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Figure 1. Our AnyFace framework can be used for real-life applications. (a) Face image synthesis with optical captions. The top left is the

source face. (b) Open-world face synthesis with out-of-dataset descriptions. (c) Text-guided face manipulation with continuous control.

Given source images, AnyFace can manipulate faces with continuous changes. The arrow indicates the increasing relevance to the text.

Abstract

Existing text-to-image synthesis methods generally are
only applicable to words in the training dataset. However,
human faces are so variable to be described with limited
words. So this paper proposes the first free-style text-to-
face method namely AnyFace enabling much wider open
world applications such as metaverse, social media, cos-
metics, forensics, etc. AnyFace has a novel two-stream
framework for face image synthesis and manipulation given
arbitrary descriptions of the human face. Specifically, one
stream performs text-to-face generation and the other con-
ducts face image reconstruction. Facial text and image fea-
tures are extracted using the CLIP (Contrastive Language-
Image Pre-training) encoders. And a collaborative Cross
Modal Distillation (CMD) module is designed to align the
linguistic and visual features across these two streams. Fur-
thermore, a Diverse Triplet Loss (DT loss) is developed
to model fine-grained features and improve facial diver-
sity. Extensive experiments on Multi-modal CelebA-HQ and

*Equal contribution
†Corresponding author

CelebAText-HQ demonstrate significant advantages of Any-
Face over state-of-the-art methods. AnyFace can achieve
high-quality, high-resolution, and high-diversity face syn-
thesis and manipulation results without any constraints on
the number and content of input captions.

1. Introduction

A picture is worth a thousand words. Human face, as

one of the most important visual signal for social interac-

tions, deserves at least 10,000 words to describe the great

diversity in shape, color, hair, expression, and intention, etc.

Therefore, it is highly desirable to generate variable face im-

ages from arbitrary text descriptions for increasing demands

of metaverse, social media, cosmetics, advertisement, etc.

This problem is firstly defined as a free-style Text-to-Face

task in this paper because current technology only supports

one or two facial captions in the training dataset. This pa-

per aims to explore the first plausible solution for free-style

Text-to-Face synthesis with successful applications on face

image synthesis and manipulation.

Existing face image synthesis [18, 23, 24, 29, 33, 34] and
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manipulation [3, 14, 40] methods can synthesize impressive

results with the powerful unconditional generative model

(e.g., StyleGAN [10] and NVAE [27]), but vividly generat-

ing faces according to specific requirements is still a chal-

lenging problem. Thus, more and more researchers tend to

explore text-to-image (T2I) synthesis [1,5,13,15,16,28,31,

39]. In earlier research, text embedding is directly concate-

nated with encoded image features and then adopted to gen-

erat semantically consistent images by learning the relation-

ship between text and image. However, such concatenation

operation can only synthesize images from a single caption,

limiting the utility of these models in real-life scenarios. In

practice, one caption can only describe limited information

for target images while multiple captions provide fine de-

tails and accurate representation. As shown in Figure 1(a),

compared with one caption, the face synthesized from 5-

caption is more consistent with the source face.

To handle this issue, several methods [1, 24] attempt

to implement multi-caption text-to-image synthesis. They

usually use multi-stage architecture and introduce multi-

caption embedding to each stage with special modules.

Such caption fusion modules extract the features of multi-

ple captions at the cost of external computational resources.

And more importantly, since an image-text matching net-

work in these methods is pre-trained on the training set, they

are still failed in out-of-dataset text descriptions.

Existing text descriptions for image synthesis and ma-

nipulation are only limited to a fixed style (e.g. fixed num-

ber of sentences, formatted grammar, and existing words in

datasets), severely limiting the user’s creativity and imag-

ination. In real-world applications, any style of text de-

scription is more in line with the user’s operating needs.

Free-style text descriptions include three perspectives: 1)

any number of captions (i.e., one or more captions are al-

lowed to describe an image); 2) any content of captions

(allowing users to explore the content or concepts of real-

world scenarios); 3) any format of captions (allowing users

to describe an image in their own sentences, rather than fol-

lowing a fixed template).

In this paper, free-style text descriptions are explored,

leveraging the power of the recently introduced Contrastive

Language-Image Pre-training (CLIP) model and a free-style

text-to-face method is proposed namely AnyFace for open-

world applications. Due to CLIP’s ability to learn visual

concepts from text-guided natural language, feature extrac-

tion of out-of-dataset text descriptions is possible for open-

world scenarios (see Figure 1(b)). AnyFace is a two-stream

framework that utilizes the interaction between face im-

age synthesis and faces image reconstruction. The face

image synthesis stream generates target images consistent

with given texts encoded by the Cross Modal Distillation

Module (CMD). The face image reconstruction stream

reconstructs the face images paired with the given texts.

These two streams are trained independently, whose mu-

tual information is interacted through a cross-modal transfer

loss. To align the linguistic and visual features, previous at-

tempts [29,30] often leverage a pairwise loss to strictly nar-

row the distance between text and image features. We argue

that there is no need to restrict the text embedding to the

corresponding image features, as the relationship between

text and image is a one-to-many problem. The one-to-one

constraint may even produce unique results. As a remedy, a

new Diverse Triplet Loss is proposed to encourage diverse

text embedding along with correct visual semantics.

Overall, the key contributions of this paper are summa-

rized as follows:

• To the best of our knowledge, it is the first definition,

solution, and application of the free-style text-to-face

problem, which is a breakthrough to remove the con-

straints in face image synthesis.

• A novel two-stream framework, which consists of a

face synthesis stream and a face reconstruction stream,

is proposed for accurate and high fidelity text-to-face

synthesis and manipulation. Our method provides a

good fusion solution of CLIP visual concepts learning

and StyleGAN high-quality image generation.

• Extensive experiments are conducted to demonstrate

the advantages of our method in synthesizing and ma-

nipulating high fidelity face images. Our work will

definitely inspire more creative and wider applications

of text-to-face technology.

2. Related Works
2.1. Text-to-Image Synthesis.

Currently, multi-stage framework has been widely used

for text-to-image synthesis [1, 24, 31, 35, 36, 39]. Specif-

ically, sentence features extracted from a pre-trained Bi-

LSTM [22] network are concatenated with noise as input,

and multiple generators are applied to synthesize images.

However, multiple generators will consume huge comput-

ing resources. To address this problem, DFGAN [25] in-

jects noise by affine transformation [8] and uses a sin-

gle Generator to synthesize images. However, the above

method can only generate low-quality images with 256 ×
256 resolution. Recently, StyleGAN-based models [23,

28–30] have been proposed, which advance the traditional

methods by a large margin in terms of image quality. These

methods usually take StyleGAN [10] or its followups [9,11]

as their backbone and train a mapper to project text descrip-

tions into the latent space. Most of them can synthesize

high-quality images with resolution at 1024×1024. Among

them, TediGAN-B [30] attempts to achieve face synthesis

with open-world texts, but it requires to re-train a separate
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Table 1. Comparison of different text-to-image synthesis methods

Methods AttnGAN [31] DFGAN [25] RiFeGAN [1] SEA-T2F [24] CIGAN [28] TediGAN-B [30] AnyFace

Single Model � � � � � - �
One Generator - � - - � � �
Multi-caption - - � � - - �

High Resolution - - - - � � �
Manipulation - - - - � � �
Open-world - - - - - � �

model for each sentence and the results are highly random,

which hinders its application. Unlike them, as shown in Ta-

ble 1, we can synthesize high-resolution images using a sin-

gle modal and one generator with multiple and open-world

text descriptions.

2.2. Text-guided Image Manipulation

Text-guided image manipulation aims at editing images

with given text descriptions. Due to the domain gap be-

tween image and text, how to map text description to the

image domain or learn a cross-modal language-vision rep-

resentation space is the key to this task. Previous meth-

ods [4, 17] take a GAN-based encoder-decoder architecture

as the backbone, and the text embedding is directly con-

catenated with encoded image features. Such coarse image-

text concatenation is ineffective in exploiting text context,

thus these methods are limited in manipulated performance.

ManiGAN [14] proposes a multi-stage network with a novel

text-image combination module for high-quality results.

Albeit these methods have explored high-quality results,

they are still limited to text descriptions on the dataset.

Recently, a contrastive language-image pre-training model

(CLIP) [20] is proposed to learn visual concepts from natu-

ral language. Based on CLIP’s generalization performance,

several methods [19, 30] achieve face manipulation with

out-of-dataset text descriptions. However, these methods

require retraining a new model for each given text. Different

from all existing methods, we explore a general framework

with a single model for arbitrary text descriptions.

3. Method

Figure 2 shows an overview of AnyFace, which mainly

consists of two streams: the face image reconstruction

stream and the face image synthesis stream. The training

stage is comprised of two streams, while we only keep the

face image synthesis stream in the inference stage. In the

following, we will briefly introduce some notations used in

this paper. Given a face image I and its corresponding cap-

tion T, the face image synthesis stream aims to synthesize a

face image It, whose description is consistent with T. The

face image reconstruction stream aims to generate a face

image Î, which can reconstruct the face image I. To over-

come the mode collapse, we also introduce another arbitrary

caption T′ and propose a diverse triplet learning strategy for

face image synthesis.

3.1. Two-stream Text-to-face Synthesis Network

Face Image Synthesis. As shown in Figure 2, this stream

is responsible for generating a face image given the input

text description T. We first employ CLIP text encoder to ex-

tract a 512 dimensional feature vector ft ∈ R
1×512 from T.

Due to the large gap between linguistic and visual modal-

ity, we utilize a transformer based network, namely Cross

Modal Distillation (CMD), to embed ft ∈ R
1×512 into the

latent space of StyleGAN:

wt = CMD(ft), (1)

where wt ∈ R
18×512 denotes the latent code of text fea-

tures.

Previous works [19,40] have proved that the latent space

in StyleGAN has been shown to enable many disentangled

and meaningful image manipulations. Instead of generating

images by wt directly, we select the last m dimensions of

wt and denote it as ws ∈ R
m×512. Intuitively, ws provides

the high level attribute information of It learned from the

given texts. In order to keep the diversity of the generated

images, other dimensions of the latent code are harvested

from noise by a pre-trained mapping network to provide the

random low level topology information. We represent it as

wc ∈ R
n×512. Unless otherwise specified, we set m = 14

and n = 4 in this paper. Then ws and wc are concatenated

together and sent to StyleGAN decoder to generate the final

result It:

It = Dec (ws ⊕ wc) , (2)

where Dec denotes StyleGAN decoder, and ⊕ represents

the concatenation operation. Note that different with text-

to-face synthesis, in the manipulation stage, wc is generated

from the original image using an inversion model to keep

the low level topology information of the original image.

Face Image Reconstruction. Text-to-face synthesis is an

ill-posed problem. Given one text description, there may be

multiple images that are consistent with it. Since the diver-

sity of the generated images is crucial for text-to-face syn-

thesis, we have to carefully design the objective functions
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Figure 2. Overview of AnyFace. It consists of a face synthesis network and a face reconstruction network. Text Enc and Image Enc

represent CLIP text and image encoder respectively. Dec is the pre-trained StyleGAN decoder. (a) Detailed architecture of Cross Modal

Distillation (CMD) module. (b) For text-guided face manipulation, the content code wc is replaced by the latent code of source image.

to regularize the face image synthesis network so that it can

learn more meaningful representations. However, directly

computing the pixel-wise loss between the original image

I and the synthesis image It is infeasible. Thus we design

a face reconstruction network, which performs face image

reconstruction and provides visual information for the face

synthesis network.

We first exploit CLIP image encoder to extract a 512 di-

mensional feature vector fi ∈ R
1×512 from I. As shown in

Figure 2 (a), the reconstructed image can be formulated as:

Î = Dec (wi) , (3)

where wi = CMD (fi) ∈ R
18×512.

Note that both the face synthesis network and the face

reconstruction network have Cross Modal Distillation mod-

ule, which is important for the interaction between wi and

wt. In the following, we will introduce CMD in detail.

3.2. Cross Modal Distillation

Previous works [7, 32, 38] have revealed that model dis-

tillation can make two different networks benefit from each

other. Inspired by them, we also exploit model distillation

in this paper. In order to align the hidden features of the

face synthesis network and the face reconstruction network

and realize the interaction of linguistic and visual informa-

tion, we propose a simple but effective module named Cross

Modal Distillation (CMD). Recently, the transformer net-

work has achieved impressive performance in natural lan-

guage processing and computer vision area.

As shown in Figure 2 (a), CMD is also a transformer

network, which consists of 6 transformer layers and 3 linear

layers. Suppose that the output of the transformer layers can

be represented as ht ∈ R
1×512 and hi ∈ R

1×512, we should

align these features before projecting them into the latent

space. Specifically, CMD first normalizes the hidden fea-

tures by softmax, and then learns mutual information by

the cross modal transfer loss:

LT
CMT = DKL (softmax(ht)||(softmax(hi)) . (4)

where DKL denotes the Kullbach Leibler(KL) Divergence.

Note that LT
CMT is designed for face synthesis network. We

can easily deduce LI
CMT for face reconstruction network.

Benefiting from the ability of transformer networks to

grasp long-distance dependencies, our method can also ac-

cept multiple captions as the input without any other fancy

modules. To be specific, text features extracted by CLIP

text encoder are Stacked as Ft ∈ R
n×512, and then pro-

jected into the latent space by CMD module.

3.3. Diverse Triplet Learning

Recall that in subsection 3.1, CMD embeds the text

feature ft into the latent space of StyleGAN: wt =
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(a) Pair-wise loss (b) Diverse triplet loss

Target direction
Actual direction

Pull in
Push away

Figure 3. Comparison between (a) pairwise loss and (b) diverse

triplet loss. The pairwise loss learns an one-to-one mapping from

text embedding wt to target w, but in fact it often converges to

average embedding w with an unique result. In contrast, diverse

triplet loss follows an one-to-many mapping without strict con-

straints, which encourages positive embedding wt to be close to

w and negative embedding w′
t to stay away from w. Meanwhile,

both wt and w′
t stay away from w.

CMD(ft). Idealy, CMD reduces the large gaps between

the text features extracted by CLIP text encoder and the im-

age features extracted by CLIP image encoder. However,

there still exists large gaps between the latent space of CLIP

and the latent space of StyleGAN. A straightforward way to

bridge the gap between them is to minimize the pairwise

loss:

Lpair = ‖wt − w‖p , (5)

where p is a matrix norm, such as the �0-norm, �1-norm,

w is the corresponding latent code of StyleGAN, which is

encoded by a pre-trained inversion model [21, 26]. How-

ever, we find that there is a problem with this approach. As

shown in Figure 3 (a), CMD will cheat by converging to

the latent code of average face w, which is possibly close to

all of the latent codes in StyleGAN.

To improve the diversity and synthesize language-driven

high fidelity images, we design a diverse triplet loss. First,

the latent code of average face w is adopted to penalize the

model collapse of CMD. Besides, arbitrary caption T′ is

introduced to form a negative pair in face synthesis network.

The constraints on the positive and the negative pairs are

also taken into account:

LDT = max

{ 〈wt, w〉
〈wt, w〉 −

〈w′
t, w〉

〈w′
t, w〉

+m, 0

}
, (6)

where 〈·, ·〉 refers to the cosine similarity, m represents the

margin, w, w
′
t correspond to positive image embedding and

the negative text embedding respectively.

As shown in Figure 3 (b), diverse triplet loss urges pos-

itive samples to approach the anchor and negative samples

to stay away from the anchor while at the same time en-

couraging positive and negative samples to diverge and fine-

grained features.

3.4. Objective Functions

Face Image Synthesis. The objective function of the face

synthesis stream can be formulated as:

LS = LDT + λCMTLT
CMT + λCLIPLCLIP , (7)

where λCLIP is the coefficient of the CLIP loss which is

used to ensure the semantic consistency between the gener-

ated image and the input text:

LCLIP =
ft · f t

i

||ft|| × ||f t
i ||

, (8)

ft and f t
i are features of input text T and target image Î.

Face Image Reconstruction. The objective function of

face image reconstruction stream can be defined as:

LT = LMSE + λCMTLI
CMT + λRecLRec, (9)

where LRec is employed to to encourage the generated im-

age Î to be consistent with the input image I , LMSE is

adopted to project the image feature into the latent space of

StyleGAN, λRec is the coefficient for reconstruction loss,

λCMT is the coefficient for cross modal transfer loss. LRec

and LMSE are defined as:

LRec = ||̂I− I||1, (10)

LMSE = ||wi − w||22. (11)

4. Experiments
Dataset. We conduct experiments on Multi-Modal

CelebA-HQ [29] and CelebAText-HQ [24] to verify the

effectiveness of our method. The former has 30, 000 face

images with text descriptions synthesized by attribute

labels, and the latter contains 15, 010 face images with

manually annotated text descriptions. All of the face

images come from CelebA-HQ [12] and each image has

ten different text descriptions. We follow the setup of

SEA-T2F [24] to split the training and testing set.

Metric. We evaluate the results of text-to-face synthesis

from two aspects: image quality and semantic consistency.

Image quality includes reality and diversity, which is evalu-

ated by Fréchet Inception Distance (FID) [6] and Learned

Perceptual Image Patch Similarity (LPIPS) [37], respec-

tively. As for semantic consistency, R-precision [31] is used
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AttnGAN SEA-T2F TediGAN-B OursOurs w/o Ours w/o 

The person wears lipstick. 
She has blond hair, and 
pale skin. She is attractive. 

The woman has wavy hair, 
black hair, and arched
eyebrows. She is young. She 
is wearing heavy makeup.

She is wearing lipstick. She 
has high cheekbones, wavy
hair, bushy eyebrows, and 
oval face. She is attractive.

He has mouth slightly open, 
wavy hair, bushy eyebrows, 
and oval face. He is attractive, 
and young. He has no beard.

Figure 4. Qualitative comparisons with state-of-the-art methods. The leftmost is the input sentences, columns from left to right represent

the results of AttnGAN, SEA-T2F, TediGNA-B, AnyFace without LDT , AnyFace without LCMT and our AnyFace respectively.

Table 2. Quantitative comparison of different methods on Multi-

modal CelebA-HQ dataset. ↓ means the lower the better while ↑
means the opposite.

Methods FID ↓ LPIPS ↓ RFRR ↑
AttnGAN 54.22 0.548 22.15%

ControlGAN 77.41 0.572 24.5%

SEA-T2F 96.55 0.545 24.3%

AnyFace 50.56 0.446 29.05%

to evaluate traditional T2I methods. An image-text match-

ing network pre-trained on the training set is utilized to re-

trieval texts for each target image and then calculate the

matching rate. One problem of this evaluation metric is that

the performance of the pre-trained model is not accurate due

to the limited training samples. Furthermore, there are no

pre-trained networks that can match the face and text. Text-

to-face synthesis aims to generate the face image based on

the given text description, and we expect the synthesized

result to be similar to the original one. Thus, we propose

to use the Relative Face Recognition Rate (RFRR) to mea-

sure the semantic consistency. Specifically, given the same

text description, we use ArcFace [2] to extract features from

images generated by all methods, and calculate the cosine

similarity between these features and the feature of the orig-

inal image. Then we choose the method with the maximum

cosine similarity as the successfully matched one.

4.1. Quantitative Results

We compare our AnyFace with previous start-of-the-art

models on CelebAText-HQ and Multi-modal CelebA-HQ

Table 3. Quantitative comparison of different methods on

CelebAText-HQ dataset.

Methods FID ↓ LPIPS ↓ RFRR ↑
AttnGAN 70.47 0.524 26.54%

ControlGAN 91.92 0.512 25.85%

SEA-T2F 140.25 0.502 18.31%

AnyFace 56.75 0.431 29.31%

dataset. As shown in Table 2, on Multi-Modal CelebA-

HQ dataset, AnyFace outperforms the current best method

with an improvement of 3.66 FID, 0.099 LPIPS, and 4.55%
RFRR points. More impressively, AnyFace reduces the best

reported FID on the CelebAText-HQ dataset from 70.49 to

56.75, a 19.5% reduction relatively. The CelebAText-HQ

is much more challenging because it is manually manuated,

but we can also synthesize high reality, diverse and accurate

face images given the text description.

4.2. Qualitative Results

In this subsection, we compare our results with other

state-of-the-art methods qualitatively. Moreover, we

present the generalization of the proposed method in real-

life applications, including open-world, multi-caption and

text-guided face manipulation scenarios.

4.2.1 Qualitative Comparisons

Both image quality and semantic consistency should be

considered when evaluating the results of different T2I

methods qualitatively. As shown in Figure 4, though multi-
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She seems to 
have heard bad 
news.

She graduated 
with a PhD.

She has heavy 
makeup to conceal 
her middle age.

He is a 
programmer.

Maybe he ate too 
much junk food.

He is ten years 
old.

Te
di

G
A

N
-B

A
ny

Fa
ce

Figure 5. Illustrations of open-world text-to-face synthesis. The first row represents the text descriptions harvested from the Internet, and

the rest of column are generated results with given text.

stage method (AttnGAN [31] and SEA-T2F [24]) can syn-

thesize images corresponding to part of the text descrip-

tions, they can only generate low quality images with the

resolution at 256 × 256. While TediGAN-B [30] success-

fully synthesizes images with high quality. However, the re-

sults seem to be text-irrelevant. For example, in the second

row, it generates a male image while it should be a female

according to the text description. Our method introduces

CMD module and Diverse Triplet loss to help the network

to learn some fine-grained features such as beard, smile,

makeup, mouth type, hair color and shape, etc., which illus-

trates that the images synthesized by our method are much

better in terms of image quality and semantic consistency.

4.2.2 Real-life Applications

Open-world Scenarios. In this subsection, we compare

with TediGAN-B [30] for open-world scenarios. TediGAN-

B adopts instance level optimization for open-world texts.

Thus it requires retraining the network for each text de-

scription, which is tedious and time-consuming. As for our

method, a single model is trained on one dataset and can be

easily extend to unseen text descriptions.

As shown in Figure 5, TediGAN-B can generate photo-

realistic results. However, these results are almost text-

irrelevant. While our method can not only synthesize vivid

images which are text-relevant, but can generate images

with more diversity due to the sophisticated design of the

face synthesis network. Besides, benefiting from the pow-

(a) This is an oval faced woman who has a round chin.
(b) There is a chubby lady with a protruding forehead.
(c) The woman's hair is yellow, and she has thin lips and a big mouth.
(d) The lady has fair skin, straight hair and slightly curved eyebrows.
(e) Her eyelashes are long, her eye sockets are deep, and her eyes are blue.
(f) The woman has long eyebrows and a pair of big eyes.
(g) She is a lady with a small nose and her mouth is wide open.
(h) The woman has long hair that covers her ears and blue eyes.
(i) The young lady shows her even teeth when she smiles.
(j) Her skin is very white and there are spots on her face and nose.

Source (a) (a) - (b) (a) - (e) (a) - (j)

SE
A

-T
2F

A
ny

Fa
ce

Figure 6. Illustrations of multi-caption synthesis. The text descrip-

tion above corresponds to the source image, synthesized results are

conditioned by (a), (a-b), (a-e) and all captions, respectively.

erful representation of CLIP, text descriptions with similar

meanings will be encoded into similar latent codes of Style-

GAN even though the text descriptions contains abstract in-

formation. Overall, AnyFace learns visual concepts from

text descriptions. For example, ”bad news” produces the

expression “sad”, “PhD” corresponds to “mortarboard”, and

“programmer” is related to “bald” and “glasses”.

Multi-caption Scenarios. In this subsection, we com-

pare with SEA-T2F [24] for multi-caption scenarios. As
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He is a middle-aged man with black hair and beard.

The girl with brown hair and earrings is smiling.

She has straight yellow hair

Source

Figure 7. Illustrations of text-guided face manipulation with con-

tinuous control. Given source images (1st column), manipulated

images show continuous changes according to the text. The arrow

indicates the increasing relevance to the text

shown in Figure 6, AnyFace produces natural and smooth

appearance without obvious ghosting artifacts and color dis-

tortions. As the number of sentences increases, the diffi-

culty of matching all texts correctly also increases. Com-

pared with SEA-T2F, the results of AnyFace are more con-

sistent with the text descriptions (e.g., “long hair” and

“curves her ears”) . Note that due to the subjectivity of the

labeling data samples in [24], even the source images may

not perfectly match all the descriptions.

Text-guided Face Manipulation. In this subsection, we

show that AnyFace can also be easily adapted to manipu-

late face images continuously given the text description by

changing the size of text embedding (i.e., changing m and n
in subsecton 3.1). From Figure 7, we observe that AnyFace

can manipulate faces with any text descriptions, including

global (e.g., smiling), local (e.g., brown hair) and abstract

(e.g., middle-aged) attributes. Meanwhile, as the text infor-

mation increases, the generated face will be more consistent

with the text information.

4.2.3 Ablation Study.

In this part, we conduct ablation studies to evaluate the con-

tributions of diverse triplet loss and cross-modal transfer

loss to our framework. As shown in Figure 4 (“w/o LDT

”), we replace the diverse triplet loss with the pairwise loss.

Synthesized faces tend to have similar appearance, such as

smile, short hair and natural skin. In contrast, AnyFace

with LDT produces diverse and personalized characteris-

tics, e.g., different hairstyles, accessories, skin tones, etc.

We further present the impact of the cross-modal trans-

Figure 8. FID of AnyFace with or without LCMT in different

steps.

fer loss on our framework by comparing the qualitative re-

sults with or without LCMT in Figure 4. It is difficult for

“AnyFace w/o LCMT ” to learn structured features. For

example, faces of the second and third rows fail to syn-

thesize “ wavy hair”, and the synthesized mouth in the last

row is not consistent to part of the text description: “mouth

slightly open”. The effect of LCMT is further explored from

a quantitative perspective. In Figure 8, we demonstrate that

FID changes with or without LCMT as training steps in-

creases. We observe that the solid line (“w LCMT ”) im-

proves FID by a large margin and speeds up convergence

on all of the datasets. Both quantitative and qualitative as-

sessments demonstrate the effectiveness of proposed losses.

5. Limitation

Our method has three limitations. 1) Our method can-

not infer the identity information from the text descriptions,

such as ‘Donald Trump’; 2) The results generated by the

same text description have a similar style; 3) Sometimes,

the attributes that are irrelevant to the text will also be

changed during manipulation process.

6. Conclusion

In this paper, we propose a two-stream framework for

text-to-face synthesis, which consists of a face synthesis

stream and a face reconstruction stream. A Cross Modal

Distillation module is further introduced to align the infor-

mation between the two streams and a diverse triplet loss

helps the network to produce images with diverse and fine-

grained face components. Furthermore, our method can be

applied to real-world scenarios such as open-world or mul-

tiple caption text-guided face synthesis and manipulation.
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