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Abstract

Flow-based generative models have shown an excellent
ability to explicitly learn the probability density function
of data via a sequence of invertible transformations. Yet,
learning attentions in generative flows remains understud-
ied, while it has made breakthroughs in other domains. To
fill the gap, this paper introduces two types of invertible at-
tention mechanisms, i.e., map-based and transformer-based
attentions, for both unconditional and conditional genera-
tive flows. The key idea is to exploit a masked scheme of
these two attentions to learn long-range data dependencies
in the context of generative flows. The masked scheme al-
lows for invertible attention modules with tractable Jaco-
bian determinants, enabling its seamless integration at any
positions of the flow-based models. The proposed attention
mechanisms lead to more efficient generative flows, due to
their capability of modeling the long-term data dependen-
cies. Evaluation on multiple image synthesis tasks shows
that the proposed attention flows result in efficient models
and compare favorably against the state-of-the-art uncon-
ditional and conditional generative flows.

1. Introduction

Deep generative models have shown their capability to
model complex real-world datasets for various applications,
such as image synthesis [10, 15,26,42,45], image super-
resolution [29, 53], facial manipulation [7, 9, 19, 38], au-
tonomous driving [50, 60], and others. The widely studied
modern generative models include generative adversarial
nets (GANSs) [3,15,23,56], variational autoencoders (VAEs)
[26, 36, 46, 55], autoregressive models [47, 48] and flow-
based models [10,11,24]. The GAN models implicitly learn
the data distribution to produce samples by transforming a
noise distribution into the desired space, where the gener-
ated data can approximate the real data distribution. On the
other hand, VAESs optimize a lower bound on the data’s log-
likelihood, leading to a suitable approximation of the actual
data distribution. Although these two models have achieved
great success, neither provides exact data likelihood.
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Figure 1. Conceptual comparison of the proposed AttnFlow
against two representative generative flows, i.e., (a) Glow [24]
and (b) Flow++ [17]. Based on [24], Flow++ introduces the con-
ventional attention mechanism to model short-term dependencies
within one split of each feature map in the context of coupling
layers. In contrast, the proposed AttnFlow (shown in (c)) further
introduces invertible attention mechanisms that can be introduced
at any flow positions to learn long-term correlations.

Autoregressive models [12,47,48] and flow-based gen-
erative models [10, | 1,24] optimize the exact log-likelihood
of real data. Despite autoregressive models’ better perfor-
mance on density estimation benchmarks, its sequential
property results in non-trivial parallelization. In contrast,
the flow-based generative models are conceptually attrac-
tive due to tractable log-likelihood, exact latent-variable in-
ference, and parallelizability of both training and synthe-
sis. Notably, they allow exact inference of the actual data
log-likelihood via normalizing flow. As shown in Fig.1(a),
the normalizing flow model transforms a simple distribu-
tion into a complex one by applying a sequence of in-
vertible transformation functions, which leads to an excel-
lent mechanism of simultaneous exact log-likelihood opti-
mization and latent-variable inference. However, due to ef-
ficiency constraints in their network designs, most models
require several flow layers to approximate non-linear long-
range data dependencies to get globally coherent samples.
To overcome this drawback i.e., modeling dependencies ef-
ficiently over normalizing flows is the key, and presently
one of the most sought-after problems [17,35].

To efficiently model data dependencies in the flow-based
generative models, one may opt to combine multi-scale au-
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toregressive priors [35]. By comparison, exploiting atten-
tion mechanisms has emerged as a remarkable way to model
such dependencies in deep neural networks. It imitates hu-
man brain actions of selectively concentrating on a few rel-
evant information while ignoring less correlated ones. Tra-
ditional self-attention mechanisms like [49, 52, 59] exhibit
a good balance between the ability to model range depen-
dencies and the computational and statistical efficiency. In
general, the self-attention modules measure the response at
a point as a weighted sum of the features at all points, where
the attention weights are computed at a small computational
cost. Although [17] recently applied the conventional atten-
tion directly as a dependent component in the coupling layer
(Fig.1(b)), it models dependency within a short-range (i.e.,
one split of each flow feature map) of the coupling layer.
To our knowledge, efficient modeling of data dependencies
over normalizing flows is understudied. A natural solution
is to exploit new attention mechanisms to learn correlations
of the feature maps at any positions of the flow-based mod-
els. However, it is generally non-trivial to achieve that goal
of exploiting new attention modules as independent flow
layers. Concretely, such attentions should maintain the in-
vertibility with tractable Jacobian determinants in the flows.

In this paper, we propose invertible attentions for flow
(AttnFlow) models to reliably and efficiently model net-
work data dependencies that can be introduced at any po-
sitions of the flow-based models (along the entire flow fea-
ture maps, see Fig.1(c)). The key idea is to exploit a masked
attention learning scheme to allow for intertible attention
learning for normalizing flow based generative models. In
addition, the proposed masked attention scheme facilitates
tractable Jacobian determinants and hence can be integrated
seamlessly into any generative flow models. Particularly,
we exploit two different invertible attention mechanisms
to encode the various types of correlations respectively on
the flow feature maps. The two proposed attention mech-
anisms are (i) invertible map-based (iMap) attention that
directly models the importance of each position in the at-
tention dimension of the flow feature maps, (ii) invertible
transformer-based (iTrans) attention that explicitly models
the second-order interactions among distant positions in the
attention dimension. Since the proposed two invertible at-
tention modules explicitly model the dependencies of flow
feature maps, it further enhances a flow-based model’s effi-
ciency to represent the deep network dependencies. To show
the superiority of our approach, we evaluated the introduced
attention models in the context of both unconditional and
conditional normalizing flow-based generative models for
multiple image synthesis tasks.

2. Related Work

Generative Flows. Early flow-based generative models
like [10, 11, 25] are introduced for exact inference of real

data log-likelihood. They are generally constructed by a se-
quence of invertible transformations to map a base distribu-
tion to a complex one.

Lately, several unconditional generative flow models
have emerged that extends the early flow models to multi-
scale architectures with split couplings that allow for effi-
cient inference and sampling [4, 17, 24, 35]. For instance,
[24] introduces invertible 1 x 1 convolutions to encode
non-linearity in the data distribution for the unconditional
setup. [18] introduces more general d x d invertible con-
volutions to enlarge the receptive field. [4] exploits resid-
ual blocks of flow layers (i.e., a flexible family of transfor-
mations) where only Lipschitz conditions are used for en-
forcing invertibility. [17] improves the coupling layer with
variational dequantization, continuous mixture cumulative
distribution function, and self-attention. The self-attention
is applied directly to the intrinsic neural function of the
coupling layer. Because of the nature of the affine coupling
layer, the attention is not required to be invertible. Besides,
this direct attention application merely learns the dependen-
cies within one of the two splits of channel-wise flow di-
mensions, and thus its receptive field is greatly limited. In
contrast, our introduced attentions are independent flow lay-
ers that are invertible and can learn more general and bet-
ter range dependencies across different splits of flow fea-
ture maps'. In other words, [17] models within-split depen-
dencies while ours learns cross-split correlations, and hence
both are complementary for each other. More recently, [35]
models channel-wise dependencies through multi-scale au-
toregressive priors. The introduced dependency modeling is
limited on latent space, and hence it can be complementary
to our exploited attentions on intermediate flow dimensions.

Likewise, various conditional flow models have appeared
aiming at conditional image synthesis [32,33,39,43,44]. For
instance, [44] exploits two invertible networks for source
and target and a relation network that maps the latent spaces
to each other. In this way, conditioning information can be
leveraged at the appropriate hierarchy level and hence, can
overcome the restriction of using raw images as input. Sim-
ilarly, [39] exploits a parallel sequence of invertible map-
pings in which a source flow guides the target flow at ev-
ery step. [43] introduces conditioning networks that allow
all operations in the target-domain flow conditioned on the
source-domain information. For better conditioning, [33]
exploits conditional affine coupling layers that accept the
source domain’s feature maps extracted by one external
neural network as the conditions. To our knowledge, these
conditional flow models rarely learn suitable range depen-
dencies in deep normalizing flow networks.

!For the similar purpose, a concurrent work [58] also introduces invert-
ible attentions. The major difference is that [58] employs Lipschitz con-
straints over the modules for the invertibility, which is similar to the tech-
nique presented in [4]. However, the Lipschitz constraints are generally
hard to satisfy, leading to inferior results using [5&] for invertible models.
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Y = (Ya,Xp)

Layer Function Layer Function
. Invertible 1 x 1 .
Actnorm Vi,j:yij =sOx;;+b Convolution Vi,j 1 yi; = WX
Xa,Xp = SPLIT(X) Xa,Xp = SPLIT(X)
. (logs,t) = NN(xp) Mixture Affine (logs, t, m, u,log§) = NN(xy)
Affine Coupling |y ™ oxp(logs) @ xa + t Coupling Ya = 01 (f(xa, 1, log ) @exp(log s) +t

Yy = (Y(uxb)

Xa,Xp = SPLIT(X)
(logs,t) = NN(xp, c)

Ya = exp(logs) ©®xq + t
Y = (Ya,Xp)

Conditional Affine
Coupling

Conditional Affine
Injector

(logs,t) = NN(c)
y =exp(logs) ©x+t

Table 1. STEPOFFLOW layers for either unconditional [

] or conditional [

] flow models used as our backbones. Here x, ¢,y indicate

input, condition and output respectively. SPLIT, NN denote the split operation and the regular neural flow network operations. x,, Xs
are the two splits, and logs, t, 7, i, log § are transformation parameters for x, produced by the network function NN acting on x;. For
mixture affine coupling, f(Xq, 7, t,10g8) := >, mio((xa — pi) © exp(—1log$;)), and o(-) indicates the sigmoid function [17].

Attention Models. To address the problem of missing
global information in convolutional operations, attention
mechanisms have emerged. They can better model deep net-
work layer interactions [1, 14,30,49,51,52,57,59]. In par-
ticular, self-attention calculates the response at a position in
a sequence by attending to all positions within the same se-
quence allowing for long-range interactions without an in-
crease in the number of parameters. For instance, [37,52,54]
introduce map-based attention to improve the performance
of convolutional networks on image recognition, where spa-
tial attention maps are learned to scale the features given
by convolutional layers. [49] integrates the scaled dot-
product attention with its multi-head versions to construct
the state-of-the-art attention (i.e., transformer), which has
become a de-facto standard for natural language process-
ing tasks. [14, 30] achieve the state-of-the-art in a broad
range of vision tasks by further applying the vanilla trans-
former to sequences of image patches. [5, 6, 20,22, 34,59]
exploit conventional attentions or transformer-based atten-
tions in the context of other generative models like GANs
to capture long-range dependencies for better image gener-
ation. Despite such remarkable progress, attention models
have rarely been explored for flow-based generative mod-
els, where each neural operation is constrained to preserve
tractability of the inverse and Jacobian determinant compu-
tation. To fill the gap, our proposed invertible attentions pro-
vide valuable solutions that enable such regular attentions,
e.g, map-based attention and transformer-based attention,
to work well in the context of generative flows.

3. Overview and Background

This paper introduces two invertible attention mecha-
nisms to better model the network’s depth dependencies for
unconditional and conditional flow-based generative mod-
els’. Our modeling is capable of producing more efficient
flow models. Below we provide an overview of the uncon-
ditional and conditional generative flow models, followed

2Qur paper focuses on studying invertible flows that allow for both ef-
ficient exact inference and sampling.

by an outline of the proposed attention mechanisms.

Unconditional flow: In this setup, the generative flows aim
at learning invertible transformations (i.e., fy,gp, Where
z = fo(x) = g, '(x) with model parameters ¢) between
a simple distribution z ~ py(z) and a complex one x ~
pe(x). The function fy (and, likewise, gg) are parameterized
by an invertible neural network, consisting of a sequence of
L invertible functions fy,. Hence, the network model is typ-
ically called as a (normalizing) flow: fy = fy, 0 fg,0... fo,,
mapping the simple distribution density on the latent vari-
able z to the complex distribution density on the data x:

x<% b L2ny o I g (1)

Given the log-likelihood of py(z), the change of vari-
ables formula enables us to compute the log-likelihood of
the data x under the transformation fy:

log py(x) = log p(z) + log|det(92/ox)]
L
= logpy(fo(x)) + > _ log [det(Oh:/om, )],
i=1
where 9hi/an,_, is the Jacobian of the invertible transforrr%2
tion fp, moving from h;_; to h; with hg = x. The scalar
value log |det Jp,| is the log-determinant of the Jacobian
matrix®. The likelihood of py(z) is commonly modeled as
Gaussian likelihood, e.g., p(z) = N(z|p,0). The exact
likelihood computation allows us to train the network by
minimizing the negative log-likelihood (NLL) loss.
Conditional flow: In this setting, the invertible network fy
maps the input data-condition pair (x, c) to a latent variable
z = fp(x;c). Here, the data x is reconstructed from the
latent encoding z conditioning on ¢ as X = f, (z;c). The
log-likelihood of the data x is computed as

L

log po(xle) = logpo(fa(x;€)) + D _ log |det(Phi/on; )|,
i=1

3)

3Flow-based generative models choose transformations whose Jaco-
bian is a triangular matrix for tractable computation of log-det.
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where, h; = fp, (x; ¢). For both the unconditional and con-
ditional flow models, the design of flow layers generally re-
spects the protocol that computing the inverse and Jacobian
determinant of the involved transformations fy, should be
tractable. In this paper, we mainly use [35] and [33] as our
backbones for unconditional and conditional flow models
respectively. In these backbones, the flow network is or-
ganized into L flow-levels, each operating at a resolution
containing K number of flow-steps. In general, each flow-
level fp, is composed of SQUEEZE, STEPOFFLOW, and
SPLIT operations. SQUEEZE trades off spatial resolution for
channel dimension. STEPOFFLOW is commonly a series of
affine coupling layers, invertible 1 x 1 convolutions and nor-
malization layers. SPLIT divides an intermediate layer h;
into two halves, one of which is transformed and the other
of which is left unchanged. Table (1) summarizes the func-
tions of the main layers of STEPOFFLOW.

To explicitly model the long-range dependencies for ef-
ficient flow models, we study two types of invertible atten-
tion mechanisms: (i) invertible map-based (iMap) attention:
It aims at learning a weighting factor for each position in
the attention dimension and scales the flow feature maps
with the learned attention weights. The attention models
the importance of each position in the attention dimension
of flow feature maps explicitly. (ii) invertible transformer-
based (iTrans) attention: It computes the representation re-
sponse at a position as a weighted sum of features of all
the positions along the attention dimension. The attention
weights are computed by scaled dot-product between fea-
tures of all the positions. Compared to the iMap attention,
it explicitly models the second-order dependencies among
the distant positions along the attention dimension.

4. Proposed Attention Flow

The proposed attention flow (AttnFlow) aims at inserting
invertible map-based (iMap) or transformer-based (iTrans)
attention flow layers to conventional flow-based generative
models (see Fig.(1) (¢)), so that the attention learning can
enhance their representation learning efficiency. Like con-
ventional attention mechanisms, an attention operation ac-
cepts a feature map h;, of shape (H, W, Ci,) as input, and
outputs an attended featured map h, of shape (H, W, Coy)
with a transformation hoy, = G(h;,). In practice, attention
learning consists of three steps: (i) reshaping the input fea-
ture map h;,, (ii) computing the attention weights Wy,
and (iii) applying the learned attention weights to output
h,. To integrate the introduced attention modules into gen-
erative flows, we must ensure the attention transformation
G preserves the tractability of inverse and Jacobian deter-
minant computation. Hence, we introduce a checkerboard
masking scheme for globally permuted binary patterns (i.e.,
two-split generation a1, x2) of the entire flow feature maps.
Inspired by the existing split techniques [! 1, 24], we pro-

Space: HxW Space: HxW

Channel: C
Channel: C

(a) Spatial masking (b) Channel masking

Space: HxW

Channel: C

(c) Proposed spatial-channel masking

Figure 2. (a) Spatial checkerboard masking [! 1], (b) channel-wise
masking [11,24], and (c) proposed spatial-channel checkerboard
masking, for the binary pattern generation on the space and chan-
nel dimensions.

posed a spatial-channel checkerboard masking scheme. As
illustrated in Fig.(2) (c), the permutation is performed on
the whole space and channel dimensions of the input feature
maps. Compared to the existing spatial checkerboard mask-
ing [11] (Fig.(2) (a)) and channel-wise masking [I1, 24]
(Fig.(2) (b)) that are directly applied to generate binary
patterns on the space and channel domains, the introduced
spatial-channel checkerboard masking (Fig.(2) (c)) can pro-
duce more globally permuted binary patterns. As our meth-
ods learn attentions across the splits, the more permuted and
staggered binary patterns allow for more complete long-
range interactions.

The nature of the introduced global masking strategy bet-
ter ensures the involved attentions can be invertible directly.
Furthermore, it enables an attention transfer from one split
a1 to the other split &5, which encourages interaction be-
tween the two splits along one attention dimension such as
spatial dimension and channel dimension. As illustrated in
Fig.(3) (a)-(c), the overall masked flow attention operations
can be roughly formulated as

Y1 =1 O s, (4a)
Y1 = T1, (4b)
Yo =x2 O f(x1), (4¢)

where Eq.(4a) and Eq.(4b) are for iMap and iTrans respec-
tively, and Eq.(4c) is for both. ® represents the element-
wise/matrix multiplication for the proposed iMap/iTrans,
and f(1) indicates the attention weight computation for
iMap/iTrans*. As shown in Fig.(3) (b)-(d), our approach
computes the inverse propagation directly as follows:

T =Y Os, (5a)
T = Y1, (5b)
T2 =Y @ f(x1), (5¢)

where Eq.(5a) and Eq.(5b) are for iMap and iTrans respec-
tively, and Eq.(5c) is for both. @ indicates the element-

4The new masking computation and the attention-oriented transfor-
mation make our attention operations distinct from exiting coupling lay-
ers [11,24] and its associated attentions like the one in [17].
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Figure 3. Computational graph of forward and inverse propagation of the proposed Map-based (a)(b) and Transformer-based (c)(d) attention
mechanisms. Due to the simple nature of the introduced split-based strategy, the involved attentions are both easily invertible and possesses
a tractable Jacobian determinant. In (a,b), s is a learnable scale parameter, and the average pooling is performed along channels (/spaces) for
spatial (/channel) attention learning. In (c,d), K, @, V are the three basic elements for the Transformer-based attention. They are computed
by regular 1 x 1 2D convolutions within the masking scheme, which allows for invertible operations.

wise/matrix division for iMap/iTrans, and f(x;) denotes
the computation of attention weights. Below we provide the
details of the two introduced invertible attentions, and the
corresponding Jacobian determinant computation.

iMap Attention. Following [52] that invents regular map-
based attention (i.e., diagonal attention), we exploit an in-
vertible map-based attention to scale the feature map with
the learned attention weights that encodes the importance
of individual flow dimensions along the attention dimen-
sion. The main difference is that we apply attention weights
calculated on one split &7 to the other split &2, due to the
invertiable design in Eq.(4) and Eq.(5). Concretely, we ap-
ply a sequence of analogous functions from [52] to realize
iMap over the spatial domain of flow feature maps. Mathe-
matically, the attention weights can be calculated as

Wingp = Gs ((1 = M)G1 (G5(Ga(G1 (b)) + Mb),

(6)
where M is the proposed checkerboard mask (Fig.(2) (c)),
b is a learnable variable, G (h;,) = Mh;,, G5 is a 1D con-
volutional layer with kernel size as 1, which reduces the di-
mension of the feature response of each channel from Cjy, to
(', and outputs a feature map of shape (H x W, C”). With-
out loss of generality, G3 applies average pooling’ to each
channel dimensions and outputs an (H x TW)-dim vector for
spatial attention learning. The operator G4 is to reorganize
the (H x W) attention weights into a (H x W) x (H x W)
matrix, where the attention weights of shape (H x W)
are placed on the diagonal of the matrix. The derived at-
tention weight matrix Wip,, is a diagonal matrix. The
function G5 corresponds to standard activation functions
such as softmax and sigmoid. Finally, we apply the atten-
tion weight matrix Wiy, to the input feature map through
matrix multiplication to obtain the attended feature map
hoy = Winaphiy. The forward and inverse propagation of

SPerforming average pooling over the spatial domain learns channel
attention, provided the spatial resolutions for train and validation are same.

AttenFlow-iMap module are illustrated in Fig.(3) (a)-(b).
The Jacobian determinant of the introduced iMap transfor-
mation is computed as follows:

Ohy,

det
( 8h0ul

)det(wimap)( I1 Gs<bj)> « (G5 (G ()02,
M]

=1
()
where M is the enforced mask, C}, is the channel number
of hy,, G5 indicates the corresponding activation function,
G (hiy) = G3(G2(G1(hin))), G1, G2, Gs are masking, 1D
convolution, and average pooling respectively.
iTrans Attention. The conventional transformer-based at-
tention was proposed in [49]. The success of this type of at-
tention mechanism mainly stems from the effective learning
of second-order correlations among involved feature maps
and the exploitation of three different representations for at-
tention learning. The attention function is expressed as map-
ping a query q;, and a set of key-value (k;,, vi,) pairs to an
output h,,. The query and the key are employed to learn the
second-order attention weights through a scaled dot-product
computation, which is further applied to the input value for
the final attended output.

To introduce the transformer-based attention to flow
models, as shown in Fig.(3)(c), we apply two invertible
1 x 1 2D convolutions to the input feature maps to obtain
a query-key pair (qn, kin), and use the input feature maps
to play the role of the value v;,. The attention is applied be-
tween patches of the input following [14]. In particular, the
whole input is split into [V patches and the iTrans attention
is applied to the image patches. The primary goal is to cap-
ture the inter-patch interaction with the attention weights.
In practice, we compute the attention function on a set of
queries simultaneously, packed together into a matrix Q.
The keys and values are also packed together into matrices
K and V. The mapping process is formulated as follows:

QK"
hout WltransV G4( \/Zi )V, (8)
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where Q = G2(Gi(hi)), K = Gs5(Gi(hw)), V. =
G1(hin) = Mhy,, M is the suggested checkerboard mask
(Fig.(2) (c)), G2, G3 correspond to two regular 1 x 1 2D
convolutions, G4 corresponds to the activation function.
G2, G5 are computed within the introduced masking, which
allows for invertible operations. In general, dot-product
values often get large to influence the final negative log-
likelihood scales. Hence, inspired by [49], we apply d to
scale the dot-product values. To achieve a general scale,
we made d learnable. In addition, we follow the vanilla
transformer [49] to exploit multiple branches of scaled dot-
products (Eq.(8)) for the multi-head attention. Fig.(3)(d)
show the inverse propagation of AttnFlow-iTrans, which
can be computed in a straightforward manner.

The Jacobian of the iTrans transformation, with the at-
tended feature map being hoy = Wigans M hiy, is a lower
block triangular matrix, with the attention weights Wigng
forming the (repeated) block diagonal entries. As the de-
terminant of a lower block triangular matrix is simply the
product of determinants of the matrices along the diagonal,
the Jacobian determinant of iTrans can be computed as

T
) = (det(Wins))?/2 = <det<G4<QfE>>>P/2,

)
where G4, Q, K, d are defined around Eq.(8), and P is the
patch size, i.e., feature dimension within each patch.

0 hin

det( O,

5. Experimental Evaluation

We evaluated the proposed unconditional and condi-
tional attention flow (AttnFlow, cAttnFlow)® models for im-
age generation, image super-resolution and general image
translation tasks respectively’. Besides, we present more
experimental details and evaluations in the suppl. material.
Image Generation. We use two datsets i.e., MNIST [28]
and CIFAR10 [27] for unconditional image generation.

1) AttnFlow Setup: The proposed AttnFlows can be ap-
plied to any off-the-shelf unconditional generative flows.
For the image generation task, we utilize the architecture
of mARFlow® [35] as the backbone of AttnFlows, where
our proposed iMap and iTrans attention flow layers can be
inserted. Each level of mARFlow sequentially stacks an act-
norm layer, an invertible 1 x 1 convolution layer, and a cou-
pling layer. Under the mARFlow backbone, we inserted our
proposed attention modules (either iMap or iTrans) into one
of the following four positions: (i) Before actnorm (pos-1),
(ii) after actnorm (pos-2), (iii) after invertible convolution
(pos-3), and (iv) after coupling (pos-4). To study AttnFlows’
efficiency, we evaluate their various setups on the numbers

6 AttnFlow’s official code: https:/github.com/rheasukthanker/AttnFlow

7Following [33,35,43], we evaluate the proposed method and all the
competing methods with one single run on the employed datasets.

8mARFlow’s official code: https://github.com/visinf/mar-scf/

Method Levels Steps Channels Parameters (MB) bits/dim ({.)
Glow 3 32 512 - 1.05
Residual Flow 3 16 - - 0.97
mARFlow 3 4 96 46.01 0.56 (0.88™)
AttnFlow-iMap 3 4 96 46.03 0.43
AttnFlow-iTrans 3 4 96 46.25 0.44
AttnFlow-iMap 3 2 96 23.78 0.41
AttnFlow-iTrans 3 2 96 23.89 0.42
AttnFlow-iMap 3 2 48 8.94 0.39
AttnFlow-iTrans 3 2 48 9.05 0.40

Table 2. Evaluation of sample quality on MNIST. * indicates the
result reported in the mARFlow paper [35]. As MNIST is a small
dataset and very complex model is not at all required, the per-
formance gets decreased when our model’s complexity increases.
(Bold: best, Underline: second best)

of flow-levels, flow-steps, and channels. We use sigmoid for
the activation function, and empirically set the patch num-
ber as N = 4 for AttnFlow-iTrans.

2) Competing Methods: We compare four state-of-the-art
unconditional generative flows, i.e., Glow [24], Flow++
[17], Residual Flow [4] and mARFlow [35]. Our Attn-
Flows’ architecture is based on mARFlow with coupling
layers closest to Glow. By comparison, Flow++ does not
include the SPLIT operation, and uses a different uni-
form dequantization. Hence, the comparison with Glow and
mARFlow serves as a better ablation to measure the effec-
tiveness and efficiency of AttnFlows. Besides, we compare
the concurrent work [58], with its two variants (iResNet-
iDP, iResNet-iCon), which applies Lipschitz constraints to
dot-product and concatenation attentions under the specific
flow framework (iResNet) [4]. For a reference, we also
compare one representative GAN model, i.e., DCGAN [40].
3) Comparison: Table (2) and Table (3) summarize the
quantitative results of our AttnFlows and the competing
methods on MNIST and CIFAR10. For evaluation, we use
per-pixel log-likelihood metric in bits/dims. Further, we use
three more standard metrics, i.e., Fréchet Inception Dis-
tance (FID) [16], inception scores [41] and Kernel Incep-
tion Distance (KID) [2], to measure the generated sample
quality on CIFAR10. From the results, we can see that both
of our AttnFlow-iMap and AttnFlow-iTrans clearly outper-
form the backbone mARFlow with similar model complex-
ities (i.e., the same level and step numbers), and our At-
tnFlows can achieve better results than the other state-of-
the-art flow models’. Furthermore, our lighter model (with
a smaller number of steps or a smaller channel) typically
achieve comparable performances (or even better results)
compared to those heavier mARFlow models. In partic-
ular, the proposed method achieves remarkable improve-
ment (i.e., 0.17 bits/dim) over mARFlow with about 5 x
smaller parameter size and 2x less steps/channels (Table

9Flow++ [17] merely reported its performance on CIFARI10. After
transferring its implementation from CIFAR10 to MNIST, its bits/dim is
0.66 that is also clear worse than ours (0.39).
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(b mARFlow (3.24 bits/dim, 41.9 FID)
Figure 4. Comparison of samples from the proposed models (AttnFlow-iMap, AttnFlow-iTrans) with state-of-the-art models on CIFAR10.

(a) Flow++ (3.08 bits/dim)

(d) AttnFlow-iTrans (3.217 bits/dim, 33.8 FID)

Method Level Step Channel Parameter (MB) bits/dim () ~ FID ({) Incep (1) KID ({) Method Levels Steps Parameters (MB) SSIM (1) PSNR (1) LR-PSNR (1) LPIPS (])
DCGAN - - - - - 37.1 6.4 - Bicubic - - - 0.63 23.15 35.19 0.58
Glow 3 3 512 _ 335 46.9 _ _ ESRGAN - - - 0.63 22.88 34.04 0.12
Flow++ 3 - 96 - 3.29 46.9 - - SRFlow 1 1 6.622 0.67 25.57 44.20 0.23
Residual Flow 316 - - 3.28 463 52 - SRFlow 2 8 13.25 0.73 2547 38.94 0.17
iResNet-iDP - - - - 3.65 - - -
ResNetiCon - - - - 339 - - - cAtnFlow-iMap 1 1 6.623 071 2550 44.75 0.19
mARFlow 3 4 9 46.01 327 (3.254%)  (40.5%) (5.8%)  (0.033%) cAttnFlow-iTrans 1 1 6.630 0.73 25.50 44.23 0.18
mARFlow 34 256 25277 324(3.222%) 41.9 (33.9%) 5.7 (6.5%) (0.026") cAmnFlow-iMap 28 1330 074 2538 1188 017
AmFlow-iMap 3 4 96 46.03 3.247 405 60 0031 cAttnFlow-iTrans 2 8 13.93 073 2524 42.49 0.16
AttnFlow-iTrans 3 4 96 46.25 3.248 40.2 59 0.032

nrowr e Table 4. Results for 8x SR on CelebA. We report average SSIM,
AtmFlow-iMap 3 4 256 252.79 3.216 33.6 6.6 0.025 .
AttnFlow-iTrans 3 4 256 253.01 3.217 33.8 6.7 0.025 PSNR, LR-PSNR and LPIPS scores for SRFlow and ours at dif-

Table 3. Evaluation of sample quality on CIFAR10. Note that *
indicates the results for the ICML workshop version of mARFlow
[35]. (Bold: best, Underline: second best)

Mpos-1 Wpos-2 pos-3 pos-4
3.221

3.22
3.219
3.218
3.217
3.216

attention position

W 1-head m3-heads 5-heads 7-heads

head number

Bits/dim

Figure 5. Ablation studies of the proposed attention on different
positions in the flow layers (pos-1: before actnorm, pos-2: after
actnorm,pos-3: after permutation, pos-4: after coupling layer) and
different number of attention heads (1 head, 3 heads, 5 heads, 7
heads) for AttnFlow-iTrans on CIFAR10.

(2)). For CIFAR10, our models (Channel=256) get visibly
better FIDs, Incepts and KIDs over mARFlow (Table (3)).
The visual comparison in Fig.(4) shows that the proposed
models have much clear visual quality compared to the
competing methods. Despite the intuitive superiority of the
proposed spatial-channel masking against the existing ones
[11,24] (Fig.(2)), we evaluate these maskings and the ran-
dom binary masking with our AttnFlow-iMap on MNIST.
The bits/dim are 0.99 (Spatial), 0.75 (Channel), 0.50 (Ran-
dom), 0.39 (Ours), showing ours’ clear advantage.
Ablation Study. As shown in Fig.(5), we perform the abla-
tion test of the proposed attention models in the following
two settings: (i) different attention positions, and (i) differ-
ent head numbers. We observe that inserting the attention
layers in the position after the permutation layer (pos-3) and
after the coupling layer (pos-4) are the most favourable. On
the other hand, the use of more than 5 attention heads for
AttnFlow-iTrans does not provide a clear improvement.

Image Super-Resolution. We follow [33] to use CelebA

ferent temperatures (0.1-0.9). (Bold: best, Underline: second best)

dataset split for image super-resolution (SR) task [31].

1) cAttnFlow Setup: Our conditional AttnFlow (cAttnFlow)
is based on the architecture of the SRFlow model [33]'°.
The flow network is organized into L = 4 flow-levels,
each of which operate a specific resolution of /2! x W/2!
(H x W, L indicate the resolution of HR images and the -
th flow-level respectively). Each flow-level is composed of
K flow-steps. Each flow-step stacks four different layers:
(i) Acnorm, (ii) 1 x 1 invertible convolution, (iii) affine in-
jector, and (iv) conditional affine layers. Similar to image
generation, we insert our proposed attentions after the ex-
isting flow layers in each level of SRFlow.

2) Competing Methods: Following SRFlow, we compare
our results with bicubic and other recent SR methods, which
includes ESRGAN [53] and SRFlow [33]. As SRFlow is our
cAttnFlow’s backbone, comparison against it helps us real-
ize the improvement using our introduced attentions.

3) Comparison: Table (4) reports the comparison of our
cAttnFlow against the competing methods in terms of four
standard metrics, including SSIM, PSNR, LR-PSNR and
LPIPS. The results imply that our model can achieve the
best balance among the four used metrics compared to the
competing methods. The improvements of our cAttnFlow
over the backbone SRFlow are visible at two different level
model complexities, showing that our introduced attention
can enhance the efficiency of the flow models. The visual
comparison in Fig.(6) shows that the outputs from our cAt-
tnFlows are comparable or better than those from the others.
Image Translation. We use Cityscapes [8] to evaluate the
proposed cAttnFlows for image translation, where segmen-
tation label images are translated into RGB images.

1) cAttnFlow Setup: Our conditional AttnFlow (cAttnFlow)

10SRFlow’s official code: https:/github.com/andreas128/SRFlow/
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Input ESRGAN [53] SRFlow [33] cAttnFlow-iMap  cAttnFlow-iTrans
Figure 6. Super-resolved samples of the proposed cAttnFlows and
the state-of-the-art models for 8 x face SR on the CelebA dataset.

. ,

(a) Input (b) Pix2PixGAN [21]

(c) Dual-Glow [44]

4

(d) Full-Glow [43] (e) cAtnFlow-iMap (f) cAttnFlow-iTrans

Figure 7. Generated samples of the proposed cAttnFlows and the
state-of-the-art models for image translation on the Cityscapes
dataset. The competing methods and ours are conditioned on the
semantic segmentation labels (a) to synthesize the RGB images

with the resolution being of 256 x 256.

is based on the conditional flow (Full-Glow)'' [43] model.
The normalizing flow network is organized into L = 2
flow-levels, each of which operate a specific resolution of
H/2t x W/at, where H x W indicates the resolution of input
images and the [-th flow-level respectively. Each flow-level
is composed of K = 8 flow-steps. Note that our flow model
is much smaller than the Full-Glow model that consists of
4 levels and each contains 16 steps (i.e., L = 4, K = 16).
Each flow-step stacks four different layers: 1) Acnorm, 2)
1 x 1 invertible convolution, 3) affine injector, and 4) condi-
tional affine layers. As done for image generation, we also
insert our proposed flow attentions after the existing flow
layers in each level of the Full-Glow model.

2) Competing Methods: Following [43], we compare with
the state-of-the-art conditional flow methods, C-Glow [32],
Dual-Glow [44], and Full-Glow [43]. We also compare the
GAN model (Pix2Pix) [21] for a refrence. As we use Full-
Glow as our cAttnFlow’s backbone, we will focus on the
comparison with it, which can clearly show the improve-
ment using our introduced attention mechanisms.

1 Full-Glow’s official code: https://github.com/MoeinSorkhei/glow2

Method Levels Steps Parameters (MB) Conditional bits/dim ()

C-Glow v.1 - - - 2.568
C-Glow v.2 - - - 2.363
Dual-Glow - - - 2.585
Full-Glow 4 16 155.33 2.345
cAttnFlow-iMap 2 8 34.68 2.310
cAttmFlow-iTrans 2 8 34.70 2314

Table 5. Quantitative results of the proposed AttnFlow and the
state-of-the-art models on the Cityscapes dataset for label — photo
image translation. (Bold: best, Underline: second best)

3) Comparison: For likelihood-based models, we fol-
low [43] to measure the conditional bits per dimension,
—logs p(xp|%x,), as a metric of how well the conditional
distribution learned by the model matches the real condi-
tional distribution, when tested on held-out examples. Table
(5) summarizes the results of the proposed cAttnFlows and
its competitors. The comparison shows that the proposed
cAttnFlows can achieve better performances than the state-
of-the-art conditional flow models. In particular, compared
to the backbone model (Full-Glow), the proposed cAttn-
Flows achieve better bits/dim with about 5x smaller param-
eter size and 2 x less levels/steps, showing that the proposed
attention can highly enhance the efficiency of flow mod-
els. The visual comparison in Fig.(7) shows that the synthe-
sized images of our cAttnFlow are more visually pleasing
(e.g, owning clearly richer texture details and better illumi-
nation) compared to the competing generative flow models,
and they look relatively comparable with that produced by
Pix2PixGAN [21].

6. Conclusion and Future Work

This paper introduces invertible map-based and
transformer-based attentions for both unconditional and
conditional generative normalizing flows. The proposed
attentions are capable of learning network dependencies
efficiently to strengthen the representation power of
flow-based generative models. The evaluation on image
generation, super-resolution and image translation show
clear improvement of our proposed attentions over the used
unconditional and conditional flow-based backbones.

As conventional attention mechanisms, one of our mod-
els’ major limitations lies in its unsatisfactory scaling ability
to deeper neural networks such as full SRFlow [33], due to
the common attention vanishing problem studied in [13]. As
a future work, we will follow [13] to address the problem in
the context of deeper invertible flow models.
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