem trivial if the lan-
guage instruction is detailed enough (like in Figure 1), such
that it already defines the subtasks and their order. How-
ever, as shown in the literature [2, 14, 20, 31, 37, 42] and
our experiments, an agent fed with detailed instructions still
frequently skips subtasks, or wanders around within a sub-
task even when it is already completed. In essence, what an
agent truly struggles with is the lack of awareness of where
it currently is in the long subtask sequence and how much
progress it has made within a subtask.

To address this issue, we propose to equip VLN agents
with an explicit task tracker, which keeps track of the
agent’s progress within a subtask and guides it for when to
move on to the next. Concretely, we propose the concept of
milestone, which renders the necessary condition of com-
pleting a subtask. Namely, for a subtask to be considered as
completed, the milestone must be reached. Take the subtask
“take a cold potato out of the fridge” in Figure 1 as exam-
ple. To complete it, the necessary condition is that the agent
must see the potato and the fridge, be close enough to them,
and perform an interaction action with the potato. We argue
that by explicitly extracting such milestones from the in-
structions and grounding them to the environment state, we
can systematically determine if the agent should continue
working on the current subtask or proceed to the next.

To this end, we propose the milestone-based task tracker
(M-TRACK), which consists of two components: milestone
builder and milestone checker. The milestone builder ex-
tracts the milestone (i.e., the necessary completion condi-
tion) of each subtask from the corresponding language in-
struction. We model it as a named entity recognition prob-
lem and train a BERT-CRF tagger [6, 32] to accurately ex-
tract both the target objects and their action type (i.e., nav-
igation or interaction). The milestone checker then tries to
ground (i.e., identify and localize) the extracted target ob-
jects in the perceived environment using an object detection
model [10] and checks if the agent is close enough to them
and/or is about to interact with them — to decide if the agent
is completing the current subtask and ready to move on. It
is worth noting that our M-TRACK only needs to access the
language instructions, the visual input to the agent, and the
agent’s action, not any internal states of the agent. Thus,
it is model-agnostic and can be easily integrated with any
agent model with minimal changes.

How can M-TRACK interacts with the agent to affect
its action (e.g., to not skip a subtask)? We propose two
simple yet effective ways. First, at any time step, we feed
the agent with only the part of the instructions that corre-
sponds to the current subtask determined by the milestone
tracker. This explicitly guides the agent to focus on the cur-
rent subtask. Second, and more importantly, we apply the
milestone checker proactively — before the agent executes
its predicted action — to reject actions that will lead to sub-

task failures. For instance, we reject the action of taking a
“sponge” if the milestone object is “fork” (Figure 2).

We validate M-TRACK on ALFRED [30], a recently
released large-scale VLN dataset for common household
tasks. The tasks in ALFRED are considered long-horizon
because on average each task needs 50 actions to com-
plete. In contrast, another popular dataset R2R [1] needs
only 5. We integrate M-TRACK into two baseline VLN
models LSTM [30] and VLN⟳BERT [12], and demonstrate
notable and consistent performance gains. When tested in
seen environments, M-TRACK leads to 16%–57% relative
improvement in success rate. In more challenging unseen
environments, the relative gain increases to 33%–52%. Our
ablation studies and qualitative results further verify that the
improvement indeed comes from agents able to better fol-
low the sequence of subtasks and stay on the right track.

2. Related Work

VLN datasets. Significant efforts have been devoted to cre-
ating simulated environments and datasets for VLN, where
a virtual agent has egocentric perception of the environment
and takes actions to navigate in it [1,3,4,9,13,28,29,38,44].
However, most datasets do not consider interaction actions
with objects, significantly limiting the complexity of tasks
that an agent can perform. The recent ALFRED dataset [30]
is among the first to provide tasks that involve both naviga-
tion and interaction actions, providing a more challenging
benchmark with much longer task horizons.
VLN models. Most early VLN models follow an LSTM-
based sequence-to-sequence architecture, taking language
and visual sequences as input and predicting a sequence of
actions [1, 8, 16, 20, 30, 34]. Because of the recent success
of the Transformer [35] in vision tasks, Transformer-based
models are increasingly adopted for VLN [12,17,22,27,33].
Our M-TRACK is model-agnostic and is compatible with
models of both types (cf. §4.3).
Natural language instructions. ALFRED provides each
task with both a high-level (i.e., goal) instruction and more
detailed low-level instructions. Most previous studies train
the agent with the whole instruction (i.e., concatenation
of the high-level and low-level instructions) at each time
step [15, 27, 30, 31, 33]. However, for long-horizon tasks
like those in ALFRED, the low-level instructions can be
quite long (six sentences on average). An agent fed with
the whole instruction thus could have difficulty digesting
the long instruction and easily lose track of the progress.
M-TRACK helps agents focus their attention on the most
pertinent instruction and reduce distraction.
Step-by-step language guidance. To address the issues
with long instructions, learning low-level instructions step
by step has been explored in several prior studies [5, 11, 23,
42,43]. BabyWalk [43] learns the low-level instruction step
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Figure 2. Overview of the milestone checking process. Milestones are extracted from the current low-level instruction by our milestone
builder (§4.1.1). After an action is predicted, our milestone checker (§4.1.2) examines, based on objects with reachability information (text
in images) from its object detector, if the resultant state satisfies the milestone. Only when the milestone is satisfied, the next low-level
instruction is provided to the agent. The agent is prevented from picking up a wrong object (sponge) by our proactive checking (§4.2).

by step using curriculum learning. HiTUT [42] decomposes
the whole instruction into hierarchical sub-problems and
learns sequentially with a hierarchical task network. Con-
current to this work, FILM [23] decomposes the instruction
into subtasks and learns them sequentially with the help of a
semantic map. M-TRACK shares a similar rationale. How-
ever, M-TRACK is notably different from existing meth-
ods, especially regarding when to feed the next low-level
instruction during test time. First, M-TRACK explicitly
and systematically checks the agent’s progress, during both
training and test time, by 1) defining the completion con-
dition, i.e., the milestone, of each subtask and 2) verifying
the milestone by grounding it into the environment via a
visual object detector. In contrast, existing methods either
train a binary classifier to determine subtask completion [4],
or simply set an upper bound for the number of actions to
execute within each subtask [42, 43], or only checks if the
agent needs to stop using a separate module [40]. As will
be seen in §5, M-TRACK notably outperforms these meth-
ods in tracking the agent’s progress and feeding the right
instruction. Second, M-TRACK also proactively guides the
agent for better action prediction, creating another gain in
performance (cf. §4.2). Finally, M-TRACK is not embedded
in any specific VLN model; it is model-agnostic and can be
easily integrated into different VLN models (cf. §4.3).

3. VLN Background
A VLN task is generally defined as follows: given a lan-

guage instruction I , an agent needs to infer and perform
a sequence of actions {a0, a1, · · · , at, · · · } in the environ-
ment E to complete the task. In datasets like ALFRED [30],
the instruction I is composed of a high-level instruction IH
and a list of low-level instructions IL, as exemplified in
Figure 1. A VLN task can thus be represented by a tuple
(I, E,G), in which G is the goal test of the task.

For an agent to perform the task, it will be placed in the
environment E and have a certain pose at time step t, from
which it can receive a visual input vt. Based on vt and the
instruction I , the agent then predicts an action at, which can
either be a navigation action that changes the agent’s pose
(e.g., MoveAhead) or an interaction action that interacts with
the environment (e.g., PickupObject). The agent also needs
to predict a binary mask for the target object if it predicts
an interaction action. Both types of actions can potentially
change the visual input vt+1 of the next time step. The agent
will stop when it believes the task has been completed. The
final state of the environment is then compared with the goal
state G to determine task completion.

Following ALFRED, we discretize an agent’s action
space into 5 navigation action (MoveAhead, RotateRight, Ro-
tateLeft, LookUp, and LookDown), 7 interaction actions (Pick-
upObject, PutObject, OpenObject, CloseObject, ToggleOnObject,
ToggleOffObject, and SliceObject), and 1 stop action (Stop).

Agent model. Without loss of generality, we define an
agent model as at = f(vt, It, ht), where ht is the mem-
ory from the previous time steps (e.g., the hidden state of
an LSTM). at is a tuple (action, object mask); the mask is null
for stop and navigation actions. It is the instruction input at
time t, which can be the entire I or a portion of it.

4. Milestone-based Task Tracker (M-TRACK)

For long-horizon VLN tasks, an agent needs to complete
multiple subtasks, usually in a specific order, to complete
the whole task. More specifically, each low-level instruc-
tion in IL can be seen as a subtask. Agents then have to de-
cide, often implicitly, which subtask it is doing at each time
step and when to move on to the next subtask, which itself
is a challenging problem for the agent. To address that, we
introduce an auxiliary module, milestone-based task tracker
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(M-TRACK), to explicitly and interactively guide the agent
to make such decisions (see Figure 2 for an overview).
Next, we first introduce the design of M-TRACK (§4.1),
followed by how to integrate it with agent models (§4.2).
We then introduce two base agent models (§4.3) and how to
train the base models with reinforcement learning (§4.4).

4.1. Design of M-TRACK

The core functionality of M-TRACK is to decide when an
agent should move on to the next subtask. On the surface,
this may be done simply by training a (binary) classifier,
which takes all the language/visual signals as input. Do-
ing so, however, does not exploit the fact that the (sub)tasks
are compositional, composed of entities (e.g., objects) that
are identifiable and localizable both in the environment and
in the instruction. Leveraging the compositional nature of
the (sub)tasks has multiple advantages. First, it reduces the
input space for making the decision from the space of lan-
guage/visual signals to that of discrete entities. Second, it
makes the decision rule systematic and explainable: we can
make the decision by directly comparing the entities de-
tected in both modalities. Both of them could improve the
generalizability of the decision function.

We design M-TRACK to explicitly consider the compo-
sitional nature of (sub)tasks. Specifically, we introduce the
concept of milestone, which is the necessary condition for
completing a subtask, i.e., an agent must reach the mile-
stone in order for the corresponding subtask to be consid-
ered as completed. For example, if the subtask is “move to
the mug”, then the agent must navigate to the mug, see it,
and be close enough to it. If the subtask is “pick up the
mug”, then the agent must see the mug, be close enough
to it so that it can then interact with it. These two exam-
ples render the key ingredients of a milestone, which are
its target entities and its type (navigation or interaction).
Meanwhile, we say an agent has reached a milestone only
when it can perceive (see) the target entities, is already close
to them, and is doing the right type of action with them.

To this end, we represent a milestone by a tuple (type,
target), and decompose our M-TRACK into two components:
1) a milestone builder which constructs milestones from the
low-level instructions IL, and 2) a milestone checker that
checks if a milestone has been reached by an agent.

4.1.1 Milestone Builder

We generate the milestone of a subtask according to its cor-
responding low-level instruction in IL using named entity
recognition [6]. For example, given an instruction “Turn
to the left and face the toilet”, the milestone builder should
output the tag (navigation, toilet). For the instruction “Pick the
soap up from the back of the toilet”, the milestone builder
should output (interaction, soap).

Target Type Val Seen Val Unseen
Navigation 90.16 90.62
Interaction 96.85 97.17

Table 1. F1 score of milestone builder on ALFRED validation.

For an interaction milestone, it should contain the target
objects that the agent is going to newly interact with in the
current subtask. For instance, if the subtask is “Put down
the potato on the counter” (Figure 1), the agent is supposed
to already be holding a potato (from previous subtasks).
Thus, “potato” is not a milestone target for the current sub-
task but “counter” should be. For a subtask that has multi-
ple objects to be interacted with, the builder is designed to
tag all of them. For instance, in the subtask “Grab a potato
from the fridge” (Figure 1), the agent needs to 1) open the
fridge, 2) pick up the potato, and 3) close the fridge. In
this case, the builder tags both the potato and the fridge as
the targets for an interaction milestone. In cases that the
builder does not extract any target from the current subtask,
it will merge the current subtask with the next one and use
the milestone extracted from the next subtask.

Without loss of generality, we adopt a BERT-CRF model
[6, 32] for the milestone builder, and train it with data de-
rived from the ALFRED training data. Training data is
prepared using the metadata from the ALFRED simulator.
More details are in the supplementary materials. We show
that our milestone builder reaches a fairly high F1 score (see
Table 1). More analysis will be discussed in §5.3.2.

4.1.2 Milestone Checker

We introduce a milestone checker that determines if an
agent has reached a milestone (see Figure 2). Specifically,
we design it to be explicit: we directly estimate the state of
the agent/environment from the visual input and compare
it with the milestone. A navigation milestone is reached if
the target object is detected in the visual input and located
within a reachable distance to the agent (1.5 meters in AL-
FRED). An interaction milestone is reached with an extra
condition: the agent has to interact with the target.

State estimation. We train an object detector using data
from the ALFRED simulator that can not only localize and
identify all 116 ALFRED object classes but also estimate
their reachability (i.e., within 1.5m or not). We build upon
the Mask R-CNN model [10] and introduce an additional
binary classification head for the reachability of each de-
tected object. The ground-truth labels for reachability are
obtained from the ALFRED simulator for training.

Milestone checking. As mentioned earlier, to reach either
a navigation or an interaction milestone, the target objects
must be detected and located within a reachable distance.
To check this, we compare the target object names, which
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are extracted from the language instruction (e.g., “kitchen
island”), to the class labels (e.g., countertop) of the objects
detected by Mask R-CNN, essentially a symbol grounding
task. We only consider the detected objects that are esti-
mated to be reachable. We apply an off-the-shelf word sim-
ilarity tool based on Wordnet [7] with WUP [39] similarity
from NLTK [19] to match the target names with the object
labels. The reachable object whose label has the highest
similarity (above a threshold) to a milestone target is con-
sidered as the grounded instance of that target; the target is
then marked as a success.

For interaction milestones, we need to further check if
the agent is interacting/has interacted with the target. As
defined in §3, an interaction action is a tuple of (action, ob-
ject mask); the object mask is simply a binary map over the
input image. To determine if the agent’s action is for the
milestone target, we calculate the intersection-over-union
(IoU) score between the object mask and the milestone tar-
get (provided by Mask R-CNN): if the IoU score is over
a certain threshold (0.5), it is considered matched with the
target object of the milestone. For an interaction milestone
with multiple targets, the agent has to perform multiple
interaction actions to interact with all of them. We keep
a checklist of all the milestone targets. The milestone is
reached after all the targets have been interacted with.

4.2. Planning with M-TRACK

The discussion of M-TRACK so far is detached from the
agent. The next question is, how can M-TRACK affect an
agent’s actions, e.g., to prevent it from skipping a subtask?
We propose two simple yet effective ways. First, at any
time step, we feed the agent with only the instruction of the
current subtask determined by M-TRACK. This explicitly
guides the agent to focus on the current subtask. Specifi-
cally in ALFRED, we feed the concatenation of IH and the
one sentence in IL for the current subtask as opposed to the
entire IL. We do so starting from the beginning of a task,
when the first sentence of IL is guaranteed to be the first
subtask. We then proceed to the next sentence only after
the current subtask is marked as completed by M-TRACK.
The use of M-TRACK frees the agent from solely relying
on its internal mechanism like attention and hidden states to
decide subtask switching.

Second, we apply the milestone checker proactively for
interaction milestones — before the agent executes its pre-
dicted action. This can prevent an agent from interacting
with a wrong object, as opposed to trying to correct the mis-
take after it has happened. For example, if the milestone is
(interaction, fork) but the agent’s predicted binary mask for
interaction does not overlap with the grounded instance of
fork in the image, M-TRACK will reject the agent’s action
by asking it to select another (action, object mask) tuple (Fig-
ure 2). This saves the agent from having to generate an
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Figure 3. Architecture of VLN⟳BERT with M-TRACK.

action sequence for recovery, for example, to put the incor-
rectly picked-up object back down.

In our implementation, if the first interaction action is
rejected, we move on to the next action in the agent’s top
N list (e.g., from a softmax classifier). We iterate over the
N actions until we find an interaction action whose mask
matches with the milestone target or we find a navigation
action instead (e.g., when the right object is not in sight).
If none of those happens, the agent will take its top ranked
navigation action. We set N to be 5 in the experiments.

4.3. Agent Models

4.3.1 VLN⟳BERT Baseline

Recently, Transformer-based models are becoming increas-
ingly popular for VLN tasks [27, 27, 33, 42]. Following this
line of work, we build upon the VLN⟳BERT [12] model
which introduces the concept of recurrent state vector into
the Transformer architecture. Since VLN⟳BERT was de-
signed for the R2R dataset, which contains mostly short-
horizon navigation tasks, we adapt it for ALFRED with a
series of modifications. Input-wise, we utilize a pre-trained
vision encoder1 to extract a scene feature from 8 panoramic
views and also object features from each view as our vi-
sual input. For action prediction, unlike VLN⟳BERT that
only deals with navigation actions, we employ a pointer net-
work [36] to choose between navigation, interaction, and
stop actions: if the pointer network chooses a scene feature,
agent outputs the navigation action needed to navigate to
that scene; if it chooses an object feature, agent outputs the
mask for that object, and additionally use an MLP to pre-

1For simplicity, we use the same Mask R-CNN model that is used in
our milestone checker, but it is not necessary.
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dict the interaction action type; if it chooses a stop feature
(added to the list of visual features as an all-zero vector),
agent outputs Stop. The MLP takes the concatenation of the
chosen object feature and the updated state embedding as
input. The architecture as well as its integration with M-
TRACK is illustrated in Figure 3, and more implementation
details are provided in the supplementary materials.

4.3.2 LSTM Baseline

To further show the model-agnostic nature of our M-
TRACK, we use the LSTM baseline introduced in ALFRED
[30], and extend the architecture with the same pre-trained
vision encoder used in VLN⟳BERT. Furthermore, to lever-
age the power of the pre-trained vision encoder, we follow
[27, 31] and ask our agent to select an object from the de-
tected objects instead of directly predicting a binary mask.
The corresponding pixel mask is retrieved from the selected
object. Refer to supplementary materials for details.

4.4. Learning

As shown in the ALFRED paper [30], base models like
the LSTM performs rather poorly on ALFRED when sim-
ply trained with behavior cloning. Prior studies on other
VLN tasks have demonstrated the importance of reinforce-
ment learning (RL) [12,34,43], but its effectiveness has not
been validated on ALFRED. We train the models with a
combination of behavior cloning (using the cross-entropy
loss between the predicted action sequence and the ground
truth), object feature selection loss (for interaction actions),
and RL. We apply the A2C algorithm [24] which, at time
t, samples an action at according to agent’s predicted log
probability distribution log(pat ), and measures the advan-
tage for that action advt with a critic network and a re-
ward. We consider four different types of reward: 1) the
straight line distance between the agent and the current nav-
igation/interaction target, 2) the interaction action match-
ing with the ground-truth interaction action which we can
compute from the environment state, 3) the visibility of the
target, i.e., whether the target is reachable (within 1.5m in
ALFRED) and is in sight by the agent, and 4) the final task
success. Following VLNBERT [12], we combine behavior
cloning loss, object feature selection loss for object selec-
tion and RL loss during all training iterations.

5. Evaluation
5.1. Experimental Setup

ALFRED. We validate our approach on the ALFRED [30]
dataset which evaluates an agent’s language-guided naviga-
tion and interaction abilities for common household tasks.
ALFRED consists of 8055 expert demonstrations annotated
with 25 743 natural language instructions. The standard

training/validation/test splits contain 21 023/1641/3062 ex-
amples, respectively. The validation and test sets are further
split into 1) a seen set where the environments have been
seen during training and 2) an unseen set that contains new
environments. The validation/test sets include 820/1533
seen and 821/1529 unseen examples, respectively.
Evaluation metrics. We report the three main metrics used
by the ALFRED leaderboard. Success Rate (SR): a binary
indicator of whether all subtasks were completed. Path-
Length Weighted Success Rate (PLWSR): SR weighted
by (expert demonstration path length)/(agent path length).
Goal-Condition Success Rate (GC): ratio of completed
goal-conditions.2 We note that success rate on the unseen
test set is considered the primary metric for ranking because
models are prone to memorizing the seen environments and
often fail to generalize to unseen environments.
Models for comparison. We denote the base models de-
scribed in §4.3.1 and §4.3.2 as VLN⟳BERT and LSTM, re-
spectively. To improve their competence on ALFRED, we
further augment them with 1) pre-training their vision en-
coder on ALFRED images, and 2) reinforcement learning
(§4.4). We denote the enhanced models as VLN⟳BERT-L
and LSTM-L, indicating their improved capability for long-
horizon tasks. Finally, we integrate each of them with M-
TRACK. Even though the focus of our evaluation is to test
the effectiveness of M-TRACK on improving different base
models, we still compare our results with other methods that
are already published. Please refer to the supplementary
materials for implementation details.

5.2. Main Results

We summarize the main results on the ALFRED test set
in Table 2. First of all, the results show that both of our
base models are highly competitive, performing on par or
better than many recent VLN models such as E.T., LWIT,
and HiTUT. On top of that, M-TRACK is highly effective
in improving both base models: it improves the unseen SR
of LSTM-L and VLN⟳BERT-L by 4.6% and 4.1% abso-
lute (53% and 33% relative). Finally, VLN⟳BERT-L + M-
TRACK performed as much as the best published method
(HLSM) on unseen SR (main metric), better on seen and
unseen PLWSR, similarly on seen SR. The higher seen and
unseen PLWSR indicate that our method successfully re-
duced the path length by focusing on the current subtask to
complete the task.

5.3. Fine-grained Analyses

5.3.1 When to Apply M-TRACK?

The flexibility of M-TRACK makes it possible to be applied
at training time, test time, or both. In Table 3, we show that

2For example in Fig. 1, there are 3 goal conditions: a potato is heated,
a potato is on the counterop, and a heated potato is on the counter.
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Model Test Unseen Test Seen
SR PLWSR GC SR PLWSR GC

MOCA [31] 5.30 2.72 14.28 22.05 15.10 28.29
LAV [26] 6.38 3.12 17.27 13.35 6.31 23.21
EmBERT [33] 7.52 3.58 16.33 31.77 23.41 39.27
E.T. [27] 8.57 4.10 18.56 38.42 27.78 45.44
LWIT [25] 9.42 5.60 20.91 30.92 25.90 40.53
HiTUT [42] 13.87 5.86 20.31 21.27 11.10 29.97
ABP [15] 15.43 1.08 24.76 44.55 3.88 51.13
HLSM [2] 16.29 4.34 27.24 25.11 6.69 35.79

LSTM-L 8.70 4.05 16.97 14.04 7.20 21.73
LSTM-L + M-TRACK 13.28 6.25 20.20 22.05 12.83 30.48
VLN⟳BERT-L 12.23 5.60 19.64 21.46 11.56 28.99
VLN⟳BERT-L + M-TRACK 16.29 7.66 22.60 24.79 13.88 33.35

Table 2. Performance on the ALFRED test set. We evaluate M-TRACK on LSTM-L and VLN⟳BERT-L. M-TRACK

notably improves all evaluation metrics on both test unseen and seen splits. Note that M-TRACK using VLN⟳BERT-
L (or LSTM-L) achieves comparable gains to other existing methods. Bold refers to the highest score and underline
refers to the second highest score.

LSTM-L VLN⟳BERT-L
Train/Test − + − +

− 9.37 10.48 10.35 13.29
+ 12.20 15.83 13.17 17.29

Table 3. Unseen SR on ALFRED validation set with (+) or
without (−) M-TRACK during training and/or test. For ex-
ample, the 17.29 cell indicates when M-TRACK is integrated into
VLN⟳BERT-L during both training and test.

M-TRACK is already beneficial when applied only during
training or test time, but the gain is most significant when it
is applied during both training and test, suggesting that M-
TRACK may be helping the base models in different ways
during different phases.

5.3.2 Ablation Studies

Table 4 shows the effectiveness of different components.

Reinforcement learning. We show that RL, with our re-
ward design, dramatically improves the performance of
both base models, especially in unseen environments. This
clearly demonstrates the importance of RL for long-horizon
VLN tasks. While similar findings have been discussed for
tasks with shorter horizons like R2R [12, 34, 43], we are
among the first to validate its importance on ALFRED.

Pre-training object detector on ALFRED. The default
Mask R-CNN model is pre-trained on COCO [18]. We con-
tinue pre-training it on ALFRED (ALFRED-OD), which
further improves the performance.

Different milestone checking strategies. For milestone
checking, we compare the passive checking and proac-
tive checking strategies discussed in §4.1.2. As shown
in Table 4, proactive checking performs better than pas-
sive checking, suggesting that preventing a wrong action
from happening is more preferable than correcting the mis-

Goal: "Heat an egg up and  
put it back in the fridge"

Goal: "Put a mug with a pen in it  
on the desk" 

Skips picking up egg and
moves to the microwave 

Picks up pencil  
instead of pen

Path Deviation

"Open the fridge and take the egg out
and then close the door"

(navigation, fridge) (interaction, {egg, fridge}) (interaction, pen)

"Pick up the pen on the desk, between
the clock and the pencil"

No M-Track

With M-Track

No M-Track

With M-TrackOpen Fridge Pickup Pen

Wrong Object

Figure 4. Case studies for M-TRACK.

take afterwards. In contrast to our milestone checking,
prior work [4] has proposed a binary classifier to check
the completeness of current instruction. To compare with
that, we implement a binary classifier using an MLP condi-
tioned on the hidden state (LSTM-L) or the state encoding
(VLN⟳BERT-L) that predicts if the current milestone has
been reached. While it also helps, our milestone checking
strategy is still advantageous by a large margin. Finally, we
also estimate an upper bound for M-TRACK using ground-
truth milestones from the environment instead of our mile-
stone builder. While the results still show a decent room for
improvement, the gap is not dramatic, indicating that our
milestone builder is reasonably accurate, echoing Table 1.

5.4. Case Studies

We compare VLN⟳BERT-L (top) with VLN⟳BERT-L
+ M-TRACK (bottom) on two validation examples (left
and right) to show the importance of M-TRACK (see Fig-
ure 4). First, VLN⟳BERT-L (top-left) skips the current in-
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Model Component Val Unseen Val Seen
RL ALFRED-OD Binary Passive Proactive GT SR GC SR GC

LSTM 1.82 3.09 9.26 11.09

✓ 8.03 9.83 11.88 17.75
LSTM-L ✓ ✓ 9.37 12.56 15.00 18.37

✓ ✓ ✓ 10.83 13.39 17.68 20.46
✓ ✓ ✓ 15.22 18.88 20.97 24.73

LSTM-L + M-TRACK ✓ ✓ ✓ 15.83 20.34 21.70 25.45
✓ ✓ ✓ 20.36 30.79 25.12 31.41

VLN⟳BERT 3.66 7.19 14.51 20.11

✓ 9.37 16.42 16.83 23.12
VLN⟳BERT-L ✓ ✓ 10.35 18.94 21.32 25.67

✓ ✓ ✓ 14.85 22.13 22.92 28.90
✓ ✓ ✓ 17.05 27.37 25.48 32.07

VLN⟳BERT-L + M-TRACK ✓ ✓ ✓ 17.29 28.98 26.70 33.21
✓ ✓ ✓ 24.38 39.34 31.95 46.27

Table 4. Ablation studies on the validation set. RL: Reinforcement learning. ALFRED-OD: Mask R-CNN object detector pre-
trained on ALFRED training images. Binary: Binary milestone classifier. Passive: Milestone checking after an action is executed.
Proactive: Milestone checking before an action is executed. GT: M-TRACK with ground-truth milestones (an upper bound).

struction without completing it (“take the egg out from the
fridge”), showing its limitation on the long-horizon task. In
contrast, VLN⟳BERT-L + M-TRACK (bottom-left) com-
pletes all subtasks and eventually completes the whole task.
Second, VLN⟳BERT-L (top-right) chooses the wrong ob-
ject pencil instead of the correct object pen. The agent may
be confused between the two objects since “pencil” also
appears in the current instruction and indeed is semanti-
cally/visually similar to a pen. In contrast, VLN⟳BERT-L
+ M-TRACK (bottom-right) correctly performs the interac-
tion task because of proactive milestone checking.

6. Discussion and Conclusions
We introduce a novel milestone-based task tracker (M-

TRACK) for vision-and-language navigation (VLN) and
show that explicit milestone detection and checking signifi-
cantly benefits long-horizon VLN tasks such as those in AL-
FRED [30]. Our empirical results show the effectiveness of
M-TRACK with two strong baseline models. In summary,
this work clearly demonstrates the importance of explicit
progress monitoring (as opposed to, e.g., resorting to a sin-
gle policy network for both planning and implicit progress
monitoring), especially for long-horizon tasks. To make the
point, we propose one instantiation with reference to the
conditions in ALFRED, and different (or more generic) in-
stantiations for different conditions can be explored in the
future. We note the following limitations of the current de-
sign that warrant further development:
Assumptions in milestone builder. Our current instantia-
tion assumes divisible language instructions corresponding
to subtasks. It is worth mentioning that prior work (e.g.,
BabyWalk [43]) does try a similar task decomposition idea
on the R2R dataset and shows promising results, and we
believe M-Track could be adapted similarly, though it is a

less interesting setting for our purpose because of the short
horizons. Nonetheless, in more general, realistic settings,
accurate milestone building will likely be more challenging,
especially when milestones are implicit (e.g., “fetch a cold
beer”). One interesting direction is to discover milestones
by inductive reasoning over training instances instead of
solely from language instructions. Event process mining
techniques [41] could potentially be leveraged to discover
that “fetch a cold X” generally entails going to a fridge and
fetching X (e.g., “beer”) from it.
Assumptions in milestone checker. To date, most VLN
tasks are declarative. Milestone/goal checking thus can
be done by checking solely against the environment state.
For procedural instructions (e.g., “turn around twice”) the
milestone checker may need to check against the agent’s
action history, though such instructions are rare in existing
datasets.
Non-unique golden trajectories. Though uncommon in
ALFRED, in more complex tasks and/or environments,
there could exist multiple viable trajectories (e.g., different
execution orders of subtasks leading to the same goal state)
to complete a task. Currently milestones are assumed to be
hard constraints that an agent has to achieve in order to pro-
ceed. It may be helpful to (learn to) soften the constraints
imposed by milestones to provide more flexibility.
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