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Abstract

We propose a novel method of registering less-overlap
RGB-D scans. Our method learns global information of a
scene to construct a panorama, and aligns RGB-D scans
to the panorama to perform registration. Different from
existing methods that use local feature points to register
less-overlap RGB-D scans and mismatch too much, we use
global information to guide the registration, thereby allevi-
ating the mismatching problem by preserving global consis-
tency of alignments. To this end, we build a scene inference
network to construct the panorama representing global in-
formation. We introduce a reinforcement learning strategy
to iteratively align RGB-D scans with the panorama and re-
fine the panorama representation, which reduces the noise
of global information and preserves global consistency of
both geometric and photometric alignments. Experimental
results on benchmark datasets including SUNCG, Matter-
port, and ScanNet show the superiority of our method.

1. Introduction

Registering RGB-D scans is the basis of 3D reconstruc-
tion and 3D modeling, and has been increasingly studied
[5,9,19,26]. Most existing methods [27,29] usually require
a large overlap (≥ 70%) to achieve good registration results.
However, in practice, there will inevitably appear to be less-
overlap RGB-D scans when cameras are moved suddenly
and rapidly, or multiple cameras are deployed in less or no
co-visible regions. Rescanning can compensate for the lack
of overlap of less-overlap scans [1, 15], but it is somewhat
costly and inefficient. Therefore, many researchers have
been initiated to investigate directly registering less-overlap
scans.

Existing methods [30, 31] use scene completion strate-
gies and the conventional three-step paradigm (i.e., feature
extraction, feature matching, and pose estimation) to regis-
ter less-overlap scans. However, these methods do not work
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well in registration of blurred and texture-less regions that
commonly appear in the completing scene images, because
the local feature points they used for matching only con-
tain local neighborhood information around the points. The
local neighborhood information is often similar with less
discriminative [14, 25], especially in blurred and texture-
less regions. Therefore, local feature points are prone to
be mismatched, and further incur incorrect pose estimation
and registration. In this paper, we propose to use global in-
formation (e.g., scene layout and objects’ surroundings) of
a scene to guide the registration. We align the less-overlap
scans with the scene globally in a jigsaw-like manner and
preserve global consistency of both geometric and photo-
metric alignments, thereby alleviating the problem caused
by less discriminative local feature points.

Using global information to register less-overlap scans
is non-trivial. Since the global information is acquired
only based on less-overlap RGB-D scans and their com-
pletion, much noise will be produced from the unaligned
scans and unreliable completion. In particular, we have to
face the chicken-and-egg problem: global information re-
lies on good alignments of scans, and aligning scans relies
on good global information. Many methods [2, 29] adopt
a simple iterative strategy to solve the problem by aligning
scans merely based on current global information and re-
fining global information, iteratively. However, the simple
iterative strategy ignores the impact of future refined global
information on scan alignments. This greedy strategy may
lead to suboptimal solutions of alignments, thus obtaining
global information with much noise. The noise degrades
the fidelity of global information, remaining a significant
challenge in the registration of less-overlap scans.

To tackle the challenge, we present a global-aware regis-
tration method of less-overlap RGB-D scans by jointly re-
ducing noise and improving alignments in a reinforcement
learning process. We use reinforcement learning to align
RGB-D scans with the scene on the basis of both current and
future global information, and refine the information based
on the alignment. Our method makes full use of global in-
formation and improves its fidelity by trial-and-error learn-
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ing in a non-greedy manner. To do this, we build a scene
inference network to generate the panorama. The panorama
is a weighted initialization representation of the global in-
formation that represents reliable regions with less noise.
We use global constraints of both photometry and geome-
try according to the alignment between less-overlap scans
and the panorama. We introduce a reinforcement learning
strategy to achieve the global constraints for refining the
panorama representation and aligning scans with the refined
panorama, iteratively.

We evaluate our method by both establishing correspon-
dences and estimating relative poses between RGB-D scans
with less than 10% overlap on SUNCG [23], Matterport [4],
and ScanNet [6] datasets. Experimental results show that
our method outperforms existing state-of-the-art methods.

2. Related Work
Registration of less-overlap scans. Registration methods
[3, 12, 13, 22] of low-overlap scans can be broadly catego-
rized into two types: geometry-based and learning-based.

The geometry-based methods assume the scene struc-
tures are known, and use traditional multiple view geom-
etry to register scans. Hess et al. [11] pre-scanned the in-
door scene to obtain its 3D models, and established 3D-2D
correspondences to register less-overlap scans. Miyata et
al. [18] rescanned the scene with omnidirectional cameras
to obtain its panorama, and applied the 8-point algorithm to
match less-overlap scans to the panorama. These methods
acquire high-fidelity scenes via rescanning for registration,
but it is somewhat costly and inefficient. Differently, our
registration method focuses on acquiring scene structures
via learning from data instead of rescanning.

The learning-based methods use deep networks to learn
scene structures from data, and complete the scenes in a
bottom-up way for registering. Recent works [30, 31] built
generative networks to infer invisible regions of scans, and
then matched local feature points1 to both establish cor-
respondences and estimate relative poses for registration.
Different from these methods using local feature points for
matching, our method makes full use of global information
to guide the registration. Our method preserves global con-
sistency of both geometric and photometric alignments, and
alleviates the mismatching problem in the registration of
blurred and texture-less regions that commonly appear in
the learned completing scene images.
Global registration. Existing global registration meth-
ods usually use global information to construct global con-
straints for guiding the registration. For example, iterative
closest points (ICP) [2], fast global registration (FGR) [32],

1The “global module” proposed in [31] still matches local feature
points (i.e., SIFT feature points and center points of planar patches). The
“global module” aims to use multiple sets of matching results for refine-
ment, which is different from ensuring global consistency in our method.

and deep global registration (DCP) [5] minimize a global
alignment objective of 3D geometry for relative pose es-
timation. Direct visual odometry [14, 33, 33] and semi-
direct visual odometry [8, 10] use the constraint of global
or semi-global photometric differences to track consecu-
tive frames. These global registration methods require large
overlap (≥ 70%) for reliable information, and don not
work well in less-overlap scans. In this paper, we present
a global-aware registration method that uses global infor-
mation to guide the registration of less-overlap (≤ 10%)
scans. We also introduce a reinforcement learning strategy
to jointly reduce noise of global information and improve
global alignments.

3. Preliminaries
Global registration of large-overlap RGB-D scans has

been well investigated. Given two RGB-D scans I1, I2 ∈
RW×H×4, registering I1 and I2 is to solve their rigid trans-
formation matrix T ∈ SE(3). We assume that there ex-
ists a point with the world coordinate M = [X,Y, Z]> in
the scene. Its camera coordinates in I1 and I2 are M1 =
[X1, Y1, Z1]> and M2 = [X2, Y2, Z2]>, respectively. Its
pixel image coordinates in I1 and I2 are m1 = [u1, v1]>

and m2 = [u2, v2]>, respectively. Their homogeneous
coordinates are represented as [M1; 1], [M2; 1], [m1; 1] and
[m2; 1]. We assume that I1 and I2 have the same camera
intrinsic matrix A.

The popular global registration methods solve T by min-
imizing alignment errors,

min
T

∑
m1∈C1

‖I1(m1)− I2(m2)‖22,

s.t., [M1; 1] = T [M2; 1],

(1)

where C1 is the coordinate set in the co-visible regions of I1
and I2. These methods perform well in registration of large-
overlap RGB-D scans. For example, conventional meth-
ods [7, 8] solve T by using the gradient or Gauss-Newton
algorithms, and deep methods [14,16] regress T directly in
deep networks attached with an additional loss function in
Eq. (1). These methods, however, do not work well in reg-
istering less-overlap RGB-D scans, due to lack of sufficient
correspondences for solving T in such RGB-D scans.

4. Method
We present a global-aware registration method that uses

global information to guide the registration of less-overlap
RGB-D scans. As illustrated in Fig. 1, our method learns
global information to construct an initialized panorama I(0)p

in scene inference based on RGB-D scans and their ini-
tialized transformation matrices. I

(0)
p provides global in-

formation for global alignments. Since both the panorama
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Figure 1. Overview of our global-aware registration. RGB-D scans I1 and I2 are initially aligned to obtain their initialized transformation
matrices for transforming RGB-D scans as I(0)1 and I

(0)
2 . The scene inference is performed to construct an initialized panorama I

(0)
p that

provides global information for alignments. The global alignments are used to refine the transformation matrices for transforming RGB-D
scans as I

(1)
1 and I

(1)
2 . The scene is refined to construct the refined panorama I

(1)
p . We iteratively perform global alignments and scene

refinement for N times.

construction and global alignments form a chicken-and-egg
problem, we use a reinforcement learning strategy to itera-
tively perform global alignments and refine the panorama.
In the n-th iteration, we use the global alignment results to
solve the transformation matrices for transforming RGB-D
scans as I

(n)
1 and I

(n)
2 , and we refine the panorama as I

(n)
p

based on the solved transformation matrices.

4.1. Problem Formulation

We use a scene inference network (described in Sec. 4.2)
to construct an initialized panorama I

(0)
p ∈ RWp×Hp×4, and

then solve the transformation matrices as well as refine the
panorama in a reinforcement learning process (described in
Sec. 4.3). We assume that the point with the world coordi-
nate M = [X,Y, Z]> has a camera coordinate Mp in I

(0)
p ,

and its pixel image coordinate is mp. We use the notation
T1 to denote the transformation matrix between I

(0)
p and I1,

and use T2 to denote the transformation matrix between I
(0)
p

and I2.
We perform global-aware registration by converting reg-

istering I1 and I2 into jointly registering I1 and I
(0)
p as

well as registering I2 and I
(0)
p . Therefore, T is solved by

T = T −11 T2, and Eq. (1) is converted into an equivalent
form

min
T1,T2

∑
m1∈C1

‖I1(m1)− I(0)p (mp)‖22

+
∑

m2∈C2

‖I2(m2)− I(0)p (mp)‖22,

s.t., [Mp; 1] = T1[M1; 1], [Mp; 1] = T2[M2; 1],

(2)

where C1 and C2 are the coordinate sets in the respective

co-visible regions.

4.2. Scene Inference

As mentioned above, we design a scene inference net-
work to construct an initialized panorama I

(0)
p and refine it

as I(n)p in the n-th iteration. The inputs include two RGB-D
scans and their transformation matrices that are initialized
by using the method proposed by Yang et al. [30] and re-
fined in our reinforcement learning. As illustrated in Fig. 2,
we use two scan completion sub-networks gθ to extrapolate
RGB-D scans, and then use the panorama inference sub-
network hφ to construct the panorama.

The scan completion sub-networks gθ with shared pa-
rameters have an encoder-decoder structure with some con-
volutional layers. gθ is used to obtain the extrapolated
RGB-D scans that are formulated as a reduced cube-map
form excluding floors and ceilings [24]. In the panorama
inference sub-network hφ, we first encode the extrapolated
RGB-D scans in a siamese encoder, and then perform fea-
ture transforming [20] to transform the two extrapolated
RGB-D scans at feature levels according to the initial-
ized/refined transformation matrices. The two transformed
features are concatenated for constructing the panorama
I
(0)
p /I

(n)
p in a decoder. The panorama is also formulated

as the reduced cube-map form. More details about the net-
work structures can be found in the supplementary materi-
als (Supplementary Sec. S1).

The panorama construction relies on the transformation
matrices T1 and T2 that are exactly what we need to solve
for registration. Therefore, we initialize the transformation
matrices, and refine them with a help of the reinforcement
learning strategy to improve both the panorama construc-
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Figure 2. Illustration of the scene inference network. The scene inference network takes the inputs of RGB-D scans I1 and I2 to generate
the extrapolated RGB-D scans in the scan completion sub-network. The extrapolated RGB-D scans are used to construct the initial-
ized/refined panorama I(0)p /I

(n)
p in the panorama inference sub-network, where we perform feature transforming at feature levels based on

the initialized/refined transformation matrices.

tion and global alignments.

4.3. Reinforcement Learning Strategy

The goal of the reinforcement learning is to maximize
the expected sum of the future discounted reward R =
E[Σnγnrn], where γn ∈ [0, 1) is the discount factor, and
rn is the immediate reward at the n-th step that depends
on the state sn and the actions an. In the n-the iteration,
we solve the transformation matrices T1 and T2 to trans-
form the RGB-D scans as I(n)1 and I

(n)
2 . The state indicates

the transformed RGB-D scans I
(n)
1 and I

(n)
2 at the n-th it-

eration (refer to Sec. 4.3.1), the actions are defined as self-
transformation matrices T (n)

1 and T (n)
2 for estimating trans-

formation matrices T1 and T2 (refer to Sec. 4.3.2), and the
reward is computed based on the alignment errors among
I
(n)
1 , I

(n)
2 and I

(n)
p (refer to Sec. 4.3.3). The transformation

matrices T1, T2 can be solved by calculating the sequential
actions T1 =

∏n−1
i=1 T

(n−i)
1 and T2 =

∏n−1
i=1 T

(n−i)
2 after n

iterations, and the proof is given in the supplementary ma-
terials (Supplementary Sec. S2).

4.3.1 State

The state sn denotes RGB-D scans’ interactions with en-
vironments, which should be instrumental for the RGB-D
scans to decide how to transform themselves for alignments.
At the n-th iteration, the RGB-D scans I

(n)
1 and I

(n)
2 in

the state sn are transformed into new RGB-D scans I(n+1)
1

and I
(n+1)
2 in the state sn+1 through the current actions

an (i.e., the self-transformation matrices T (n)
1 , T (n)

2 ). The
scan transformation indicates moving the point at m(n)

1 and
m

(n)
2 to new coordinates m(n+1)

1 and m
(n+1)
2 , respectively,

where m
(n+1)
1 = AM

(n+1)
1 , [M

(n+1)
1 ; 1] = T (n)

1 [M
(n)
1 ; 1],

and M
(n)
1 = A−1m1. A denotes the camera intrinsic ma-

trix and mn+1
2 is calculated in a similar way.

4.3.2 Action

The action an is regarded as the rigid transformation ma-
trices T (n)

1 and T (n)
2 at the n-th iteration. The goal of the

action is to maximize the expected future reward based on
the alignment errors.

We disentangle the 6D self-transformation matrices T (n)
1

and T (n)
2 as rotation matrices R

(n)
1 ,R

(n)
2 ∈ SO(3) and

translation vectors t(n)1 , t
(n)
2 ∈ R3. The disentangled rota-

tion and translation are not mutually affected during the pre-
diction. We use a policy network fπ with a pre-trained em-
bedding network eψ as the backbone to predict the action.
The inputs to the policy network include transformed RGB-
D scans I(n)1 and I

(n)
2 and the previously refined panorama

I
(n−1)
p . We first convert the RGB-D values to the col-

ored point clouds, and then use the embedding network eψ
built by a Siamese DGCNN [28] to generate point embed-
dings. The embeddings are fed into a cascaded two-branch
network to predict distributions of the disentangled rota-
tion p(R(n)

1 |sn) and p(R(n)
2 |sn) as well as the translation

p(t
(n)
1 |sn) and p(t(n)2 |sn). The rotations R(n)

1 and R
(n)
2 as

well as the translations t(n)1 and t
(n)
2 are sampled from the

distributions parameterized by

R
(n)
1 ∼p(R(n)

1 |sn) = N (µ(R
(n)
1 ),Σ(R

(n)
1 )),

R
(n)
2 ∼p(R(n)

2 |sn) = N (µ(R
(n)
2 ),Σ(R

(n)
2 )),

t
(n)
1 ∼p(t(n)1 |sn) = N (µ(t

(n)
1 ),Σ(t

(n)
1 )),

t
(n)
2 ∼p(t(n)2 |sn) = N (µ(t

(n)
2 ),Σ(t

(n)
2 )),

(3)

where N refers to multivariate Gaussian distributions with
mean values µ and variance matrices Σ. The mean val-
ues µ and variance matrices Σ are the outputs of the policy
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network. More details about the network structure can be
found in the supplementary materials (Supplementary Sec.
S2).

4.3.3 Reward

At each iteration, a reward signal rn is constructed for the
policy update, which is regarded as the global constraint of
both geometric and photometric alignments. We design a
weighted reward rn based on Eq. (2):

rn =
1

1 + dn
,

dn =
∑

m1∈C1

‖F(n)
1 (m1)− F

(n)
p (m1)‖22

1 + U(m1)

+
∑

m2∈C2

‖F(n)
2 (m2)− F

(n)
p (m2)‖22

1 + U(m2)
,

(4)

where F
(n)
1 ,F

(n)
2 and F

(n)
p indicate the geometric and pho-

tometric featrure representations of I(n)1 , I
(n)
2 and I

(n)
p , re-

placing the RGB-D values in Eq. (2) for obtaining robust
results. Following the work of [30], the feature represen-
tations include specifying color, depth, normal, semantic
class, and a learned descriptor. U ∈ RWp×Hp denotes the
uncertainty maps generated by the scene inference network,
increasing the importance of points in higher fidelity re-
gions for computing the reward.

5. Network Training
There are two networks to train: the scene inference

network for constructing panorama and the policy network
for reinforcement learning. The scene inference network is
pre-trained and its parameters are fixed when performing
reinforcement learning. The policy network is optimized
through both pre-training and fine-tuning for better conver-
gence.

5.1. Scene Inference Network

The scene inference network consists of the scan
completion sub-network gθ and panorama inference sub-
network hφ, and they are end-to-end trained via minimizing
a reconstruction loss function

Lg =‖F1 − (F1)∗‖2F + ‖F2 − (F2)∗‖2F +
∥∥∥ 1

2U2

×Avg
((

Fp − (Fp)∗
)2)

+
1

2
log(U2)

∥∥∥2
F
,

(5)

where (·)∗ indicates the ground-truth labels and U2 repre-
sents the Hadamard product between U and U. Avg(·) de-
notes the average pooling performed at the channel dimen-
sion (i.e., RWp×Hp×D → RWp×Hp ). F1 and F2 are feature

representations of the extrapolated RGB-D scans. Fp is the
feature representation of I(0)p . We use the first two F-norm
terms in Eq. (5) to minimize differences between extrap-
olated scans and their ground-truth labels. We design the
last term in Eq. (5) to simultaneously infer the panorama
and measure its uncertainty by estimating parameters of a
Gaussian distribution, where the mean and variance denote
the panorama and its uncertainty, respectively.

5.2. Policy Network

Pre-training. The backbone (i.e., the embedding network
eψ) is pre-trained before the reinforcement learning process.
We follow the work of [27] to use the embedding network
eψ to generate point embeddings of I1, I2 and I

(0)
p . The net-

work is used to establish a mapping between I1 and I
(0)
p and

another mapping between I2 and I
(0)
p based on the similar-

ity of the embeddings. The mappings are used to estimate
transformation matrices T1 and T2 in a differentiable SVD.
A regression loss function is introduced to pre-train eψ:

Le = ‖inv(R1)(R1)∗ − 1‖2F + ‖t1 − (t1)∗‖22
+ ‖inv(R2)(R2)∗ − 1‖2F + ‖t2 − (t2)∗‖22,

(6)

where R1 and R2 denote the predicted rotation matrices,
t1 and t2 denote the predicted translation vectors, and 1 ∈
R3×3 is an identity matrix. inv(·) is the inverse function of
the matrix.
Fine-tuning. The policy network fπ with the pre-trained
backbone is fine-tuned during the reinforcement learning
process. The goals of the policy network include maximiz-
ing the expected discounted reward Rn = E[

∑j=n
j=1 γjrj ]

and regressing the transformation matrices in a supervised
manner. To this end, we use the proximal policy optimiza-
tion (PPO) algorithm [21] to acquire the maximum reward,
and use an extra supervised transformation loss function Ls

at each iteration. The supervised transformation loss func-
tion Ls is

Ls = ‖inv(R(n)
1 )(R

(n)
1 )∗ − 1‖2F + ‖t(n)

1 − (t
(n)
1 )∗‖22

+ ‖inv(R(n)
2 )(R

(n)
2 )∗ − 1‖2F + ‖t(n)

2 − (t
(n)
2 )∗‖22,

(7)

where,

[
(R

(n)
1 )∗ (t

(n)
1 )∗

0> 1

]
= (T1)∗inv

(
n−1∏
i=1

T (n−i)
1

)
,

[
(R

(n)
2 )∗ (t

(n)
2 )∗

0> 1

]
= (T2)∗inv

(
n−1∏
i=1

T (n−i)
2

)
.

(8)

For the PPO optimization algorithm, please refer to the sup-
plementary materials (Supplementary Sec. S2).
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6. Experiments
6.1. Datasets

We evaluate our method on three benchmark datasets:
SUNCG [23], Matterport [4], and ScanNet [6]. The three
datasets contain 45k synthetic 3D scenes, 925 real 3D
scenes, and 1513 real 3D scenes. We use the same train-
ing/testing split as the work of [30]. For training, 9892 train-
ing scenes in the SUNCG dataset and all training scenes in
the other two datasets are selected, where 25, 50, and 25
RGB-D scans are sampled at each scene. For testing, 1000
pairs of RGB-D scans are sampled from the scenes never
seen during training.

6.2. Evaluation Metric

The evaluation strategies include the relative angular er-
ror acos‖(R)∗R>‖F√

2
and the relative translation error ‖t −

(t)∗‖2, where the predicted rotation matrix R and the trans-
lation vector t are derived from the transformation matrix
T = T −11 T2, and (·)∗ denotes the ground-truth labels. We
also evaluate point correspondences {m1,m2|[M1; 1] =
T [M2; 1]} in co-visible regions by computing the true-
positive rate and recall at top-K correspondences. We sort
all correspondences according to the feature representation
error ‖F1(m1)−F2(m2)‖22 in ascending order for obtain-
ing top-K correspondences. If their actual Euclidean dis-
tance ‖[M1; 1]−(T )∗[M2; 1]‖2 in 3D space is less than 1m,
the correspondence is treated as positive, and larger than 1m
is treated as negative.

During the evaluation, the testing RGB-D scans are di-
vided into two categories of large-overlap and less-overlap.
The large-overlap category contains scan pairs I1 and I2
that are overlapped more than 10% in terms of a ratio
o(I1, I2) = |I1 ∩ I2|/min(|I1|, |I2|), and the less-overlap
one contains the remaining scan pairs.

6.3. Results

We compare our method with several state-of-the-art
methods: Super4PCS (Mellado et al. [17]), RobustGR
(Zhou et al. [32]), ScanComplete (Yang et al. [30]), and
HybridRepresentation (Yang et al. [31]), where the work of
Yang et al. [30] is the baseline of our method for estimat-
ing transformation matrices between less-overlap RGB-D
scans.
Comparisons on Transformation Matrices. Tab. 1 shows
the quantitative comparison results between our method and
some existing methods. It can be seen that the perfor-
mance of our method is superior in registering less-overlap
(≤ 10%) RGB-D scans. Our method reduces the mean ro-
tation/translation errors by 6.13◦/0.13m, 3.24◦/0.48m and
11.18◦/0.23m, compared with the method [31] on the three
datasets, showing the superiority of our method. When the
overlapped regions are more than 10%, our method also

SUNCG Matterport ScanNet
Rotation Trans. Rotation Trans. Rotation Trans.

Mellado et al. [17] (≥ 10%) 75.18◦ 1.30m 46.83◦ 1.40m 55.01◦ 1.04m
Zhou et al. [32] (≥ 10%) 41.98◦ 0.83m 53.85◦ 0.78m 49.08◦ 0.71m
Yang et al. [30] (≥ 10%) 12.32◦ 0.33m 10.20◦ 0.27m 27.27◦ 0.53m
Yang et al. [31] (≥ 10%) 19.40◦ 0.24m 8.15◦ 0.29m 17.12◦ 0.67m

Ours (≥ 10%) 10.67◦ 0.24m 8.29◦ 0.24m 15.16◦ 0.54m
Yang et al. [30] (≤ 10%) 78.80◦ 0.52m 87.30◦ 2.19m 78.95◦ 1.60m
Yang et al. [31] (≤ 10%) 35.34◦ 0.50m 52.00◦ 1.15m 44.91◦ 1.00m

Ours (≤ 10%) 29.21◦ 0.37m 48.76◦ 0.67m 33.73◦ 0.77m
Yang et al. [30] (all) 44.50◦ 0.65m 50.02◦ 1.24m 40.97◦ 1.09m
Yang et al. [31] (all) 31.12◦ 0.39m 36.07◦ 0.75m 24.29◦ 0.75m

Ours (all) 22.56◦ 0.29m 34.23◦ 0.56m 20.67◦ 0.61m

Table 1. Evaluations of the relative angular error and the relative
translation error of our method and baseline approaches.

True-Positve Rate (%) Recall (%)
top-30 top-50 top-100 top-30 top-50 top-100

Yang et al. [30] 39.1 39.7 39.0 17.6 29.8 58.5
Yang et al. [31] 41.0 41.1 40.4 18.6 30.3 60.8

Ours 63.4 63.3 64.0 27.8 44.5 70.8

Table 2. Comparisons of the true-positive rate and recall of corre-
spondences on the Matterport dataset.

achieves competitive results compared with these state-of-
the-arts. On average, our method can achieve the best re-
sults in both real and synthetic datasets.

We convert several RGB-D scans to point clouds, and
visualize the results of registering less-overlap (≤ 10%)
RGB-D scans in Fig. 3. We fix the green point clouds and
transform the red point clouds through transformation ma-
trices. When RGB-D scans overlap slightly, our method
performs better than these state-of-the-art methods [30,31].
For more visualization results, please refer to the supple-
mentary materials (Supplementary Sec. S3).
Comparisons on Point Correspondences. We com-
pare quantitative results of point correspondences, where
RGB-D scans have less than 10% overlap regions. For fair
comparisons with [30, 31], we use the extrapolated RGB-
D scans, instead of original input RGB-D scans, to collect
correspondences by traversing all the pixels. These pixels
are converted to 3D points with the ground-truth depth for
calculating the Euclidean distance.

The true-positive rate and recall on the Matterport
dataset are shown in Tab. 2. Our method generates accurate
correspondences in registration of the noisy RGB-D scans,
with improvements of 22.2%− 23.6% and 10.0%− 14.2%
in terms of the true-positive rate and recall compared with
the method of Yang et al. [31]. This verifies the effective-
ness of using global information for registering less-overlap
scans. Preserving global consistency will improve the true-
positive rate and recall of point correspondences.

6362



Ours GT Points GT Color

Figure 3. Qualitative results of Mellado et al. [17], Yang et al. [30], Yang et al. [31] and ours on the ScanNet dataset. The green point
clouds are fixed and the red point clouds are transformed through predicted transformation matrices.

We also visualize point correspondences on several
scenes in Fig. 4. Considering that the compared methods
[30, 31] extrapolate less-overlap RGB-D scans for match-
ing feature points, we obtain the point correspondences by
transforming the extrapolated RGB-D scans with ground-
truth depth in 3D spaces, and visualize the correspondences
on 2D images. Fig. 4, from left to right, shows the input
RGB-D scans, extrapolated RGB-D scans, correspondence
results of Yang et al. [30], Yang et al. [31] and ours. Green
lines indicate correct correspondences and red lines denote
incorrect ones. It can be seen that our method tends to estab-
lish globally consistent correspondences based on relatively
high fidelity regions, thus achieving better registration re-
sults.

6.4. Ablation Study

Analysis of Panorama Representation. As illustrated in
Fig. 5, the global representation of panorama provides suffi-
cient information of a scene for registration. To verify its ef-
fectiveness, we conduct an experiment of using extrapolated
RGB-D scans I1 and I2 instead of the panorama to represent
global features, where we use the same panorama inference
network to obtain the extrapolated scans and panorama for
a fair comparison. In the experiment, the RGB-D scan I1 is
fixed (i.e., ∀T (n)

1 = 1) and the RGB-D scan I2 is aligned
towards the fixed RGB-D scan through the transformation
matrix T2 =

∏N−1
i=1 T

N−i
2 . Experiment results of “w/o

panorama” in Tab. 3 demonstrate the effectiveness of the
panorama representation. The average errors on the Matter-
port and ScanNet datasets are reduced from 37.11◦/0.60m

Matterport ScanNet
Rotation Trans. Rotation Trans.

w/o panorama 37.11◦ 0.60m 24.33◦ 0.65m
w/o weights 40.95◦ 0.72m 27.42◦ 0.75m
w/o reward 44.25◦ 0.78m 28.10◦ 0.76m

Ours 34.23◦ 0.56m 20.67◦ 0.61m

Table 3. The relative pose errors of different components of our
method on the Matterport and ScanNet dataset.

and 24.33◦/0.65m to 34.23◦/0.56m and 20.67◦/0.61m.

Analysis of Reward. To verify the contributions of the
weighted reward, we design two experiments about the re-
ward to estimate transformation matrices. As shown in
Tab. 3, “w/o weights” means that all pixels in co-visible
regions contribute equally, where the uncertainty matrix U
is a zero matrix. The average relative pose errors increase
from 34.23◦/0.56m to 40.95◦/0.72m on the Matterport
dataset and 20.67◦/0.61m to 27.42◦/0.75m on the Scan-
Net dataset. This verifies the importance of the weighted
reward for guiding the alignments. “w/o reward” represents
that the policy network is only optimized by the supervised
regression loss function in Eq. (7) and the reward loss func-
tion is removed, which forms a direct supervised regres-
sion method via deep networks. From Tab. 3, it can be seen
that the reward significantly improves the performance, re-
ducing the average relative errors by 10.02◦/0.22m and
7.43◦/0.15m on the two datasets, respectively.
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Figure 4. Visualizations of our method and baseline methods on the Matterport and ScanNet datasets. Green lines indicate correct
correspondences and red lines denote incorrect ones.

  

Figure 5. Visualizations of global information in an example
panorama. We show the point clouds of two input scans, color
points of two input scans and the ground-truth (GT) panorama.

6.5. Limitations

We discuss the limitations of our method by showing
some failure cases in Fig. 6. (1) In an indoor scene, the oc-
clusions are likely to cause the registration errors, as shown
in Fig. 6 (a) and Fig. 6 (b). (2) When the views of two RGB-
D scans change significantly, our method may be failed for
registration, as represented in Fig. 6 (c). (3) The symmetri-
cal scanning scene may mislead the registration, and a typi-
cal example is exhibited in Fig. 6 (d). These scenes are dif-
ficult to be mapped onto a single panorama for registration,
and may be solved by introducing 3D global representations
or multiple panoramas in the future study.

7. Conclusion

We have presented a global-aware registration method
that can make full use of global information to guide the

(a) (b)

(c) (d)

Figure 6. Several failure cases of our method. Green lines indicate
correct correspondences and red lines denote incorrect ones.

registration of less-overlap RGB-D scans. Our method can
preserve global consistency of both geometric and photo-
metric alignments for eliminating the mismatching problem
caused by local feature points. We have built a panorama
inference network to construct a panorama representing
global information. We have also introduced a reinforce-
ment learning strategy that can jointly reduce the noise of
the global information and improve alignments in trial-and-
error learning. The experiments show that our method can
better register less-overlap RGB-D scans with globally con-
sistent point correspondences.
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