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Abstract

We present a super-fast convergence approach to recon-
structing the per-scene radiance field from a set of images
that capture the scene with known poses. This task, which is
often applied to novel view synthesis, is recently revolution-
ized by Neural Radiance Field (NeRF) for its state-of-the-art
quality and flexibility. However, NeRF and its variants re-
quire a lengthy training time ranging from hours to days for
a single scene. In contrast, our approach achieves NeRF-
comparable quality and converges rapidly from scratch in
less than 15 minutes with a single GPU. We adopt a represen-
tation consisting of a density voxel grid for scene geometry
and a feature voxel grid with a shallow network for com-
plex view-dependent appearance. Modeling with explicit
and discretized volume representations is not new, but we
propose two simple yet non-trivial techniques that contribute
to fast convergence speed and high-quality output. First,
we introduce the post-activation interpolation on voxel den-
sity, which is capable of producing sharp surfaces in lower
grid resolution. Second, direct voxel density optimization
is prone to suboptimal geometry solutions, so we robustify
the optimization process by imposing several priors. Finally,
evaluation on five inward-facing benchmarks shows that our
method matches, if not surpasses, NeRF’s quality, yet it only
takes about 15 minutes to train from scratch for a new scene.
Code: https:// github.com/sunset1995/DirectVoxGO.

1. Introduction

Achieving free-viewpoint navigation of 3D objects or
scenes from only a set of calibrated images as input is a de-
manding task. For instance, it enables online product show-
case to provide an immersive user experience comparing
to static image demonstration. Recently, Neural Radiance
Fields (NeRFs) [37] have emerged as powerful representa-
tions yielding state-of-the-art quality on this task.
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(a) The synthesized novel view by our method at three training checkpoints.
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(b) The training curves of different methods on Lego scene. The training time of each
method is measured on our machine with a single NVIDIA RTX 2080 Ti GPU.

Figure 1. Super-fast convergence by our method. The key to
our speedup is to optimize the volume density modeled in a dense
voxel grid directly. Note that our method needs neither a conversion
step from any trained implicit model (e.g., NeRF) nor a cross-
scene pretraining, i.e., our voxel grid representation is directly and
efficiently trained from scratch for each scene.

Despite its effectiveness in representing scenes, NeRF is
known to be hampered by the need of lengthy training time
and the inefficiency in rendering new views. This makes
NeRF infeasible for many application scenarios. Several
follow-up methods [15, 18,29,30,42,43,66] have shown sig-
nificant speedup of FPS in testing phase, some of which even
achieve real-time rendering. However, only few methods
show training times speedup, and the improvements are not
comparable to ours [1, 10,3 1] or lead to worse quality [6,59].
On a single GPU machine, several hours of per scene opti-
mization or a day of pretraining is typically required.

To reconstruct a volumetric scene representation from a
set of images, NeRF uses multilayer perceptron (MLP) to
implicitly learn the mapping from a queried 3D point (with
a viewing direction) to its colors and densities. The queried
properties along a camera ray can then be accumulated into a
pixel color by volume rendering techniques. Our work takes
inspiration from the recent success [15, 18, 66] that uses
classic voxel grid to explicitly store the scene properties,
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which enables real-time rendering and shows good quality.
However, their methods can not train from scratch and need
a conversion step from the trained implicit model, which
causes a bottleneck to the training time.

The key to our speedup is to use a dense voxel grid to
directly model the 3D geometry (volume density). Develop-
ing an elaborate strategy for view-dependent colors is not
in the main scope of this paper, and we simply use a hybrid
representation (feature grid with shallow MLP) for colors.

Directly optimizing the density voxel grid leads to super-
fast converges but is prone to suboptimal solutions, where
our method allocates “cloud” at free space and tries to fit
the photometric loss with the cloud instead of searching a
geometry with better multi-view consistency. Our solution
to this problem is simple and effective. First, we initialize
the density voxel grid to yield opacities very close to zero
everywhere to avoid the geometry solutions being biased
toward the cameras’ near planes. Second, we give a lower
learning rate to voxels visible to fewer views, which can
avoid redundant voxels that are allocated just for explaining
the observations from a small number of views. We show that
the proposed solutions can successfully avoid the suboptimal
geometry and work well on the five datasets.

Using the voxel grid to model volume density still faces
a challenge in scalability. For parsimony, our approach au-
tomatically finds a BBox tightly encloses the volume of
interest to allocate the voxel grids. Besides, we propose
post-activation—applying all the activation functions after
trilinearly interpolating the density voxel grid. Previous
work either interpolates the voxel grid for the activated opac-
ity or uses nearest-neighbor interpolation, which results in a
smooth surface in each grid cell. Conversely, we prove math-
ematically and empirically that the proposed post-activation
can model (beyond) a sharp linear surface within a single
grid cell. As a result, we can use fewer voxels to achieve
better qualities—our method with 160 dense voxels already
outperforms NeRF in most cases.

In summary, we have two main technical contributions.
First, we implement two priors to avoid suboptimal geometry
in direct voxel density optimization. Second, we propose the
post-activated voxel-grid interpolation, which enables sharp
boundary modeling in lower grid resolution. The resulting
key merits of this work are highlighted as follows:

* Our convergence speed is about two orders of magni-
tude faster than NeRF—reducing training time from
10—20 hours to 15 minutes on our machine with a sin-
gle NVIDIA RTX 2080 Ti GPU, as shown in Fig. 1.

e We achieve visual quality comparable to NeRF at a
rendering speed that is about 45X faster.

* Our method does not need cross-scene pretraining.

* Our grid resolution is about 1603, while the grid reso-
lution in previous work [15, 18,66] ranges from 5123

to 13003 to achieve NeRF-comparable quality.

2. Related work

Representations for novel view synthesis. Images syn-
thesis from novel viewpoints given a set of images cap-
turing the scene is a long-standing task with rich stud-
ies. Previous work has presented several scene represen-
tations reconstructed from the input images to synthesize
the unobserved viewpoints. Lumigraph [4, 16] and light
field representation [7,23,24,46] directly synthesize novel
views by interpolating the input images but require very
dense scene capture. Layered depth images [11,45,47,57]
work for sparse input views but rely on depth maps or es-
timated depth with sacrificed quality. Mesh-based repre-
sentations [8, 54, 58, 63] can run in real-time but have a
hard time with gradient-based optimization without template
meshes provided. Recent approaches employ 2D/3D Con-
volutional Neural Network (CNNs) to estimate multiplane
images (MPIs) [12, 26, 36,51, 56,71] for forward-facing
captures; estimate voxel grid [17,32, 48] for inward-facing
captures. Our method uses gradient-descent to optimize
voxel grids directly and does not rely on neural networks to
predict the grid values, and we still outperform the previous
works [17,32,48] with CNNs by a large margin.

Neural radiance fields. Recently, NeRF [37] stands out
to be a prevalent method for novel view synthesis with rapid
progress, which takes a moderate number of input images
with known camera poses. Unlike traditional explicit and
discretized volumetric representations (e.g., voxel grids and
MPIs), NeRF uses coordinate-based multilayer perceptrons
(MLP) as an implicit and continuous volumetric represen-
tation. NeRF achieves appealing quality and has good flex-
ibility with many follow-up extensions to various setups,
e.g., relighting [2, 3, 50, 70], deformation [13, 38—40, 55],
self-calibration [19,27,28,35,61], meta-learning [52], dy-
namic scene modeling [14,25,33,41, 64], and generative
modeling [5,22,44]. Nevertheless, NeRF has unfavorable
limitations of lengthy training progress and slow rendering
speed. In this work, we mainly follow NeRF’s original setup,
while our method can optimize the volume density explicitly
encoded in a voxel grid to speed up both training and testing
by a large margin with comparable quality.

Hybrid volumetric representations. To combine NeRF’s
implicit representation and traditional grid representations,
the coordinate-based MLP is extended to also condition-
ing on the local feature in the grid. Recently, hybrid vox-
els [18,30] and MPIs [62] representations have shown suc-
cess in fast rendering speed and result quality. We use hybrid
representation to model view-dependent color as well.

Fast NeRF rendering. NSVF [30] uses octree in its hy-
brid representation to avoid redundant MLP queries in free
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Figure 2. Approach overview. We first review NeRF in Sec. 3
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. In Sec. 4, we present a novel post-activated density voxel grid to support

sharp surface modeling in lower grid resolutions. In Sec. 5, we show our approach to the reconstruction of radiance field with super-fast
convergence, where we first find a coarse geometry in Sec. 5.1 and then reconstruct the fine details and view-dependent effects in Sec. 5.2.

space. However, NSVF still needs many training hours due
to the deep MLP in its representation. Recent methods fur-
ther use thousands of tiny MLPs [43] or explicit volumetric
representations [ 15, 18,62,60] to achieve real-time rendering.
Unfortunately, gradient-based optimization is not directly
applicable to their methods due to their topological data
structures or the lack of priors. As a result, these meth-
ods [15,18,43,62,60] still need a conversion step from a
trained implicit model (e.g., NeRF) to their final representa-
tion that supports real-time rendering. Their training time is
still burdened by the lengthy implicit model optimization.

Fast NeRF convergence. Recent works that focus on
fewer input views setup also bring faster convergence
as a side benefit. These methods rely on generalizable
pre-training [6, 59, 67] or external MVS depth informa-
tion [10,31], while ours does not. Further, they still require
several per-scene fine-tuning hours [10] or fail to achieve
NeRF quality in the full input-view setup [6,59,67]. Most re-
cently, NeuRay [31] shows NeRF’s quality with 40 minutes
per-scene training time in the lower-resolution setup. Under
the same GPU spec, our method achieves NeRF’s quality in
15 minutes per scene on the high-resolution setup and does
not require depth guidance and cross-scene pre-training.

3. Preliminaries

To represent a 3D scene for novel view synthesis, Neural
Radiance Fields (NeRFs) [37] employ multilayer perceptron
(MLP) networks to map a 3D position @ and a viewing direc-
tion d to the corresponding density ¢ and view-dependent
color emission c:

(0,€) = MLP®*) () |
¢ =MLP") (e d)

(1a)
(1b)

where the learnable MLP parameters are omitted, and e
is an intermediate embedding to help the much shallower

MLP&P) {0 learn ¢ (see NeRF++ [68] for more discussions
on the architecture design). In practice, positional encod-
ing is applied to « and d, which enables the MLPs to learn
the high-frequency details from low-dimensional input [53].
For output activation, Sigmoid is applied on ¢; ReLU or
Softplus is applied on o (see Mip-NeRF [1] for more dis-
cussion on output activation).

To render the color of a pixel C (r), we cast the ray r
from the camera center through the pixel; K points are then
sampled on r between the pre-defined near and far planes;
the K ordered sampled points are then used to query for
their densities and colors {(o;, ¢;)} £ | (MLPs are queried
in NeRF). Finally, the K queried results are accumulated
into a single color with the volume rendering quadrature in
accordance with the optical model given by Max [34]:

K
C(r) = (Z Tiaici> + Ty 1Cog (22)
i=1
a; = alpha(o;,0;) =1 — exp(—0;0;) , (2b)
i—1
T=1]0 -, (2c)
j=1

where «; is the probability of termination at the point ¢; T is
the accumulated transmittance from the near plane to point
i; 0; is the distance to the adjacent sampled point, and ¢y, is
a pre-defined background color.

Given the training images with known poses, NeRF model
is trained by minimizing the photometric MSE between the
observed pixel color C(r) and the rendered color C(r):

2

~cof!

2

3)

»Cphoto =

where R is the set of rays in a sampled mini-batch.
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Figure 3. A single grid cell with post-activation is capable of
modeling sharp linear surfaces. Left: We depict the toy task
for a 2D grid cell, where a grid cell is optimized for the linear
surface (decision boundary) across it. Right: Each column shows
an example task for three different methods. The results show that a
single grid cell with post-activation (Eq. (6¢)) is adequate to recover
faithfully the linear surface. Conversely, pre-activation (Eq. (6a))
and in-activation (Eq. (6b)) fail to accomplish the tasks as they can
only fit into smooth results, and thus would require more grid cells
to recover the surface detail. See supplementary material for the
mathematical proof.
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4. Post-activated density voxel grid

Voxel-grid representation. A voxel-grid representation
models the modalities of interest (e.g., density, color, or
feature) explicitly in its grid cells. Such an explicit scene
representation is efficient to query for any 3D positions via
interpolation:

interp(w,V) . (R?:’RCXNmXNyXNZ) N RC . @)

where  is the queried 3D point, V' is the voxel grid, C'is
the dimension of the modality, and N, - N, - IV, is the total
number of voxels. Trilinear interpolation is applied if not
specified otherwise.

Density voxel grid for volume rendering. Density voxel
grid, VY (density) g 5 special case with C' = 1, which stores the
density values for volume rendering (Eq. (2)). Weuse 6 € R
to denote the raw voxel density before applying the density
activation (i.e., a mapping of R — Rx>¢). In this work, we
use the shifted softplus mentioned in Mip-NeRF [1] as the
density activation:

o = softplus(¢) = log(1 + exp(¢ + b)) , (3)

where the shift b is a hyperparameter. Using softplus instead
of ReLLU is crucial to optimize voxel density directly, as it
is irreparable when a voxel is falsely set to a negative value
with ReLU as the density activation. Conversely, softplus
allows us to explore density very close to 0.

Sharp decision boundary via post-activation. The inter-
polated voxel density is processed by softplus (Eq. (5)) and
alpha (Eq. (2b)) functions sequentially for volume render-
ing. We consider three different orderings—pre-activation,
in-activation, and post-activation—of plugging in the tri-
linear interpolation and performing the activation, given a

Pre-activate (PSNR: 15.48) In-activate (PSNR: 17.07) Post-activate (PSNR: 25.16)

@
9
2
o
(5}

£
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(a) Visual comparison of image fitting results under grid resolution (H /5) x (W/5).
The first row is the results of pre-, in-, and post-activation. The second row is their
per-pixel absolute difference to the target image.
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(b) PSNRs achieved by pre-, in- and post-activation under different grid strides. A
grid stride s means that the grid resolution is (H/s) X (W/s). The black dashed
line highlights that post-activation with stride ~ 8.5 can achieve the same PSNR as
pre-activation with stride 2 in this example.

Figure 4. Toy example on image fitting. The target 2D image is
binary to imitate the scenario that most of the 3D space is either
occupied or free. The objective is to reconstruct the target image
by a low-resolution 2D grid. In each optimization step, the tunable
2D grid is queried by interpolation with pre-activation (Eq. (6a)),
in-activation (Eq. (6b)), or post-activation (Eq. (6¢)) to minimize
the mean squared error to the target image. The result reveals that
the post-activation can produce sharp boundaries even with low
grid resolution (Fig. 4a) and is much better than the other two under
various grid resolutions (Fig. 4b). This motivates us to model the
3D geometry directly via voxel grids with post-activation.

queried 3D point x:
™™ — interp (z, alpha (softplus (V™)) , (60
o™ = alpha (interp (, softplus (V")) , (6b)
a® = alpha (Softplus (interp (CL', V(demitw))) - (60)

The input ¢ to the function alpha (Eq. (2b)) is omitted for
simplicity. We show that the post-activation, i.e., applying
all the non-linear activation after the trilinear interpolation,
is capable of producing sharp surfaces (decision boundaries)
with much fewer grid cells. In Fig. 3, we use a 2D grid cell
as an example to show that a grid cell with post-activation
can produce a sharp linear boundary, while pre- and in-
activation can only produce smooth results and thus require
more cells for the surface detail. In Fig. 4, we further use
binary image regression as a toy example to compare their
capability, which also shows that post-activation can achieve
a much better efficiency in grid cell usage.

5. Fast and direct voxel grid optimization

We depict an overview of our approach in Fig. 2. In
Sec. 5.1, we first search the coarse geometry of a scene. In
Sec. 5.2, we then reconstruct the fine detail including view-
dependent effects. Hereinafter we use superscripts © and @
to denote variables in the coarse and fine stages.
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5.1. Coarse geometry searching

Typically, a scene is dominated by free space (i.e., unoc-
cupied space). Motivated by this fact, we aim to efficiently
find the coarse 3D areas of interest before reconstructing the
fine detail and view-dependent effect that require more com-
putation resources. We can thus greatly reduce the number
of queried points on each ray in the later fine stage.

Coarse scene representation. We use a coarse den-
sity voxel grid V@emsim© ¢ RIXNIXNIXND wih post-
activation (Eq. (6¢)) to model scene geometry. We
only model view-invariant color emissions by V(© ¢
R3X N X NN iy the coarse stage. A query of any 3D
point z is efficient with interpolation:

59 = interp (z, V@mIV©O) | (7a)
c© = interp (a:7 V(rgb)(c)) , (7b)

where ¢© € R3 is the view-invariant color and 5© € R is
the raw volume density.

Coarse voxels allocation. We first find a bounding box
(BBox) tightly enclosing the camera frustums of training
views (See the red BBox in Fig. 2¢ for an example). Our
voxel grids are aligned with the BBox. Let L{, L%, L)
be the lengths of the BBox and M© be the hyperparameter
for the expected total number of voxels in the coarse stage.

The voxel size is s©© = {/ LY. Lgf) L LO /M©, so there are
N, N N© = [ L /9], | LS /9], LY /5| voxels
on each side of the BBox.

Coarse-stage points sampling. On a pixel-rendering ray,
we sample query points as

xo = 0+ t"d (8a)

d
d]*”

x =z +1i-69- (8b)
where o is the camera center, d is the ray-casting direction,
e jg the camera near bound, and §© is a hyperparameter
for the step size that can be adaptively chosen according
to the voxel size s(°). The query index i ranges from 1 to
[t . ||d||?/5©7, where ™ is the camera far bound, so
the last sampled point stops nearby the far plane.

Prior 1: low-density initialization. At the start of train-
ing, the importance of points far from a camera is down-
weighted due to the accumulated transmittance term in
Eq. (2¢). As aresult, the coarse density voxel grid V (densit)(©
could be accidentally trapped into a suboptimal “cloudy” ge-
ometry with higher densities at camera near planes. We thus
have to initialize V(@i%© more carefully to ensure that
all sampled points on rays are visible to the cameras at the
beginning, i.e., the accumulated transmittance rates 7;s in
Eq. (2¢) are close to 1.

In practice, we initialize all grid values in V(@i (o
and set the bias term in Eq. (5) to

.. _ 1
b=1log (1 - ™) — 1) , ©)

where a"Y© is a hyperparameter. Thereby, the accumu-
lated transmittance 7} is decayed by 1 — o"Y© ~ 1 for a
ray that traces forward a distance of a voxel size s©. See
supplementary material for the derivation and proof.

Prior 2: view-count-based learning rate. There could
be some voxels visible to too few training views in real-
world capturing, while we prefer a surface with consistency
in many views instead of a surface that can only explain few
views. In practice, we set different learning rates for different
grid points in V@si©  For each grid point indexed by j,
we count the number of training views n; to which point j
is visible, and then scale its base learning rate by 7 /Mmax,
where np,y is the maximum view count over all grid points.

Training objective for coarse representation. The scene
representation is reconstructed by minimizing the mean
square error between the rendered and observed colors. To
regularize the reconstruction, we mainly use background
entropy loss to encourage the accumulated alpha values to
concentrate on background or foreground. Please refer to
supplementary material for more detail.

5.2. Fine detail reconstruction

Given the optimized coarse geometry V@nsit© jp
Sec. 5.1, we now can focus on a smaller subspace to recon-
struct the surface details and view-dependent effects. The
optimized V' @i%)© ig frozen in this stage.

Fine scene representation. In the fine stage, we use
a higher-resolution density voxel grid V@nsim® ¢
RIXNE XN XN with post-activated interpolation (Eq. (6¢)).
Note that, alternatively, it is also possible to use a more ad-
vanced data structure [18, 30, 66] to refine the voxel grid
based on the current V4% byt we leave that for future
work. To model view-dependent color emission, we opt to
use an explicit-implicit hybrid representation as we find in
our prior experiments that an explicit representation tends to
produce worse results, and an implicit representation entails
a slower training speed. Our hybrid representation comprises
i) a feature voxel grid V#a® ¢ RP*N FXNYXND Where
D is a hyperparameter for feature-space dimension, and ii) a
shallow MLP parameteriszed by ©. Finally, queries of 3D
points  and viewing-direction d are performed by

¢ = interp (z, V@eINO) (10a)
ch = MLP((_;gb) (interp(z, VD) 2 d) ,  (10b)

where ¢” € R3 is the view-dependent color emission and
7 € R is the raw volume density in the fine stage. Posi-
tional embedding [37] is applied on @, d for the MLP(Cf)gb) .
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Known free space and unknown space. A query point
is in the known free space if the post-activated alpha value
from the optimized V (4eniy)(©) g Jess than the threshold 7).
Otherwise, we say the query point is in the unknown space.

Fine voxels allocation. We densely query V@ensiv)© o
find a BBox tightly enclosing the unknown space, where
LY, LY, LY are the lengths of the BBox. The only hyper-
parameter is the expected total number of voxels M©. The
voxel size s and the grid dimensions N{’, N{!, N¥ can
then be derived automatically from M® as per Sec. 5.1.

Progressive scaling. Inspired by NSVF [30], we progres-
sively scale our voxel grid V(@ensi® apg Y ead® 1 et
pg-ckpt be the set of checkpoint steps. The initial number of
voxels is set to | M® /2IPe-ckptl | "When reaching the train-
ing step in pg_ckpt, we double the number of voxels such
that the number of voxels after the last checkpoint is M ®;
the voxel size s and the grid dimensions NP, N;JD, N®
are updated accordingly. Scaling our scene representation
is much simpler. At each checkpoint, we resize our voxel
grids, V@ensi)® and Vv Eead® by trilinear interpolation.

Fine-stage points sampling. The points sampling strategy
is similar to Eq. (8) with some modifications. We first filter
out rays that do not intersect with the known free space. For
each ray, we adjust the near- and far-bound, ¢"* and ¢,
to the two endpoints of the ray-box intersection. We do not
adjust ¢ if x is already inside the BBox.

Free space skipping. Querying V(@si¥)(©) (Eq. (7a)) is
faster than querying V@ensi)® (Eq. (10a)); querying for
view-dependent colors (Eq. (10b)) is the slowest. We im-
prove fine-stage efficiency by free space skipping in both
training and testing. First, we skip sampled points that are in
the known free space by checking the optimized V (densiy)(©
(Eq. (7a)). Second, we further skip sampled points in un-
known space with low activated alpha value (threshold at
7®) by querying V' @ensitN® (Eq. (10a)).

Training objective for fine representation. We use the
same training losses as the coarse stage, but we use a smaller
weight for the regularization losses as we find it empirically
leads to slightly better quality.

6. Experiments
6.1. Datasets

We evaluate our approach on five inward-facing datasets.
Synthetic-NeRF [37] contains eight objects with realistic
images synthesized by NeRF. Synthetic-NSVF [30] con-
tains another eight objects synthesized by NSVF. Strictly
following NeRF’s and NSVF’s setups, we set the image
resolution to 800 x 800 pixels and let each scene have
100 views for training and 200 views for testing. Blend-

edMVS [65] is a synthetic MVS dataset that has realistic
ambient lighting from real image blending. We use a subset
of four objects provided by NSVFE. The image resolution
is 768 x 576 pixels, and one-eighth of the images are for
testing. Tanks&Temples [21] is a real-world dataset. We
use a subset of five scenes provided by NSVF, each con-
taining views captured by an inward-facing camera circling
the scene. The image resolution is 1920 x 1080 pixels, and
one-eighth of the images are for testing. DeepVoxels [48]
dataset contains four simple Lambertian objects. The image
resolutions are 512 x 512, and each scene has 479 views for
training and 1000 views for testing.

6.2. Implementation details

We choose the same hyperparameters generally for all
scenes. The expected numbers of voxels are set to M© =
1002 and M® = 1603 in coarse and fine stages if not stated
otherwise. The activated alpha values are initialized to
be oMV = 10~6 in the coarse stage. We use a higher
oM = 10~2 as the query points are concentrated on the
optimized coarse geometry in the fine stage. The points
sampling step sizes are set to half of the voxel sizes, i.e.,
§© =0.5-59and 6O = 0.5 - sO. The shallow MLP layer
comprises two hidden layers with 128 channels. We use
the Adam optimizer [20] with a batch size of 8,192 rays to
optimize the coarse and fine scene representations for 10k
and 20k iterations. The base learning rates are 0.1 for all
voxel grids and 10~2 for the shallow MLP. The exponential
learning rate decay is applied. See supplementary material
for detailed hyperparameter setups.

6.3. Comparisons

Quantitative evaluation on the synthesized novel view.
We first quantitatively compare the novel view synthesis
results in Tab. 1. PSNR, SSIM [60], and LPIPS [69] are em-
ployed as evaluation metrics. Our model with A/® = 1603
voxels already outperforms the original NeRF [37] and the
improved JaxNeRF [9] re-implementation. Besides, our re-
sults are also comparable to most of the recent methods,
except JaxNeRF+ [9] and Mip-NeRF [1]. Moreover, our
per-scene optimization only takes about 15 minutes, while
all the methods after NeRF in Tab. 1 need quite a few hours
per scene. We also show our model with M® = 2563
voxels, which significantly improves our results under all
metrics and achieves more comparable results to JaxNeRF+
and Mip-NeRF. We defer detail comparisons on the much
simpler DeepVoxels [48] dataset to supplementary material,
where we achieve 45.83 averaged PSNR and outperform
NeRF’s 40.15 and IBRNet’s 42.93.

Training time comparisons. The key merit of our work
is the significant improvement in convergence speed with
NeRF-comparable quality. In Tab. 2, we show a training
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Methods Synthetic-NeRF Synthetic-NSVF BlendedMVS Tanks and Temples
PSNR?T SSIMfT LPIPS| | PSNRt SSIMtT LPIPS| | PSNRT SSIM{ LPIPS| | PSNRT SSIM?T LPIPS)
SRN [49] 2226 0.846 0.170"% | 24.33 0.882 0.141™ | 2051 0.770 0.294™ [ 24.10 0.847 0251
NV [32] 26.05 0.893 0.160"%¢ | 2583 0.892 0.124% | 23.03 0.793 0.243" | 2370 0.834 0.260"*
NeRF [37] 31.01 0.947 0.081'% | 30.81 0952 0.043"* | 24.15 0.828 0.192" | 2578 0.864 0.198"*
Improved visual quality from NeRF
JaxNeRF [9] 31.69 0.953 0.068"% - - - - - - 27.94 0904 0.168"¢¢
JaxNeRF+ [9] 33.00 0962 0.038 - - - - - - - - -
Mip-NeRF [1] 33.09 0961 0.043"# - - - - - - - - -
Improved test-time rendering speed (and visual quality) from NeRF
Autolnt [29] 25.55 0911 0.170 - - - - - - - - -
FastNeRF [15] 2997 0941 0.053 - - - - - - - - -
SNeRG [18] 30.38 0950 0.050 - - - - - - - - -
KiloNeRF [43] 31.00 0.95 0.03 3337 097 0.02 27.39  0.92 0.06 2841 091 0.09
PlenOctrees [66] | 31.71 0.958 0.053"¢® - - - - - - 2799 0917 0.131'%
NSVF [30] 31.75 0953 0.047" | 35.18 0979 0.015"* | 26.89 0.898 0.114" | 2848 0901 0.155"*
Improved convergence speed, test-time rendering speed, and visual quality from NeRF
0.053"&¢ 0.033ve¢ 0.101"¢¢ 0.155"¢¢
H_1603
ours (MP=160%) 3195 0.957 0,035 35.08 0975 0.019% 28.02 0.922 0.075% 28.41 00911 0.148%
0.045"¢¢ 0.0247¢¢ 0.081"¢¢ 0.138"%¢
10=256% . . . . . . . . .
ours (MP=256%) 32.80 0.961 0,027 36.21 0.980 0,012 28.64 0933 0,052 28.82  0.920 0,124

* The superscript denotes the pre-trained models used in LPIPS. The gray numbers indicate that the code is unavailable or has a unconventional LPIPS implementation.

Table 1. Quantitative comparisons for novel view synthesis. Our method excels in convergence speed, i.e., 15 minutes per scene compared

to many hours or days per scene using other methods. Besides, our rendering quality is better than the original NeRF [

] and the improved

JaxNeRF [9] on the four datasets under all metrics. We also show comparable results to most of the recent methods.

time comparison. We also show GPU specifications after
each reported time as it is the main factor affecting run-time.

NeRF [37] with a more powerful GPU needs 1-2 days per
scene to achieve 31.01 PSNR, while our method achieves a
superior 31.95 and 32.80 PSNR in about 15 an 22 minutes
per scene respectively. MVSNeRF [6], IBRNet [59], and
NeuRay [31] also show less per-scene training time than
NeRF but with the additional cost to run a generalizable
cross-scene pre-training. MVSNeRF [6], after pre-training,
optimizes a scene in 15 minutes as well, but the PSNR is
degraded to 28.14. IBRNet [59] shows worse PSNR and
longer training time than ours. NeuRay [3 1] originally re-
ports time in lower-resolution (NeuRay-Lo) setup, and we
receive the training time of the high-resolution (NeuRay-
Hi) setup from the authors. NeuRay-Hi achieves 32.42
PSNR and requires 23 hours to train, while our method
with M® = 2562 voxels achieves superior 32.80 in about
22 minutes. For the early-stopped NeuRay-Hi, unfortunately,
only its training time is retained (early-stopped NeuRay-Lo
achieves NeRF-similar PSNR). NeuRay-Hi still needs 70
minutes to train with early stopping, while we only need 15
minutes to achieve NeRF-comparable quality and do not rely
on generalizable pre-training or external depth information.
Mip-NeRF [1] has similar run-time to NeRF but with much
better PSNRs, which also signifies using less training time to
achieve NeRF’s PSNR. We train early-stopped Mip-NeRFs
on our machine and show the averaged PSNR and training

Methods | PSNRp | ESnerlizable | per-scene
pre-training optimization

NeRF [37] 31.01 no need 1-2 days (v100)
MVSNEeRF [6] 27.21 30 hrs (2080Ti) 15 mins (2080Ti)
IBRNet [59] 28.14 1 day (8xV100) 6 hrs  (V100)
NeuRay [31]F 32.42 2 days (2080Ti) 23 hrs (2080Ti)
Mip-NeRF [1]% 30.85 no need 6 hrs  (2080Ti)
ours (MP=160%) 31.95 no need 15 mins (2080Ti)
ours (MP=256%) 32.80 no need 22 mins (2080Ti)

T Use external depth information.
¥ Our reproduction with early stopping on our machine.

Table 2. Training time comparisons. We take the training time
and GPU specifications reported in previous works directly. A
V100 GPU can run faster and has more storage than a 2080Ti GPU.
Our method achieves good PSNR 1in a significantly less per-scene
optimization time.

time. The early-stopped Mip-NeRF achieves 30.85 PSNR
after 6 hours of training, while we can achieve 31.95 PSNR
in just 15 minutes.

Rendering speed comparisons. Improving test-time ren-
dering speed is not the main focus of this work, but we still
achieve ~ 45x speedups from NeRF—0.64 seconds versus
29 seconds per 800 x 800 image on our machine.

Qualitative comparison. Fig. 5 shows our rendering re-
sults on the challenging parts and compare them with the
results (better than NeRF’s) provided by PlenOctrees [60].
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PlenOctree GT Ours

Figure 5. Qualitative comparisons on the challenging parts.
Top: On ficus scene, we do not show blocking artifacts as PlenOc-
tree and recover the pot better. Middle: We produce blurrier results
on ship’s body and rigging, but we do not have the background
artifacts. Bottom: On real-world captured Ignatius, we show better
quality without blocking artifacts (left) and recover the color tone
better (right). See supplementary material for more visualizations.

6.4. Ablation studies

We mainly validate the effectiveness of the two proposed
techniques—post-activation and the imposed priors—that
enable voxel grids to model scene geometry with NeRF-
comparable quality. We subsample two scenes for each
dataset. See supplementary material for more detail and
additional ablation studies on the number of voxels, point-
sampling step size, progressive scaling, free space skipping,
view-dependent colors modeling, and the losses.

Effectiveness of the post-activation. We show in Sec. 4
that the proposed post-activated trilinear interpolation en-
ables the discretized grid to model sharper surfaces. In Tab. 3,
we compare the effectiveness of post-activation in scene re-
construction for novel view synthesis. Our grid in the fine
stage consists of only 160 voxels, where nearest-neighbor
interpolation results in worse quality than trilinear interpola-
tion. The proposed post-activation can improve the results
further compared to pre- and in-activation. We find that we
gain less in the real-world captured BlendedMVS and Tanks
and Temples datasets. The intuitive reason is that real-world
data introduces more uncertainty (e.g., inconsistent light-
ning, SfM error), which results in multi-view inconsistent
and blurrier surfaces. Thus, the advantage is lessened for
scene representations that can model sharper surfaces. We
speculate that resolving the uncertainty in future work can
increase the gain of the proposed post-activation.

Effectiveness of the imposed priors. As discussed in
Sec. 5.1, it is crucial to initialize the voxel grid with low
density to avoid suboptimal geometry. The hyperparameter
aiMY© controls the initial activated alpha values via Eq. (9).
In Tab. 4, we compare the quality with different oMY and
the view-count-based learning rate. Without the low-density

Syn.-NeRF Syn.-NSVF | BlendedMVS T&T
PSNRT A |[PSNRT A |[PSNRT A |PSNRT A

Nearest | 28.61 -2.77| 28.86 -6.22| 2549 -248| 26.39 -1.27
pre- | 30.84 -0.55| 32.66 -2.41| 27.39 -0.58| 27.44 -0.21

Tri. in- 2991 -148| 3242 -2.66| 27.29 -0.68| 27.52 -0.13
post- | 31.39 - 3508 - 2797 - 27.66 -

Interp.

Table 3. Effectiveness of the post-activation. Geometry modeling
with density voxel grid can achieve better PSNRs by using the
proposed post-activated trilinear interpolation.

(i) View. | Syn.-NeRF Syn.-NSVF | BlendedMVS T&T
« I. [PSNRT A |PSNRT A |PSNRT A |PSNRT A
-V [ 2888 251 2512 -9.96] 22.17 -5.79| 25.33 -2.33
1073 v | 3096 -0.42 | 27.24 -7.84| 23.17 -4.79| 26.04 -1.61
10=% v | 3129 -0.09 | 31.05 -4.03| 26.09 -1.88| 27.60 -0.05
1075 v | 3141 +0.02| 35.04 -0.04| 27.36 -0.61| 27.63 -0.02
106 31.40 +0.01| 35.03 -0.04 | 27.37 -0.60| 27.59 -0.07
107 v | 31.36 -0.02 | 35.03 -0.05| 27.73 -0.23| 27.59 -0.06
107 v [ 3139 - 3508 - | 2797 - | 27.66 -

1078 /- 107%/ v

RS 1073/ v

Table 4. Effectiveness of the imposed priors. We compare our
different settings in the coarse geometry search. Top: We show
their impacts on the final PSNRs after the fine stage reconstruction.
Bottom: We visualize the allocated voxels by coarse geometry
search on the Truck scene. Overall, low-density initialization is
essential; using o™ = 107% and view-count-based learning
rate generally achieves cleaner voxels allocation in the coarse stage
and better PSNR after the fine stage.

initialization, the quality drops severely for all the scenes.
When oMY = 10=7, we have to train the coarse stage
of some scenes for more iterations. The effective range of
aMV© ig scene-dependent. We find o9© = 10=6 gener-
ally works well on all the scenes in this work. Finally, using
a view-count-based learning rate can further improve the
results and allocate noiseless voxels in the coarse stage.

7. Conclusion

Our method directly optimizes the voxel grid and achieves
super-fast convergence in per-scene optimization with NeRF-
comparable quality—reducing training time from many
hours to 15 minutes. However, we do not deal with the
unbounded or forward-facing scenes, while we believe our
method can be a stepping stone toward fast convergence in
such scenarios. We hope our method can boost the progress
of NeRF-based scene reconstruction and its applications.
Acknowledgements: This work was supported in part by
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