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Abstract

Without access to the training data where a black-box
victim model is deployed, training a surrogate model for
black-box adversarial attack is still a struggle. In terms of
data, we mainly identify three key measures for effective sur-
rogate training in this paper. First, we show that leveraging
the loss introduced in this paper to enlarge the inter-class
similarity makes more sense than enlarging the inter-class
diversity like existing methods. Next, unlike the approaches
that expand the intra-class diversity in an implicit model-
agnostic fashion, we propose a loss function specific to the
surrogate model for our generator to enhance the intra-
class diversity. Finally, in accordance with the in-depth ob-
servations for the methods based on proxy data, we argue
that leveraging the proxy data is still an effective way for
surrogate training. To this end, we propose a triple-player
framework by introducing a discriminator into the tradi-
tional data-free framework. In this way, our method can be
competitive when there are few semantic overlaps between
the scarce proxy data (with the size between 1k and 5k) and
the training data. We evaluate our method on a range of vic-
tim models and datasets. The extensive results witness the
effectiveness of our method. Our source code is available at
https://github.com/xuxiangsun/ST-Data.

1. Introduction
Over the last decades, we have witnessed the blowout

success of Deep Neural Networks (DNNs) in computer vi-

sion tasks. Yet they also show pervasive brittleness when

they are exposed to adversarial examples [14, 43]. This

leaves great safety hazards for the practical deployment of

DNNs. Hence, more threatening adversarial examples had

been crafted to push for further research [3, 14, 23, 26,

31]. Most of them assume that the prior information of a

victim model (denoted by V) can be accessed, e.g., its in-

ternal architecture or training data. Albeit this lenient at-

tack scenario (i.e., the white-box setting) can help us to ex-

plore the robustness of DNNs, their performance will get
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Figure 1. Illustration of the location relationship in feature
space between (a) Samples with insufficient imitation ability,
and (b) Samples with sufficient imitation ability. Here, H de-

notes the decision boundary of a model, � represents the imitation

margin of the synthesized samples.

hurt drastically no prior knowledge (i.e., the black-box set-

ting) can be accessed. In this case, how to attack DNN has

stirred great interest in scholars.

Under the black-box setting, only the input-output feed-

back of the victim model V can be accessed. According

to the output, the solutions to black-box attack can either

be decision-based (only the final label can be accessed)

or score-based (the output logits can be obtained). Among

them, a feasible way is to design effective searching algo-

rithms [1, 2, 4–6, 9, 15, 27, 32, 36, 37]. However, with a low

query budget, their efficiency may be limited exceedingly.

While another intuitive idea is training a local surrogate

model (denoted by S) to imitate the remote victim model V,

and then craft adversarial examples on the trained model S

via existing white-box attacks. However, without the train-

ing data of model V, training the model S is still strenuous.

Recent advances [46, 58] pointed out that leveraging

the synthesized data is more effective than the real proxy

data [33, 34]. Specifically, [46] mentioned that this may be

attribute to the poor diversity of the proxy data with limited

size. In a way, it encounters the underfitting problem. From

this perspective of view, the synthesized data can be served

as the proxy data with infinite size and relatively large di-

versity. In this case, an important question is: what kind of
synthesized data are effective to train the model S?

To deal with this question, the most advanced meth-
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ods [46, 58] enlarge the inter-class diversity of the synthe-

sized data. However, as shown in Fig. 1, if the imitation

margin of the samples stays away from the decision bound-

ary like Fig. 1a, then the surrogate model S can not learn

how the victim model V makes decisions. Things will get

worse when it comes to the case of the label-only scenario.

Instead, if the synthesized data can lay close to the decision

boundary (i.e., with the large inter-class similarity), the im-

itation ability will be sufficient, like Fig. 1b. This also can

be revealed in Fig. 2 (details will be described in Appendix

C.1), where the boundary loss measures the distance from

the synthesized data to the decision boundary. For most

cases when the boundary loss is relatively high, the Attack

Success Rate (ASR) of DaST [58] and Knockoff [33] can

not grow up sustainably. Compared with them, our method

leads to continuous improvement via keeping a lower loss.

Besides, as indicated by [46], the intra-class diversity makes

sense for surrogate training. Nonetheless, there is no ex-

plicit constraint in [46] specified to the surrogate model to

enlarge the intra-class diversity, which can not promise the

effectiveness of the synthesized data to the model S.

Last but not least, according to [33], when the size of the

proxy dataset is large enough, it still can work well. Hence,

we make a feasible conjecture, i.e., the distribution of the

proxy dataset can be roughly divided into two parts, i.e., the

first one contains the samples that are useful for surrogate

training while the second one does not. Different datasets

contain different proportions of valid data. Based on this

assumption, we can use the vanilla Generative Adversarial

Networks (GAN) [13,30,35] to imitate the distribution of a

proxy dataset. As shown in Fig. 2, the synthesized data can

still be effective (lower loss and better performance than

DaST and Knockoff). Moreover, it is striking that the ASR

of vanilla GAN can even exceed DaST. We think that is due

to searching from the whole data space like [46,58] may be

ineffective within the same training budget. Consequently,

their performance will get stuck.

Spurred by the above observations and assumptions, we

make the following contributions: 1) We propose a triple-

player framework to train the surrogate model for the black-

box adversarial attack. Specifically, based on the traditional

data-free training framework, we are the first to introduce

a discriminator to limit the searching space of our gen-

erator, which can enhance the training efficiency; 2) We

identify that enlarging the inter-class similarity makes more

sense than the inter-class diversity. Then, a loss function

is introduced in this paper to enlarge the inter-class simi-

larity of the synthesized data; 3) We propose a new loss

function specified to the surrogate model to boost the intra-

class diversity explicitly; 4) We indicate that the effective-

ness of our method is competitive when there are few se-

mantic overlaps between the scarce proxy data (i.e., with

the size between 1k and 5k) and the training data.
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Figure 2. Iterations vs. Attack Success Rate (Untargeted) and
Boundary Loss (BL). Here, BL denotes the distance from

the synthesized data to the decision boundary. “*-P” denotes

the probability-only scenario and “*-L” represents the label-only

scenario. To eliminate the influence of other factors, we replace

the generator of DaST with ours, dubbed “DaST*”.

2. Related Work

Adversarial Attacks. As illustrated in Sec. 1, under the

white-box setting, early works [3, 14, 23, 26, 31] focus

on designing adversarial examples constrained within tight

�p (p = 1, 2,∞) norm bounds in RGB space. Recently, re-

searchers tried to craft adversarial examples from different

points of view. For instance, [55,56] explored the adversar-

ial examples in different color spaces, [51,52] revealed that

designing adversarial examples in feature space is also re-

markable. Besides, in frequency space, [12] identified that

dropping useless information yields more imperceptible ad-

versarial examples.

For the black-box attacks, besides what we mentioned

in Sec. 1, improving the transferability of adversarial ex-

amples is also another subject of intense research. For in-

stance, improving the transferability of the gradient-based

attacks via efficient gradient calculation [10, 23, 25, 47] or

input transformations [11, 50]. Besides, [18–20] found that

designing adversarial examples via the intermediate fea-

tures yields more transferable adversarial examples. More-

over, [49] indicated that the DNN architecture itself can ex-

pose more transferability.

Surrogate Training. If we can access the training data

and the internal gradients of the victim model, the meth-

ods based on knowledge distillation [17] may be effective

to train a surrogate model for black-box adversarial attack.

Also, [44, 59] are still remarkable if we can only acquire

the training data. Unfortunately, the above assumptions are

impractical in reality. Hence, [33, 34] steal the function-

ality of the victim model V via the proxy dataset. Recent
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Figure 3. The framework of the proposed method. Given a series of noise and labels, our generator synthesizes the data Xs firstly.

Then the victim model V will label Xs as V(Xs) (in the form of the final label or the probabilities of each class), which will be leveraged

to train the surrogate model S via loss Ls. In addition, the discriminator D will learn to distinguish Xs with the proxy data Xp via loss

LGAN. Finally, our generator G will be optimized. Here, B is the number of input noise, C represents the class number of a victim dataset.

Besides, in FLab, the features with the same color belong to the same class, which correspondence to the input label with the same color.

works assumed that no proxy images can be leveraged. In

this scenario, [46, 53, 54, 58] propose to leverage the idea

of GAN [13, 30] to synthesize data for surrogate training.

Specifically, [53, 54] synthesize images from noise or re-

cover training data from the victim model. However, under

the strict black-box setting, they will be helpless.

Exposed to the challenge of black-box and data-free set-

tings, DaST [58] is the first to steal the functionality of a

black-box model without real data. It uses a generator to

synthesize data that can cause decision conflicts between

the victim model and the surrogate model. Then, DDG [46]

goes deeper to explore more effective data. It first modifies

the architecture of the generator to compress its size, since

the size of the generator in DaST [58] will be enlarged ex-

tremely when the class number of the victim dataset grows

up. Besides, it introduces a reconstruction network to en-

hance the intra-class diversity by realizing the one-to-one

mapping from random noise to images. Finally, the adver-

sarial training strategy is further deployed.

3. Proposed Method

3.1. Adaptive Class-Wise Normalization

It is worthy of emphasizing that the synthesized data

should be label-controllable firstly. In other words, given an

input label, the synthesized data should be classified by the

surrogate model S into the corresponding class. Otherwise,

there may be the problem of mode collapse, since the meth-

ods with GAN suffer from this problem usually [13, 39].

Hence, similar to [46], our generator includes a label en-

coder, which consists of an embedding layer [29] followed

by several fully-connected layers. Besides, several fully-

connected layers are combined in series to form the noise

encoder. In this case, with the noise Z = {z1, z2, ..., zB}
where zi ∈ N (0, I), and the labels y = {0, 1, ..., C}, we

can get the noise features FN ∈ R
B×L×H×W and the label

features FL ∈ R
C×L×H×W via the corresponding encoder,

where L is the number of channels, B is the number of in-

put noise, C is the class number of the victim dataset, H
and W are the height and width of the corresponding fea-

tures respectively.

Once we get FN and FL, they are repeated and re-

shaped to acquire FNoi ∈ R
(B×C)×L×H×W and FLab ∈

R
(B×C)×L×H×W , as shown in Fig. 3. Then FNoi and FLab

will be fed into our Adaptive Class-wise Normalization

(ACWN) module followed by a decoder to generate the syn-

thesized images Xs. Details about ACWN can be accessed

in our source code.

Formally, we formulate Xs as shown in Eq. (1):{
Xs = {xk

j }(k = {1, 2, ..., C}, j = {1, 2, ..., B})
= G(Z,y)

. (1)

Here, y represents the input labels and Z denotes the input

noise. Besides, the variable k in the upper right corner of

xk
j represents the index of its input label, and j in its bottom

right corner denotes the index of its input noise. For the

sake of expression, we use Y ∈ R
(B×C)×1 to denote the

corresponding original input labels of Xs.

As we noted at the beginning of this subsection, the gen-

erator in our framework should be label-controllable. Thus,

one of the optimization objective functions for the generator

G is the cross-entropy loss, as shown in Eq. (2).

Lcla = CE(S(Xs),Y). (2)

Here, S(∗) ∈ R
C denotes the output logits except for the

softmax layer of the surrogate model S.

3.2. Inter-Class Similarity

Since Eq. (2) has provided a label-controllable con-

straint, we now introduce a loss function to boost the inter-

class similarity of the synthesized data. Recall that [3] im-

proves the adversarial ability via Eq. (3):

max{max{f(x)i : i �= t} − f(x)t,−κ}. (3)
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Figure 4. Illustration of the proposed intra-class diversity
loss. Here, g(∗)0 represents applying the softmax function to ∗,

of which the 0-th entry is excepted. In the bottom part, different

colors represent different classes. In the middle part, the output

probabilities from the surrogate model S are shown. Each bar with

a certain color is the probability of the class with the same color

in the bottom. In the top part, the function STD calculates the

standard deviation of all entries in its input.

Here, given the input data x, f(x) denotes the output of a

DNN f except for the softmax layer, and f(x)i represents

the i-th entry of f(x), and t is the target label (for the tar-

geted attack) or the original label (for the untargeted attack).

In this paper, we revisit Eq. (3) as the one that aims at

pushing x move close to the decision boundary between

class t and j, where j = max
θ

{f(x)θ : θ �= t}. Thus, to

enlarge the inter-class similarity, we introduce a loss based

on Eq. (3) into the optimization of the generator. To be

specific, as shown in Eq. (4),

Lsim =

||
C∑
k

B∑
j

{max{S(xk
j )i : i �= k} − S(xk

j )k}||

B × C
, (4)

where S(∗)i means the i-th entry of S(∗).
Associating Eq. (2) with Eq. (4), we can push the gener-

ated samples as closely as possible to their decision bound-

ary of the corresponding class while keeping these samples

to be label-controllable for our generator. Moreover, it is

worth emphasizing that enhancing the inter-class similarity

does not mean confusing the class-specific features, instead,

Eq. (2) has provided a guarantee about this. Also, the visu-

alization of the generated samples in Appendix C.3 can still

provide empirical evidence for this.

3.3. Intra-class Diversity

Suppose we optimize the generator by Eq. (2) and

Eq. (4), we can make an ideal assumption that the generated

samples are label-controllable with large inter-class similar-

ity. In this scenario, to deal with the intra-class diversity, let

us consider a typical case shown in Fig. 4. Here, all these

three samples belong to class 0. We consider the location as

the metric that measures the inter-class diversity. In other

words, if they are distributed discretely near the decision

boundary of class 0 and the other three classes, as depicted

at the bottom of Fig. 4, then the inter-class diversity of class

0 will be the ideal solution. In this case, these three samples

can explore all the class regions.

Now, we start to analyze how to formulate our loss func-

tion mathematically. Recall that in Sec. 3.2, we introduce

Eq. (4) to describe the distance between an input sample and

the decision boundary. Thus, as shown at the top of Fig. 4,

we can find that the probabilities except class 0 are almost

equal. Unfortunately, we do not know what the exact value

is. Instead, we turn to another way of thinking about it, i.e.,

the standard deviation. Specifically, in this case, the stan-

dard deviation is close to zero. Thus, we design Eq. (5)

as the loss function to enlarge the intra-class diversity, as

comes below:

Ldiv = 1
C

C∑
k

1
mSTD[

C−1∑
j

Norm(g(S(xk
j ))k)]

s.t. B = m× (C − 1),m ∈ N+

, (5)

where g(∗)k represents applying the softmax function to ∗,

of which the k-th entry is excepted, and STD[∗] means cal-

culating the standard deviation of ∗ along the first dimen-

sion. Norm(x) denotes normalizing x by Eq. (6):

Norm(x) =
x− min(x)

max(x− min(x))
. (6)

Here, max(x) and min(x) mean extracting the maximum

and the minimum of x along its first dimension, respec-

tively. It is worth noting that in Eq. (5), B should be an

integer multiple of C − 1 (N+ is the set of positive inte-

gers). However, when C gets increased, B cannot be set

to a large number limited by the hardware conditions (i.e.,

B < (C − 1)). We will give the formulation about this case

in Appendix A.

3.4. Optimization

For the optimization of the model S in Fig. 3, we use

Eq. (7) as its objective function, which comes as below:

Ls = CE(S(Xs),Yv) + α||S(Xs),V(Xs)||F, (7)

where Yv are the labels corresponding to Xs output by the

victim model V, i.e., Yv = V(Xs). || · ||F denotes the MSE
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Table 2. Performance comparison in terms of untargeted attack success rate over several victim models deployed on four datasets.
Here, the experimental settings are reported in Tab. 1. “*-P” denotes the probability-only attack scenario and “*-L” represents the label-only

attack scenario. RED/BLUE indicate the best/the second best. The same as Tab. 3 and Tab. 4.

DataSet MNIST [24] CIFAR-10 [21] CIFAR-100 [21] Tiny-ImageNet [38]

Victim Model AlexNet VGG-16 ResNet-18 AlexNet VGG-16 ResNet-18 VGG-19 ResNet-50 ResNet-50

KnockoffP1-P [33] 42.47 40.75 40.16 27.17 21.36 24.40 15.36 12.52 11.47

KnockoffP2-P [33] 45.53 45.14 42.97 28.71 22.04 25.96 16.09 14.24 13.86

DaST-P [58] 58.86 54.82 59.62 50.28 32.45 42.77 27.39 26.18 28.81

DDG-P [46] 66.31 62.84 70.27 55.76 42.31 46.82 35.48 39.29 34.28

OursP1-P 91.70 90.14 85.59 62.23 75.51 74.24 57.28 61.42 59.65
OursP2-P 94.95 93.63 85.66 64.89 77.54 76.16 60.83 64.08 62.81

KnockoffP1-L [33] 27.45 28.48 31.38 18.29 15.65 16.38 8.11 7.81 7.25

KnockoffP2-L [33] 28.66 29.82 32.21 19.52 16.86 17.47 9.74 8.73 8.46

DaST-L [58] 26.51 29.22 35.81 25.18 19.34 23.01 17.34 17.27 16.28

DDG-L [46] 31.74 32.70 40.96 29.44 26.92 23.38 23.48 27.88 28.31

OursP1-L 90.00 88.34 84.56 58.39 73.57 71.23 56.15 58.08 57.81
OursP2-L 92.04 88.65 84.76 63.32 75.00 73.50 59.81 61.16 60.98

Table 1. Default Settings on each victim dataset. Here, VD for

the victim dataset, S for the default surrogate model, B for batch-

size, LR for the learning rate of model S, P1 and P2 are two proxy

datasets, and N are the number of images for both P1 and P2.

VD MNIST CIFAR-10 CIFAR-100 Tiny-ImageNet

N 4k 4k 4k 4k

B 135 135 10 8

S Small VGG-13 ResNet-18 ResNet-34

LR 0.0001 0.0001 0.0002 0.0002

P1 EMNIST CUB-200 CUB-200 CUB-200

P2 KMNIST Places365 Places365 Places365

loss. For the label-only scenario, we set α = 0. While for

the probability-only scenario, α = 1.

For the optimization of the discriminator, we use the loss

function proposed by [28], i.e., comes as Eq. (8):

LD
GAN = Ex∼Xp [D(x)− 1]2 + Ex∼Xs

[D(x)]2. (8)

Here, Xp represents the proxy dataset. Also, the adversar-

ial loss should be included to optimize the generator, i.e.,

Eq. (9):

LG
GAN = Ex∼Xs

[D(x)− 1]2. (9)

Finally, the total loss function for the generator is Eq. (10):

LG = LG
GAN + β1Ldiv + β2Lsim + β3Lcla. (10)

4. Experiments
4.1. Experimental Settings

In this section, we will give the introductions about the

main settings in our experiments, including the datasets,

model architectures, attacks that are utilized to evaluate the

performance and the evaluation metrics.

Datasets and Model Architectures. In general, there are

a total of four victim datasets (i.e., MNIST [24], CIFAR-

10 [21], CIFAR-100 [21], and Tiny-ImageNet [38]) are

deployed to varify the effectiveness of our method. Be-

sides, we also provide a total of four proxy datasets (i.e.,

EMNIST [8], KMNIST [7], Places365 [57], and CUB-

200 [48]) for our method and Knockoff [33] to carry out

surrogate training. For the model architecture, we leverage

a total of nine models, which belong to five different types

(i.e., a model with 3 convolution layers, dubbed “Small”

in this paper, AlexNet [22], GoogleNet [42], MobileNet-

V2 [40], VGG-Net [41], ResNet [16]). On each victim

dataset, the default settings can be seen in Tab. 1. It is worth

noting that for all the proxy datasets leveraged in this paper,

there are almost no semantic overlaps between them and the

victim datasets.

Attack Methods and Evaluation Metrics. In our experi-

ments, we evaluate the performance mainly via four attack

methods, including FGSM [14], BIM [23], PGD [26], and

C&W [3]. PGD [26] is the default attack method to evalu-

ate the performance of our method, unless specified. For the

evaluation metrics, we use the targeted Attack Success Rate

(ASRtar) and the untargeted attack success rate (ASRuntar).

The calculation of these two metrics can be seen in Ap-

pendix B.

Implementation Details. For the implementation, our code

is based on Pytorch deep learning framework. We use Adam

optimizer to train all the networks of our method. The

hyper-parameters in Eq. (10) are β1 = β2 = 2, β3 = 1.2.

The other default settings are reported in Tab. 1. All the

experiments in this paper are conducted by one NVIDIA

GeForce RTX 3090 GPU. Besides, all the proxy images are

randomly chosen at the beginning and frozen during train-

ing. In addition, the learning rates of both the generator

15359



Table 3. Performance comparison in terms of targeted attack success rate over several victim models deployed on four datasets.

DataSet MNIST [24] CIFAR-10 [21] CIFAR-100 [21] Tiny-ImageNet [38]

Victim Model AlexNet VGG-16 ResNet-18 AlexNet VGG-16 ResNet-18 VGG-19 ResNet-50 ResNet-50

KnockoffP1-P [33] 24.07 23.32 28.96 16.59 11.04 13.13 4.34 5.26 4.97

KnockoffP2-P [33] 25.43 24.89 30.08 17.36 11.29 13.89 4.38 5.32 5.08

DaST-P [58] 50.17 52.84 51.29 29.93 16.28 21.44 10.84 15.81 13.92

DDG-P [46] 39.29 57.28 64.46 33.81 29.89 25.77 17.23 21.44 19.37

OursP1-P 55.36 54.63 54.17 29.00 40.31 39.35 25.42 28.32 27.43
OursP2-P 61.05 57.93 57.11 34.07 41.21 40.92 29.22 32.60 30.93

KnockoffP1-L [33] 10.10 15.99 8.98 7.99 6.23 7.35 3.37 2.25 2.22

KnockoffP2-L [33] 14.28 17.41 10.37 8.61 7.42 8.68 3.44 2.25 2.26

DaST-L [58] 20.03 21.48 19.33 15.72 15.92 14.83 7.48 10.39 10.31

DDG-L [46] 25.56 27.64 21.83 21.66 18.67 17.90 12.47 16.26 13.39

OursP1-L 53.28 50.33 40.77 26.53 37.95 35.73 24.47 26.29 25.61
OursP2-L 54.33 51.92 44.96 30.46 39.93 36.60 26.19 29.85 28.62

Table 4. Method Ablation Studies on CIFAR-10 [21] and CIFAR-100 [21] datasets. Here, “Base” means using Eq. (2) only to train

the surrogate model. The default proxy dataset for both is Places365 [57], and the victim models are VGG-16 [41] (CIFAR-10) and

ResNet-50 [16] (CIFAR-100). The other settings are the corresponding ones in Tab. 1

DataSet CIFAR-10-P CIFAR-10-L CIFAR-100-P CIFAR-100-L

Base � � � � � � � � � � � � � � � � � � � �
Lsim � � � � � � � �
Ldiv � � � � � � � �
LGAN � � � � � � � � � � � � � � � �

ASRuntar 18.60 28.59 49.70 50.92 77.54 10.16 24.73 46.26 50.20 75.00 3.31 27.40 42.84 45.67 64.08 2.38 20.28 41.38 44.65 61.16
ASRtar 3.52 12.68 23.86 26.84 41.21 1.98 11.21 20.38 25.05 39.93 0.31 15.94 18.46 20.34 32.60 0.21 13.63 17.22 18.11 29.85

Table 5. Performance evaluation on MNIST dataset [24] via
different attacks (shown in the first column) with two proxy
datasets in terms of both ASRuntar and ASRtar (separated with
a double line). Here, the victim model is AlexNet [22], and the

other settings are the reported in Tab. 1.

Attacks
Probability-Only Label-Only

P2 P1 DDG P2 P1 DDG

FGSMuntar 83.71 82.86 57.35 81.33 81.19 33.10

BIMuntar 94.15 90.76 68.45 90.87 88.37 29.58

PGDuntar 94.95 91.70 66.31 92.04 90.00 31.74

C&Wuntar 68.70 55.74 46.93 62.30 55.63 22.02

FGSMtar 32.00 31.10 29.48 24.79 23.52 19.25

BIMtar 62.57 56.45 44.82 56.27 55.21 18.14

PGDtar 61.05 55.36 39.29 54.33 53.28 25.56

C&Wtar 40.00 38.26 28.57 38.44 33.48 19.66

and the discriminator are all ×5 as the learning rate of the

surrogate model that is reported in Tab. 1. For the experi-

ments in Tabs. 2 to 5, the learning rates of all the three net-

works in Fig. 3 (i.e., the generator, the discriminator, and

the surrogate model) decrease linearly to zero from the 75-

th epoch and stop after the 150-th epoch. Moreover, most

of the experimental items in this paper follow the protocol

of state-of-the-art baseline [46].

4.2. Peer Comparisons

In this section, we evaluate our approach on four vic-

tim datasets under two attack scenarios, i.e., the probability-

only case and the label-only case. The competitors in this

part include a method based on proxy dataset (i.e., Knock-

off [33]) and two data-free methods (i.e., DaST [58] and

DDG [46]). For a fair comparison, we evaluate the perfor-

mance of Knockoff with the two proxy datasets leveraged

by our method in this paper instead of those utilized in their

paper. We run our methods five times over each evalua-

tion, and remove the maximum and the minimum to cal-

culate the average of the remaining three. The results in

this part are summarized in Tab. 2 (for ASRuntar) and Tab. 3

(for ASRtar). The experimental settings on each dataset are

those in Tab. 1.

Associating Tab. 2 with Tab. 3, four conclusions can be

established preliminarily. First, when there are almost no

semantic overlaps between the scarce proxy data (e.g., 4k

images) and the training data, the performance of Knock-

off will be very poor. By contrast, leveraging synthesized

samples is a wise approach. Next, compared to state-of-the-
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Figure 5. Data ablation studies on CIFAR-10 dataset with (a)
Places365 [57] and (b) CUB-200 [48]. Here, we set the number of

proxy images between 1k and 5k to evaluate the performances of

our method and Knockoff under two attack scenarios. The victim

model is VGG-16 [41].

art method [46], we can outperform it by a large margin in

most cases in terms of both targeted and untargeted attack

scenario, especially in untargeted attack scenario. These

results demonstrate that in the large majority of cases, all

of our measures are quiet effective for surrogate training.

Besides, as expected, for the label-only attack scenario,

we can exceed all our competitors with a large margin in

all cases. For the untargeted attack, the performance of

our method in label-only case can even be as good as that

in probability-only case. Moreover, equipped with differ-

ent proxy datasets, our method exhibits different perfor-

mances. Recall that in Sec. 1, we assumed that different

proxy datasets contain different numbers of valid samples.

The results in Tabs. 2 and 3 then give us the empirical vali-

dations of this idea. That is to say, with the same searching

algorithm, P1 dataset may contain more regions that belong

to effective data than P2 dataset.

4.3. Further Analyses

Method Ablation Studies. In this part, we further analyze

the effects of different components in our method. Specifi-

cally, the ablation terms are shown in Tab. 4.

The results in Tab. 4 can be summarized as the follow-

ing: 1) Searching over the whole image space within limited

training steps is very inefficient. However, if we limit the

seeking space by introducing the proxy dataset, things can

get better greatly (i.e., optimizing the generator with Eq. (2)

and Eq. (9)); 2) Based on Eq. (2) and Eq. (9)), improving

the intra-class diversity or enhancing the inter-class simi-

larity are all effective. Compared to those two losses with

each other, the inter-class similarity seems to make more

Table 6. Performance evaluation on CIFAR-10 dataset [21]
with different surrogate models (shown in the first column) in
terms of both ASRuntar and ASRtar. Here, the victim model is

VGG-16 [41], and the proxy dataset is Places365 [57].

Surrogate
ASRuntar ASRtar

Ours-P Ours-L Ours-P Ours-L

GoogleNet [42] 78.87 77.08 45.91 43.32

MobileNet-V2 [40] 73.04 71.91 39.33 37.75

VGG-16 [41] 74.60 73.35 40.43 38.07

VGG-19 [41] 75.79 74.99 41.00 38.98

ResNet-18 [16] 78.40 76.41 45.65 42.45

ResNet-34 [16] 79.31 78.70 46.93 44.74

sense than the intra-class diversity. That is, the prerequi-

site for living up to the potential of the intra-class diver-

sity is that we have enlarged the inter-class similarity; 3)

Compared to probability-only scenario, pushing the synthe-

sized data towards the decision boundary is more effective

in label-only scenario, especially when the class number is

small; 4) Bring all the components of our method together,

the imitation efficiency can be mined excitedly.

Data Ablation Studies. Since we leverage the proxy data in

our method, we now give an ablation study on the number

of proxy images w.r.t the ASR (both targeted and untargeted

are reported). The results on CIFAR-10 are summarized

in Fig. 5 (extended results on CIFAR-100 can be found in

Appendix C.2.). Looking through Fig. 5, we can find that

our method is not very sensitive to the length of the proxy

images. That is, the data space established by the proxy

images with the size between 1k and 5k seems to not have

an impressive impact on the efficiency of our method. But

with the same size of the proxy images, we can outperform

Knockoff by a large margin. From this perspective of view,

the way we utilize the proxy data is more effective.

4.4. Extended Evaluations

Evaluations with different attacks. Here, we evaluate our

method on MNIST dataset [24] with different attacks, i.e.,

FGSM [14], BIM [23], PGD [26], and C&W [3]. As shown

in Tab. 5, we can see that different attacks give consistent

results for measuring the strength of different methods. Our

method can still keep its performance under various attacks.

Thus, in consistent with the suggested by DDG [46], we can

see that there is no need to restrict the attack method for the

evaluation of the performance.

Evaluations with different surrogate model. In real-

ity, we do not know exactly the architecture of the victim

model. Thus, to give a further study in the light of the ar-

chitecture of the surrogate model, we equip the same victim

model with various surrogate models. It is worth noting that

here we only train the surrogate model for 75 epochs with
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Figure 6. Kernel Density Estimation (KDE) curves for the dis-
tribution of boundary loss on CIFAR-10 dataset [21]. Here, we

leverage the Gaussian kernel to draw the curves. The dashed line

represents the median boundary loss.

the learning rate decay from 37-th epoch to zero. The results

in this part are epitomized in Tab. 6. We can see that var-

ious architectures indeed have different imitation abilities.

In most cases, deeper networks can provide more powerful

performance than shallower ones.

Statistical Analyses. We now provide the statistical results

of the synthesized samples by our method and DaST [58].

First, we calculate the distribution for the boundary loss

of the synthesized data and plot the Kernel Density Esti-

mation (KDE) curves of the distribution of boundary loss.

The results on CIFAR-10 dataset [21] are summarized in

Fig. 6. From Fig. 6 we can see that in terms of the me-

dian boundary loss, the data synthesized by our medthod

can outperform those synthesized by DaST. That is to say,

the synthesized data of our method does have larger inter-

class similarity than DaST [58]. Besides, the medians of our

method equipped with Places365 [57] are lower than CUB-

200 [48]. Together with Fig. 2, Tabs. 2 and 3, the importance

of improving the inter-class similarity comes back clearly.

Qualitative Analyses. Besides the statistical analyses, we

also visualize the synthesized data in three classes to see

the difference of intra-class diversity between our method

and DaST [58]. As shown in Fig. 7, the synthesized data

of our methods with arbitrary proxy dataset indeed have a

larger intra-class diversity than DaST, i.e., wider distribu-

tion range (zoom-in to see the range of coordinates) and

more sparse distribution density. This provides a powerful

varification for the effectiveness of Eq. (5). Also, we can

see the intra-class diversity of our method equipped with

Places365 is still better than that equipped with CUB-200.

Associating Fig. 6 with Fig. 7, we think the reason why the

performance of our method equipped with Places365 can

outperform the one equipped with CUB-200 is that both the

intra-class diversity and the inter-class similarity of the syn-

thesized data are larger for Places365 than CUB-200. The

other qualitative results are available in Appendix C.3.

5. Conclusions and Discussions

In this paper, we first illustrated empirically that the ef-

fective data for surrogate training may have large inter-class

DaST

OursP1

OursP2

DaST

OursP1

OursP2

DaST

OursP1

OursP2

Figure 7. Visualization of the generated data in 3 classes (dis-
tinguished by different colors) via t-SNE [45]. Each column rep-

resents one class, and each row denotes one method. Zoom-in for

better view of details.

similarity instead of the inter-class diversity. Based on this

assumption, we introduced a loss for the generator to en-

large the inter-class similarity. Secondly, unlike existing

methods that enlarge the intra-class diversity in a model-

agnostic way, we designed a new loss function to enhance

the intra-class diversity explicitly in a model-specific way.

Finally, based on careful observations, we proposed a triple-

player framework to mine the great potential of the proxy

data. With the proposed framework, our method can main-

tain its efficiency even when there are almost no semantic

overlaps between the training data and the scarce proxy data

(i.e., with the number of the proxy images between 1k and

5k). According to extensive evaluations, the effectiveness

of our method can be greatly verified.

Besides the achievements of this paper, there are still

some challenges to be solved. For instance, first, in a

more practical setting, in which the proxy dataset is of-

ten the mixed one where the samples are randomly chosen

from different datasets, and there are few semantic overlaps

among these datasets. In this scenario, can we achieve more

stable performance? Besides, what is the lower bound in

terms of the number of proxy data that our method allows?

Moreover, from the perspective of the optimization for the

generator, given the determined data distribution built by

the fixed proxy samples, can we design a more efficient way

to search for the valid data within a lower query regime? We

will leave them to our future work.
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