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Abstract

Transformer architecture has been showing its great
strength in visual object tracking, for its effective atten-
tion mechanism. Existing transformer-based approaches
adopt the pixel-to-pixel attention strategy on flattened im-
age features and unavoidably ignore the integrity of ob-
jects. In this paper, we propose a new transformer ar-
chitecture with multi-scale cyclic shifting window atten-
tion for visual object tracking, elevating the attention from
pixel to window level. The cross-window multi-scale at-
tention has the advantage of aggregating attention at dif-
ferent scales and generates the best fine-scale match for
the target object. Furthermore, the cyclic shifting strat-
egy brings greater accuracy by expanding the window sam-
ples with positional information, and at the same time saves
huge amounts of computational power by removing redun-
dant calculations. Extensive experiments demonstrate the
superior performance of our method, which also sets the
new state-of-the-art records on five challenging datasets,
along with the VOT2020, UAV123, LaSOT, TrackingNet,
and GOT-10k benchmarks. Our project is available at
https://github.com/SkyeSong38/CSWinTT.

1. Introduction

Visual object tracking (VOT) is one of the fundamen-
tal problems in computer vision research with a wide range
of applications in video surveillance, autonomous vehicles,
human-machine interaction, and others. It aims to estimate
the position of a target object in each video frame, com-
monly represented as a bounding box encapsulating the tar-
get. The target object is given as a template in the initial
frame, and the tracker is required to extract proper fea-
tures about the target and localize the target in the follow-
ing frames. Most of the popular trackers [1, 22, 23, 37, 41]
adopt the Siamese network structure, which conducts track-
ing by calculating the similarity between the template and
search region in the current frame. The similarity metric
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Figure 1. (a) The proposed approach firstly achieves the window-
level attention between query and key through window partition-
ing, and then applies cyclic shifts for each window (from the base
sample in the red box to generated samples surrounded by orange
boxes) to greatly extend the number of window samples, while
maintaining the integrity of objects. (b) Previous transformers pro-
duce pixel-level attention, which weakens the positional informa-
tion between pixels and ignores the integrity of objects.

of cross-correlation used in Siamese trackers is prone to
lose much semantic information for it is a single-level linear
computational process. This deficiency can be well tackled
by using the attention mechanism to learn the global con-
text. Recently, transformer-based approaches [6, 12, 25, 39]
have reported new state-of-the-art performance on image
recognition, object detection, and semantic segmentation
benchmarks. This is no wonder as transformer [36] has a
powerful cross-attention mechanism to reasoning between
patches [18]. Particularly, transformer trackers [7,40,45,50]
have shown their great strength by introducing the atten-
tion mechanism to enhance and fuse the features of the tar-
get and the tracked object. However, we observe that these
transformer trackers simply put the flattened features of the
template and search region into pixel-level attention, each
pixel of a flattened feature (Query) matches all pixels of an-
other flattened feature (Key) in a complete and disordered
manner, as shown in Figure 1b. This pixel-level attention
destroys the integrity of the target object and leads to infor-
mation loss of relative positions between pixels.

In this paper, we propose a novel multi-scale cyclic shift-
ing window transformer for visual object tracking to further
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lift pixel-level attention to window-level attention, calculat-
ing attention between indivisible windows by treating each
window as a whole keeps the location information within
the window. The proposed method is inspired by the semi-
nal work of the Swin Transformer [25], which adopts a hier-
archical transformer structure by starting from small-sized
patches and gradually increasing the size through merging
to achieve a broader receptive field. Different from the Swin
Transformer, we calculate the cross-window attention be-
tween the template and search region directly, which helps
to discriminate the target from the background by ensuring
the integrity of the object. Further, we propose a multi-
head multi-scale attention where each head of the trans-
former measures the relevance among partitioned windows
at a specific scale. The key idea here is to apply a cyclic
shifting strategy on each window, as shown in Figure 1a,
for generating more accurate attention results. To address
performance drop around boundaries caused by the cyclic
shifting operation, we design a spatially regularized atten-
tion mask which turns out to be very effective in alleviat-
ing the boundary artifacts. Finally, we present some ef-
ficient computation strategies to avoid redundant compu-
tation introduced by multi-scale cyclic shifting windows,
which greatly reduce the time and computational cost. Ex-
tensive experiments demonstrate that our tracker performs
remarkably better than other state-of-the-art algorithms.

To summarize, our main contributions include:

1. We propose a novel transformer architecture with
multi-scale cyclic shifting window attention for visual
object tracking, uplifting the original pixel-level atten-
tion to the new deliberately designed window-level at-
tention. The cross-window attention ensures the in-
tegrity of the tracking object, and the cyclic shifts bring
greater accuracy by expanding window samples.

2. We design a spatially regularized attention mask and
some computational optimization strategies to im-
prove the accuracy and speed of the window attention.
Specifically, a spatially regularized attention mask is
used to address performance drop around boundaries
caused by the cyclic shifts, and we propose three com-
putational optimization strategies to remove redundant
computations.

2. Related Work
Visual object tracking. Existing visual object tracking ap-
proaches can be roughly divided into two categories, the
Correlation Filter (CF) based trackers and Deep Neural Net-
work (DNN) based trackers. CF based approaches [4, 5, 9,
11, 16, 20, 42] exploit the convolution theorem and train a
filter in the Fourier domain that maps known target images
to the desired output. The filter is learned through circu-
lar shifting patches around the target object to discriminate

background against the target. DNN based trackers refer to
the methods adopting deep neural networks in the tracking
process. Many methods [19, 32, 33] treat the tracking task
as a basic recognition task, i.e., using a convolutional back-
bone network to extract features and locate the target by
classification heads in the form of fully connected layers.

Recent years, tracking algorithms that adopt a Siamese
network structure [1,2,8,10,14,22,23,29,41,44,46,48,52]
have shown great success. A Siamese network usually con-
sists of two branches, one for template and the other for
search regions, and similarities between them are reported
through cross-correlations. However, such a strategy is un-
able to effectively explore the semantic correlation between
template and search regions. This issue leads to the fur-
ther exploration of using the powerful cross-attention mech-
anism of transformer structure for object tracking.
Vision transformers. Vaswani et al. [36] propose the very
first Transformer structure for handling long-range depen-
dencies in Natural Language Processing (NLP). The basic
block in a transformer is the attention module, which takes
a sequence as input and measures the relevance of different
parts of the sequence, aggregating the global information
from the input sequence. Transformer not only conducts
the self-attention within a single input but also calculates
the cross-attention between different inputs. ViT [12] first
introduces transformer to image recognition tasks. Ever
since, transformer has been widely applied in image clas-
sification [12, 25], object detection [6], semantic segmenta-
tion [39], visual object tracking [7, 40, 43, 45] and etc.

The seminal work of Swin Transformer [25] proposes an
effective hierarchical architecture with shifted windows and
achieves the state-of-the-art performance on COCO object
detection [24], and ADE20K semantic segmentation [51].
Though our approach is inspired by the Swin Transformer,
we have three fundamental differences: (1) where attention
is applied are different. Swin Transformer partitions the im-
age into windows and then conducts pixel-level attention
inside each window, while we do window partitioning in
feature maps, and calculate attention between windows by
treating each window as a whole. (2) multi-scaling strategy
is different. Swin transformer uses the same window size
in one layer and merges windows to form a larger window
in deeper layers. In contrast, we use windows with different
sizes as heads for multi-scale matching. (3) window shifting
is applied differently. Swin Transformer shifts the whole
feature map, in order to exchange information and provide
connectivity between different windows. We apply inde-
pendent cyclic shifts in each window in a non-exchangeable
way. Additionally, in contrast to Swin Transformer, where
each window is shifted only once, in our algorithm each
window is shifted multiple times depending on its size.

Recently, transformer-based visual object tracking meth-
ods have become more and more popular. TrDiMP [40] sep-
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Figure 2. An overview of proposed tracking architecture. Given a template image in the first frame and a search region in the subsequent
frame, we extract deep feature maps through a backbone network. Then these two features are partitioned into small windows and flattened
as a window sequence. The transformer matching module applies window-level attention to the window sequence. Specifically, the
Key(K)-Value(V) pair in the transformer employ the cyclic shifting strategy to generate a great number of samples. Then the transformer
outputs the fused features that contain the deep matching information between template and search region, these fused features are passed
through the bounding box prediction head to obtain the final tracking result.

arates the encoder-decoder transformer into two Siamese-
like branches, the encoder reinforces the template features
and the decoder propagates the tracking cues from previ-
ous templates to the current frame. TransT [7] proposes
a feature fusion network and employs an attention mech-
anism to combine the features of template and search re-
gion. This feature fusion network consists of an ego-context
augment module based on self-attention and a cross-feature
augment module based on cross-attention. STARK [45] de-
velops a spatial-temporal architecture based on the encoder-
decoder transformer, the encoder learns the relationship be-
tween template and search region and the decoder learns a
query embedding to predict the target positions. Moreover,
STARK introduces a corner-based prediction head used for
estimating the bounding box and a score head for control-
ling the updates of the template image. Most of the previous
tracking algorithms such as [40, 45] use encoder-decoder
structure to enhance or fuse the features, while we consider
the transformer as a feature matching module to calculate
the similarity between template and search region. More-
over, previous approaches use the transformer naively and
do touch the attention mechanism within. On the contrary,
we carefully design a multi-head multi-scale window-level
attention transformer with the cyclic shifting strategy, to
fully exploit the transformer structure for object tracking.

3. Method

In this section, we present our multi-scale cyclic shifting
window transformer tracker, namely CSWinTT. We use the

transformer as a matching module for measuring the rele-
vance between template and search region to fully exploit
the powerful cross-attention capabilities of the transformer.

The tracking architecture is visualized in Figure 2, which
consists of three major components: a feature extraction
backbone, a transformer matching module, and a bounding
box estimation head. We choose the ResNet-50 [15] as our
backbone for feature extraction, which takes a pair of image
inputs, i.e., the template image and the search region image.
The pair of output features are then partitioned into win-
dow sequences and fed into the transformer matching mod-
ule. The matching module concatenates the two window
sequences and sends them to the multi-head 6-layer trans-
former. The multi-head transformer uses a specific window
size for each head for scale adaption. Finally, the outputs
of each transformer head are concatenated together, passed
through the corner-based box estimation head as in [45] to
get the result bounding box.

3.1. Multi-Scale Cyclic Shifting Window Attention

Multi-scale window partition. Give template patch z in
the initial frame and an image s for search region. We pass
z and s through the backbone and a bottleneck layer, obtain-
ing the feature map fz ∈ Rd×Hz×Wz and fs ∈ Rd×Hs×Ws

respectively. Then we extract patches of shape ri × ri
from fz and fs in head i, where di represents the number
of channels of head i. The total number of template win-
dows is N i

z = Hz

ri
× Wz

ri
and for search region windows is

N i
s = Hs

ri
× Ws

ri
. After window extraction, the feature maps
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are reshaped to window sequences f i
z ∈ RNi

z×di×ri×ri and
f i
s ∈ RNi

s×di×ri×ri . The two window sequences are then
concatenated along the spatial dimension and generate f i

c

with (N i
z+N i

s)×di. Then query-key-value attention mech-
anism is applied with query Qi, key Ki and value Vi. Key-
value pairwise similarities are then calculated and fused us-
ing a multi-head attention mechanism as follows:
Multi-head attention. Multi-head attention is the funda-
mental component in our architecture. As described in [36],
given queries Q, keys K, and values V. The multi-head at-
tention is computed as:

MultiHead(Q,K,V) = Concat(H1, . . . ,Hnh
)

where Hi = Attention(Qi,Ki,Vi)

= softmax(
QiK

T
i√

dk
)Vi

(1)

where nh is the number of heads, and dk is the dimension
of key. For a clearer description of the post-order steps, we
define the attention score as:

AttnScore(Q,K) =
QKT

√
dk

(2)

Cyclic shifting strategy. Compared to the pixel-level at-
tention, one problem of our window attention is the reso-
lution of attention map reduces from R(HzWz+HsWs)

2

to
R(Ni

z+Ni
s)

2

. This will lead to a coarser similarity score, and
it is hard to fuse the output of each head for the attention
generated by different heads does not have the same size.

To address the aforementioned problems, we propose a
cyclic shifting strategy on the proposed window-level at-
tention. It enhances the effectiveness of cross-window at-
tention while preserving positional information and the in-
tegrity of objects, as shown in Figure 3. Within a specific
head, consider a window with size r × r referred to as the
base sample. We define the shift operator shift(x, y) of the
base sample as translating the sample by x pixels in the hor-
izontal direction, and y pixels in the vertical direction. Our
cyclic shifts of a base sample then are performed at a single-
pixel distance and move the sample into bottom-right direc-
tions with boundaries being warped back to the top-left. The
operation shift(x, y), x, y ∈ [−r+1, r− 1] generates r× r
into (2r−1)2 samples for the base sample with window size
r × r. Obviously, these cyclic shifts generate a lot of dupli-
cates, we will discuss how to effectively remove duplicate
computations in the section 3.2.

3.2. Efficient Computation

Spatially regularized attention mask. In practice, we find
the shifted samples near the center contribute more to the
final attention. This is reasonable as samples close to the

…

…
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…

…

…
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Attention
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Cyclic Shifts

Attn
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Figure 3. Cyclic shifting window attention. We illustrate that
when the search region in the Key is partitioned into 4 windows
and the template in the Query becomes one window. The above
two windows in the search region are selected as examples to do
attention with the template after cyclic shifts, and attention scores
are obtained respectively, then they are combined to form the final
attention score.

boundaries are more likely to break the integrity and po-
sition information of the tracking object in the window.
Hence we design a weighting scheme applied as a form of
attention mask M in the transformer, as shown in Figure 4.
The spatial weights of the mask penalize samples depending
on their spatial locations, the formula for weight generation
is expressed in 3. The further away the generated sample
is from the base sample, the larger the penalty is and the
weight is smaller.

M(x, y) = −(
x

r
)2 − (

y

r
)2, x, y ∈ [−r + 1, r − 1] (3)

The spatial attention mask M is directly added onto the at-
tention score in 2.

Recall that the sizes of query Qi and key Ki in the i-
th head are R(Nz+Ns)×di×ri×ri respectively. With ri × ri
as the window size, and each window is expanded into
[(2ri − 1)2 × di × ri × ri] with cyclic shifts. The size of
attention score on each window is [(2ri−1)2× (2ri−1)2],
this is formed by the window of query and key. Since the
query and key are also cyclic shifting, we add the spatial
weights of size [(2ri − 1)× (2ri − 1)] to the last dimension
of attention score (dimension of keys), achieving the effect
of positional penalty.
Computational optimization. Intuitively, the cyclic shifts
increase the computational cost greatly, especially when the
window size is large. To achieve computational efficiency,
we optimize in three ways: (i) eliminating the cyclic shifts
of the Query; (ii) halving the duplicated shifting periods;
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Figure 4. Visualization of the spatial regularization weights de-
signed to alleviate the boundary artifacts. The red box in the center
is the base sample, generated samples are penalized more if they
are further from the center base sample (i.e., the smaller the value
of their applied attention mask).

and (iii) adopting the programming optimization for matrix
translation.

Suppose we have Q, K and V of size (H,W, d). Stan-
dard transformer flattens the features to (HW, d), two
parts account for the time cost of attention computation
are the attention score computation O(HW × dHW ) and
fusion feature computation O(HW × HW × d). After
applying the cyclic shifts, the size of Q, K and V are
(Hr ,

H
r , 2r − 1, 2r − 1, r, r, d) with r as window size, and

the complexity of computing the attention score increases
to O((Hr

W
r (2r−1)(2r−1))2× r2d). We observe if Q and

K perform the same shifting, computing attention scores
is meaningless, so we just need to perform a cyclic opera-
tion on K and keep Q unchanged to achieve the same ef-
fect. In addition, note that the cyclic generated samples to
the bottom-right and the top-left directions are repeated, we
reduce the number of shifting periods by half for better effi-
ciency. And we also apply a programming trick to improve
the tracking speed, which is using permutations of matrix
coordinates to perform cyclic shifts instead of direct trans-
lations on the matrix.

3.3. Tracking with Window Transformer

Multi-scale window transformer facilitates the tracking
process by conducting accuracy-aware attention with win-
dows at different scales. Therefore, the choice of the win-
dow sizes is extremely important. In our implementation,
we set the number of heads nh to 8 with window size
ri = [1, 2, 4, 8, 1, 2, 4, 8] for head i. Notice the second
half of the heads have the same window size, that’s because
we adopt feature map translation which displaces the back-
bone feature of the search image by ( ri2 ,

ri
2 ) pixels. In this

way, when the windows are partitioned in a non-overlapping
manner, the contents of windows are complemented by each

other to avoid the situation that the object has been seg-
mented all the time.

In further, to improve the robustness of the tracking algo-
rithm, we use two templates of the same size as the input of
the transformer. One of which is fixed using the initial tem-
plate, the other is online updated to the latest tracking result
with high confidence, a score head is employed to control
the updates, as designed in STARK [45].

In the training stage, we use the L1 loss and the gener-
alized IoU loss [34] to train the overall architecture in an
end-to-end manner. During the inference, the template im-
age and its corresponding backbone features are initialized
in the first frame, and the search region is used as the in-
put to the tracker during the tracking process in subsequent
frames, with the predicted bounding box returned by the
network as the final result.

4. Experiments
4.1. Implementation Details

We train our model on the LaSOT [13], GOT-10k [17],
and TrackingNet [31] datasets. The image pairs are directly
sampled from the same sequence and common data aug-
mentation operations including brightness jitter and hori-
zontal flip are applied. The size of the input template is
128×128 pixels, the search region is 52 times of the target
box area and further resized to 384× 384 pixels. We use
ResNet-50 [15] as the backbone, the parameters of which
are initialized with ImageNet pretrained [35] model. Other
parameters in our model are initialized with Xavier Uni-
form. We use the λl1 = 5 and λgiou = 2 as the loss
weight for l1 loss and giou loss [34]. The AdamW opti-
mizer [26] is employed with initial learning rates of 1e-5
and 1e-4 for backbone parameters and other parameters,
respectively, and weight decay is set to 1e-4 for every 10
epochs after 500 epochs. We train our model on two Nvidia
Tesla T4 GPUs for a total of 600 epochs, each epoch uses
4 × 104 images. The mini-batch size is set to 64 images
with each GPU hosting 32 images. The training process
of the update module is the same as [45]. Our approach is
implemented in Python 3.7 using PyTorch 1.6. CSWinTT
operates about 12 frames per second (FPS) on a single GPU
during the online tracking process.

4.2. State-of-the-art Comparison

We compare our proposed CSWinTT algorithm with
the state-of-the-art trackers on five tracking benchmarks,
including UAV123 [30], LaSOT [13], TrackingNet [31],
GOT-10k [17], and VOT2020 [21].
UAV123 [30]: UAV123 gathers an application-specific col-
lection of 123 sequences and captures from unmanned
aerial vehicles video dataset. It adopts the Area Under the
Curve (AUC) and Precision (P) as the evaluation metrics.
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Table 1. Comparisons on four tracking benchmarks. The red, green and blue indicate performances ranked at first, second, and third places

Method Year
UAV123 [30] LaSOT [13] TrackingNet [31] GOT-10k [17]
AUC P AUC PNorm P AUC PNorm P AO SR0.5 SR0.75

SiamFC [1] 2016 49.2 72.7 33.6 42.0 33.9 57.1 66.3 53.3 34.8 35.3 9.8
ECO [9] 2017 52.5 74.1 32.4 33.8 30.1 55.4 61.8 49.2 31.6 30.9 11.1
ATOM [8] 2019 61.7 82.7 51.5 57.6 50.5 70.3 77.1 64.8 55.6 63.4 40.2
DiMP [2] 2019 64.2 84.9 57.7 66.4 57.9 74.0 80.1 68.7 61.1 71.7 49.2
SiamRPN++ [22] 2019 64.2 84.0 49.6 56.9 49.1 73.3 80.0 69.4 51.7 61.6 32.5
SiamFC++ [44] 2020 61.8 80.4 54.4 62.3 54.7 75.4 80.0 70.5 59.5 69.5 47.9
D3S [27] 2020 - - - - - 72.8 76.8 66.4 59.7 67.6 46.2
MAML [38] 2020 - - 52.3 - 53.1 75.7 82.2 72.5 - - -
SiamAttn [46] 2020 65.0 84.5 56.0 64.8 - 75.2 81.7 - - - -
KYS [3] 2020 - - 55.4 63.3 55.8 74.0 80.0 68.8 63.6 75.1 51.5
PrDiMP [10] 2020 66.6 87.2 59.9 68.8 60.8 75.8 81.6 70.4 63.4 73.8 54.3
Ocean [49] 2020 62.1 82.3 51.6 60.7 52.6 69.2 79.4 68.7 61.1 72.1 47.3
SiamRCNN [37] 2020 - - 64.8 72.2 - 81.2 85.4 80.0 64.9 72.8 59.7
SiamGAT [14] 2021 64.6 84.3 53.9 63.3 53.0 - - - 62.7 74.3 48.8
AutoMatch [47] 2021 64.4 83.8 58.2 67.5 59.9 76.0 82.4 72.5 65.2 76.6 54.3
TrDiMP [40] 2021 67.0 87.6 64.0 73.2 66.6 78.4 83.3 73.1 68.8 80.5 59.7
TransT [7] 2021 68.1 87.6 64.9 73.8 69.0 81.4 86.7 80.3 67.1 76.8 60.9
STARK-ST50 [45] 2021 69.2 88.2 66.0 75.5 70.8 81.3 86.1 - 68.0 77.7 62.3

CSWinTT Ours 70.5 90.3 66.2 75.2 70.9 81.9 86.7 79.5 69.4 78.9 65.4

Table 2. Result comparisons on VOT2020 [21], where trackers
only predict bounding boxes rather than reporting masks.

EAO↑ Accuracy↑ Robustness↑
KCF [16] 0.154 0.407 0.430
SiamFC [1] 0.179 0.418 0.502
CSR-DCF [28] 0.193 0.406 0.582
ATOM [8] 0.271 0.462 0.734
DiMP [2] 0.274 0.457 0.740
UPDT [4] 0.278 0.465 0.755
TrDiMP [40] 0.300 0.471 0.782
TransT [7] 0.293 0.477 0.754
STARK [45] 0.303 0.481 0.775

CSWinTT(Ours) 0.304 0.480 0.787

The precision is used to measure the center distance and the
AUC plot computes the intersection-over-union (IoU) score
between the estimated bounding box and the ground-truth.
As shown in Table 1, where the previous state-of-the-art
trackers such as TrDiMP [40], TransT [7], and START [45]
are included for comparison, note that STARK-ST50 is cho-
sen for the reason that it uses the same ResNet-50 backbone
as our algorithm, which can more fairly compare the per-
formance of transformer structure. Our CSWinTT outper-
form the aforementioned methods by a considerable mar-
gin and exhibits very competitive performance (70.5% AUC
and 90.3% Precision) when compared to the best previous

tracker STARK (69.2% AUC and 88.2% Precision)
LaSOT [13]: LaSOT is a large-scale long-term dataset in-
cluding 1400 sequences and distributed over 14 attributes,
the testing subset of LaSOT contains 280 sequences with
an average length of 2448 frames. Methods are ranked by
the AUC, Precision, and Normalized Precision (PNorm).
The evaluation results of compared tracking algorithms are
shown in Table 1. Our model achieves the top-rank AUC
score (66.2%) and Precision score (70.9%), which out-
performs the previous best result by STARK-ST50, and
also surpasses the other two transformer trackers TransT
[7]/TrDiMP [40] for 1.3%/2.2% AUC score, respectively.
TrackingNet [31]: TrackingNet is a large-scale tracking
dataset consisting of 511 sequences for testing. The evalu-
ation is performed on the online server. 1 shows that, com-
pared with SOTA models, our CSWinTT performs better
visual tracking quality and ranks at the first in AUC score
of 81.9% and normalized precision of 86.7%. The specific
gain is 0.7% relative improvement of the AUC score when
compared with the TransT [7], which represents the previ-
ous best algorithm on this benchmark.
GOT-10k [17]: GOT-10k is a large-scale dataset containing
over 10k videos for training and 180 for testing. It forbid the
trackers to use external datasets for training. We follow this
protocol by retraining our trackers using only the GOT10k
train split. As can be seen from Table 1, among previous
transformer trackers, TrDiMP [40] and STARK-ST50 [45]
provides the best performance, with an AUC score of 68.8%
and 68.0%. Our approach has remarked improvement and
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obtains an AUC score of 69.4%, significantly outperform-
ing the best existing tracker (TrDiMP) by 0.6%.
VOT2020 [21]: VOT2020 benchmark contains 60 chal-
lenging videos. The performance on this dataset is evalu-
ated using the expected average overlap (EAO), which takes
both accuracy (A) and robustness (R) into account. In addi-
tion, a new anchor-based evaluation protocol is proposed in
VOT2020, the segmentation mask is adopted as the ground-
truth. However, since our algorithm does not output a seg-
mentation mask, trackers only predict bounding boxes are
chosen as the comparisons to ensure a fair evaluation. It
can be seen from the data in Table 2 that CSWinTT obtains
an EAO of 0.304, ranking first in previous trackers.

4.3. Ablation Study

We conduct ablation analysis to evaluate the different
components in our CSWinTT and evaluate the performance
of diverse window sizes using the UAV123 dataset [30]. Be-
sides, we show the superiority of the three previously men-
tioned computational optimization strategies.

Table 3. Ablation Study on UAV123 [30]. Win represents the
multi-scale window transformer. CS denotes the proposed cyclic
shifting strategy. SR means to apply the spatially regularized at-
tention mask. Pos represents the relative position encoding.

# Win CS SR Pos AUC Prec.

1 Original Transformer 66.2 86.6
2 ✓ 54.4 70.8
3 ✓ ✓ 69.7 89.2
4 ✓ ✓ ✓ 70.1 89.8
5 ✓ ✓ ✓ 69.8 89.6
6 ✓ ✓ ✓ ✓ 70.5 90.3

Effects of different components in our method. We eval-
uate the effect of components including multi-scale win-
dow attention (Win), cyclic shifts (CS), spatially regular-
ized attention mask (SR), and relative position encoding
(Pos) employed in our method. The ablation study result
is shown in Tab. 3, #1 represents the performance of the
original transformer. We can see that window-level atten-
tion alone (#2) is very ineffective as it greatly reduces the
resolution of the attention mechanism, however, combin-
ing window-level attention with the cyclic shifting strategy
can handle this drawback. It can be seen in #3, there is a
15.3% improvement in the AUC score after applying the
cyclic shifts, and it outperforms the original transformer by
3.5%, which illustrates that the cyclic shifting strategy plays
a key role on the window-level attention. #4 shows that the
AUC score can be improved by 0.4% when employing the
spatially regularized mask to cyclic shifting samples, which
demonstrates that spatial regularity can alleviate the bound-
ary artifacts to a certain extent and improve the performance

of window attention. In addition, we test the effectiveness
of relative position encoding in our method following the
way of [25]. The performance improves by 0.1% when the
relative position encoding (#5) is used, the small improve-
ment indicates that the position encoding in window-level
attention is not very important, and confirms that window-
level attention itself contains rich position information.

Table 4. Comparison between the different window sizes on
UAV123 [30]. The first four items are adopting the same window
size in each head. Multi-scale denotes the proposed CSWinTT.

Window Size AUC Prec.

1× 1 66.2 86.6
2× 2 68.3 87.9
4× 4 70.0 89.6
8× 8 69.3 89.2

Multi-scale 70.5 90.3

Different window sizes for our transformer. To explore
the performance of diverse window sizes on cyclic shift-
ing window attention, we designed a quantitative analysis
experiment as shown in Table 4. The first four rows indi-
cate that the same window size is used in all 8 heads in the
case that cyclic shifting strategy is employed. It can see
from the experimental results that the highest 70.0% AUC
score is obtained in size 4× 4 when using a single window
size, as a matter of fact, the performance is really closer for
all windows sizes. When adopting the multi-scale window
size, the best AUC score of 70.5 is achieved, demonstrating
that multi-scale windows can fuse information from differ-
ent scales to improve the performance of the tracker.

Table 5. Comparison about the tracking speed for three computa-
tion optimization. RMQ represents removing the cyclic shifts of
Query. Peri denotes halving shifting periods. Prog means adopt-
ing the programming optimization for matrix translation.

# RMQ Peri Prog Speed(FPS)

1 1.0
2 ✓ 8.2
3 ✓ ✓ 10.9
4 ✓ ✓ ✓ 12.4
5 Original Transformer 14.9

Computation optimization and speed analysis. Cyclic
shifting strategy brings a large computational burden, we
improve the tracking speed by applying some optimization
strategies, including removing the cyclic shifts of Query
(RMQ), halving the shifts periods (Peri), and adopting the
programming optimization for matrix translation (Prog),
Table 5 shows the effect of each optimization method.
The tracking speed is around 1 FPS with no optimization
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Search Region Original Transformer Our Transformer

Figure 5. Visual heat maps of the attention obtained by the original
transformer (middle), and our proposed transformer (right). The
red box indicates the target object in the search region (left).

adopted, as shown in #1, which is almost an unusable state.
With the cyclic shifts of Query are removed (#2), the track-
ing speed is greatly improved to 8.2 FPS, and it can be
further improved by halving the shifts periods (#3). In ad-
dition, we also apply a PyTorch programming trick to use
permutations of matrix coordinates to perform cyclic shifts
instead of direct translations on the matrix, which also im-
proves the tracking speed to some extent as shown in #4.
Due to the absolute amount of computation introduced by
the cyclic shifting window attention, the computing effi-
ciency of our method is not as good as the original trans-
former (#5), but a satisfactory tracking speed of 12.4 FPS is
achieved after our computational optimization.

4.4. Qualitative Analysis

Figure 5 shows the visual heat map of the attention,
which exhibits the attention score of the last layer in the
transformer matching module. The red area in the heat map
indicates a high attention degree, while the blue area indi-
cates a low attention degree. The first row shows the sit-
uation where the target object is obscured, the second and
third rows show the scenario where the target is surrounded
by similar distractors. From the visualization we can see
that, compared to the pixel-level attention, the cyclic shift-
ing window attention has a stronger discrimination ability
of visual tracking, especially when the occlusion occurs or
when there are similar distractors around the target object.

We further discuss why our proposed CSWinTT works.
The strong discriminative ability mainly comes from two
strategies: multi-scale window partition and cyclic shifts.
After window partition, the target is split into multiple small
blocks and each block contains the indivisible information
of the object part. These blocks do not disrupt the pixels
inside during attention, when some blocks are obscured and
not visible, another part of the block can do attention with-
out interference. Although there is no information exchange
between different windows, the fusion of multi-scale win-
dows can alleviate the problem, as well as be more robust
to diverse sizes of occlusion areas. Additionally, the cyclic
shifts can generate a more accurate attention score. For ex-
ample, after window partition for a human body, there are
two windows needed to do the attention. Suppose the first
one is a window in the template that contains a head of the
human body, which is in the center of the window. The sec-
ond one is in the search region that contains the same head,
as the human movement through the sequence, the head
translates from the center to the edge of the window. At this
point, a lower matching score will be obtained by window-
level attention, which does not fully utilize the information
in the windows. After employing the cyclic shifts, as shown
in Figure 3, the head at the center of the template window
and the head at the edge of the search region window can be
finely matched. In addition, the position information in the
attention can be obtained by the shift size, and this window-
level position can better assist the tracking algorithm to dis-
tinguish the target object from the distractors.

5. Conclusion

In this work, we propose a transformer tracker with
multi-scale cyclic shifting window attention, which is able
to keep the integrity of the object and retain more location
information when calculating the cross-window attention
between the tracking target and the search area. Moreover,
this new window attention is deliberated designed with two
improvement schemes including spatially regularized atten-
tion mask and redundant computation removal to fully ex-
ploit the transformer structure for object tracking. Numer-
ous experimental results on five challenging benchmarks
demonstrate that our tracker performs better than previous
state-of-the-art trackers. The proposed cyclic shifting win-
dow attention has stronger discrimination than the original
pixel-level attention in the tracking field. Many other ap-
plications like image recognition and stereo matching may
benefit from this window attention too.
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