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Abstract

This paper introduces a new matting task called human
instance matting (HIM), which requires the pertinent model
to automatically predict a precise alpha matte for each hu-
man instance. Straightforward combination of closely re-
lated techniques, namely, instance segmentation, soft seg-
mentation and human/conventional matting, will easily fail
in complex cases requiring disentangling mingled colors
belonging to multiple instances along hairy and thin bound-
ary structures. To tackle these technical challenges, we
propose a human instance matting framework, called Inst-
Matt, where a novel mutual guidance strategy working in
tandem with a multi-instance refinement module is used,
for delineating multi-instance relationship among humans
with complex and overlapping boundaries if present. A
new instance matting metric called instance matting qual-
ity (IMQ) is proposed, which addresses the absence of a
unified and fair means of evaluation emphasizing both in-
stance recognition and matting quality. Finally, we con-
struct a HIM benchmark for evaluation, which comprises
of both synthetic and natural benchmark images. In addi-
tion to thorough experimental results on complex cases with
multiple and overlapping human instances each has intri-
cate boundaries, preliminary results are presented on gen-
eral instance matting. Code and benchmark are available
in https://github.com/nowsyn/InstMatt.

1. Introduction

Fast development of mobile internet technology has trig-
gered the rapid growth of multimedia industry especially
we-media, where users are heavily engaged in editing tools
to beautify or re-create their image and video contents. As
one of the primary techniques for efficient image editing,
image matting has achieved significant improvement with
the wide adoption of deep neural networks in the task. How-
ever, existing matting methods still fail or else are not easy
to use in many scenarios, such as extracting the foreground
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Figure 1. Comparisons with related tasks, including soft segmen-
tation results from SSS [5], instance segmentation results from
MaskRCNN [22], human matting results from RVM [36] as well
as ours, and human instance matting results from ours.

human while removing background humans, or instance-
level editing as shown in Figure 1: what if we want to inde-
pendently extract and edit each human instance?

Similar to semantic versus instance segmentation, exist-
ing matting methods, which focus on a region based on a
given trimap or a known object class, are unable to differ-
entiate instances. To address this issue, we propose a new
task called human instance matting (HIM), which aims to
automatically extract precise alpha matte for each human
instance in a given image. HIM shares similarities to the
following conventional tasks while embodying fundamental
differences making it a problem on its own: 1) instance seg-
mentation aims at distinguishing instances, but it can only
produce sharp object boundary without semi-transparency
consideration; 2) recent soft segmentation [5] is capable of
generating soft segments for multiple instances of different
classes with instance-aware features, but cannot deal with
instances of the same class; 3) conventional matting aims at
extracting precise alpha matte, but it lacks instance aware-
ness. Overall, human instance matting is a unified task
encompassing the characteristics of the aforementioned re-
lated tasks while introducing new technical challenges.

Conventional matting is based on the image compositing

2647



equation where an image I is the combination of foreground
F layer, background B layer modulated by alpha α:

I = αF + (1− α)B. (1)

To adapt to multiple instance matting, we modify the 2-
layer Equation 1 to one of multi-instance layered compo-
sition, where each instance layer is attenuated by its corre-
sponding α:

I =

n∑
i=0

αiLi, s.t.
n∑

i=0

αi = 1 (2)

where Li and αi respectively denote the foreground and al-
pha matte for instance i > 0; L0 and α0 respectively rep-
resent the background and its corresponding alpha matte; n
is the number of instances. This equation had also appeared
in [5, 31], but all such relevant matting and segmentation
tasks were not instance aware. The goal of instance matting
is to solve for target mattes αi for all i > 0.

By exploring the complex relation among multiple in-
stances, we propose a new instance matting framework,
called InstMatt, where a novel mutual guidance strategy
enables a deep model to decompose mingled compositing
colors into their respective instances. Our mutual guidance
strategy takes both the relation between instances and the
background, and the relation among instances into consid-
eration. Besides, a multi-instance refinement module is
carefully designed and engineered for interchanging infor-
mation among instances to synchronize predictions for fur-
ther refinement. Equipped with the novel mutual guidance
and multi-instance refinement, our InstMatt is able to not
only produce high-quality human alpha matte but also dis-
tinguish multiple human instances shown in Figure 1.

With this new HIM task, existing evaluation metrics for
instance segmentation or matting are insufficient, which
were designed for either one of the tasks. We propose a
new metric, called instance matting quality (IMQ), that si-
multaneously measures instance recognition quality and al-
pha matte quality. To provide a general and comprehen-
sive validation on instance matting techniques, we construct
an instance matting benchmark, HIM2K, which consists of
a synthetic image benchmark and a natural image bench-
mark totaling 2,000 images with high-quality matte ground
truths.

To demonstrate the promise of our technical contribu-
tions beyond human instance matting, we present prelimi-
nary results on matting multi-object instances not limited to
humans, a fruitful future direction to explore.

2. Related Work

2.1. Matting
Natural Image Matting. Image matting is a pixel-level
task, aiming to extract alpha matte for a foreground object.

Traditional matting methods can be summarized into two
approaches. Sampling-based methods [16, 20, 23, 23] col-
lect a set of known foreground and background samples to
estimate unknown alpha values. Propagation-based meth-
ods [6,7,12,21,30,31] assume neighboring pixels are corre-
lated, and use their affinities to propagate alpha from known
regions to unknown regions. Traditional methods rely on
low-level or statistical features, which can easily fail on
complex cases due to their limited feature representation.

The wide application of deep convolutional neural net-
work (CNN) addresses this feature representation issue to
a great extent. DCNN [15] and DIM [55] are the first rep-
resentative methods to apply CNN in matting, which are
followed by a series of valuable works advancing the state-
of-the-art matting performance. Deep learning-based meth-
ods can be further grouped into three approaches. Trimap
(or mask) based methods [9, 17, 18, 24, 25, 33, 41–43, 48,
49, 52, 56] take an additional trimap to focus the model
on the target foreground object. With careful network de-
sign, these methods have achieved excellent performance.
User-supplied constraints are relaxed in [35, 45] by using
an extra photo taken without the relevant foreground object
for providing useful prior information. Trimap-free meth-
ods [44,58] erase the dependence on additional input. These
methods resort attention or salience to localize foreground
object and extract the corresponding alpha matte.

Human Matting. Human matting is a class-specific image
matting task, where the semantic information of the fore-
ground object, namely, human is known. Known human se-
mantics effectively guides relevant human matting methods
and thus they usually do not require additional input. Deep
learning-based human matting was first proposed in [46]
and then improved in SHM [11]. A method was proposed in
BSHM [38] which makes use of coarse annotated data for
boosting performance. MODNet [28] addresses automatic
and fast human matting using a light-weight network con-
sidering both low-resolution semantics and high-resolution
details. In RVM [36] a video human matting framework
was proposed using a recurrent decoder to improve robust-
ness. Further, a cascade framework is proposed in [57] to
extract alpha matte from low-to-high resolution.

2.2. Segmentation
Instance Segmentation. Instance segmentation simulta-
neously requires instance-level and pixel-level predictions.
The existing methods can be classified into three categories.
Top-down methods [8,10,13,22,26,27,34,40] first detect in-
stances and then segment the object within detected bound-
ing boxes. On the contrary, bottom-up methods [19,39] first
learns the embeddings for each pixel and then group them
into instances. Direct methods [53, 54] are box-free and
grouping-free. They predict instance masks with classifica-
tion in one shot without a detection or clustering step.

2648



Mask
RCNN

Tri-mask 1

Tri-mask 3

Tri-mask 2

MattingBranch Tri-matte 1

MattingBranch

MattingBranch

Tri-matte 2

Tri-matte 3

Multi-Instance 
Refinement

𝑀! 𝑀" 𝑀# 𝛼! 𝛼" 𝛼#

Target mask Reference mask Background mask

Target matte Reference matte Background matte

Tri-mask Tri-matte

Input Image

Output

Output FeaturesInput Image

Zoom InMutual Guidance Strategy

Tri-mask 
Gen.

Figure 2. Overall InstMatt framework consisting of mutual guidance and multi-instance refinement. We first apply MaskRCNN to obtain
instance masks, and then generate tri-mask for each instance to provide mutual guidance for the matting branch. Through mutual guidance
strategy, we upgrade coarse tri-masks into fine tri-mattes for all instances. Finally, a multi-instance refinement module (illustrated in
Figure 3) is designed to make use of the information difference of underlining tri-mattes to further promote the instance matte quality.

Soft Segmentation. Soft segmentation is a pixel-level task,
decomposing an image into several segments where each
pixel may belong partially to multiple segments. Differ-
ent decomposition methods lead to different segments. For
instance, soft color segmentation methods [3, 4, 47, 50, 51]
decompose an image into soft layers of homogeneous col-
ors; spectral matting [31] clusters an image into a set of
spectral segments; SSS [5] decomposes an image into soft
semantic segments via aggregating high-level embeddings
with local-level textures.

2.3. Instance Matting
Instance matting maps each pixel into a set of soft or

fractional alphas each tagged with an unique instance ID.
Besides inheriting the difficulties from instance segmenta-
tion and soft segmentation, instance matting introduces new
algorithmic challenges. Specifically, compared to instance
segmentation, each pixel in instance matting can partially
belong to more than one instance; compared to soft segmen-
tation, each pixel can belong to multiple instances of the
same class. To the best of our knowledge, there is no unified
framework that can simultaneously address these technical
challenges brought by the new instance matting problem. In
this paper, we take human instance matting as an example,
and propose a framework to address the aforementioned is-
sues via our novel mutual guidance and multi-instance re-
finement.

3. Method
Our HIM framework, called InstMatt, consists of two

steps, first recognizing instances and then extracting their
respective alpha mattes. This allows the model to globally
discover instances and then refine them according to local

context. Figure 2 illustrates the whole framework.

3.1. Observations
Sparsity. Equation 2 indicates that a given pixel can be-
long to multiple instances and hence αi, i = 1 · · ·n. How-
ever, in real-life images even containing many instances,
each pixel usually consists of no more than two non-zero
αs, belonging to an instance and the background, or two
overlapping instances, thus satisfying the sparsity observa-
tion of multi-instance matting.

Mutual Information and Tri-mattes. To estimate target
instance alpha matte αi, the other instances j ̸= i can be
regarded as reference information. Note that we do not re-
gard the other instances as part of background since they
have different semantic representation. Therefore, we can
re-formulate Equation 2 into the following equation using
three components, i.e., target instance T , the other instances
if any R (also named reference instances), and the back-
ground B:

I = αiLi︸︷︷︸
target (T )

+ α0L0︸ ︷︷ ︸
background (B)

+

n∑
j=1 and j ̸=i

αjLj︸ ︷︷ ︸
reference instances (R)

(3)

If we treat the component R as a new combined layer,
Equation 3 is then simplified into a sparse representation
as Equation 4, which considers the sparsity constraint:

I = αtLt + αbLb + αrLr, s.t. αt + αb + αr = 1 (4)

where subscripts t,r,b represent the three components T ,
R,B respectively. For a target instance, Equation 4 implies
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Figure 3. (a) Structure of our multi-instance refinement module, where instances exchange information among each other to refine their
features through a multi-instance interaction layer. Two representative multi-instance refinement strategies, i.e. (b) cycle refinement and (c)
parallel refinement are proposed and discussed. Figure (d) illustrates three feature reduction operations used in the two refinement ways.

that the alpha matte of each pixel can be correspondingly
decomposed into three components, αt, αr and αb (where
one or two of them can be zero). These three components
provide mutual information for one another, and they are
collectively termed tri-mattes.

3.2. Mutual Guidance Strategy

Given an image, we first apply MaskRCNN [22] to ex-
tract coarse masks M for human instances. The challenge
lies in turning the coarse mask into precise alpha matte for
each instance. When only one instance exists, the task re-
duces into conventional human matting, which can be ad-
dressed by [56] or other matting techniques. To handle
multiple instances, according to the above observations, we
propose a novel mutual guidance strategy implemented us-
ing a tri-mask. Tri-mask M is defined as the concatenation
of Mt, Mr and Mb, which respectively mask the region of
T , R and B. For instance i, Mi,t, Mi,r and Mi,b are com-
puted using the following tri-mask generation formulas,

Mi,t = Mi, Mi,r =

n⋃
j=1 and j ̸=i

Mj (5)

Mi,b = 1−Mi,t ∪Mi,r (6)

Afterward, for each instance, we feed as input the concate-
nation of the image and its tri-mask into a matting branch
for extracting its tri-matte A, which is the concatenation
of the alpha matte αt, αr and αb. The matting branch
is an encoder-decoder matting network adopting the same
structure with the network used in [56]. After the matting
branch, we extract the tri-mattes for all instances. To super-
vise A, multi-instance constraints are employed which will
be introduced in Section 3.4.

Prior information in tri-mask provides comprehensive
guidance for the model in pixel decomposition. On the one
hand, the mutual exclusion among Mt, Mr and Mb guides

the model to distinguish human instances from the back-
ground. On the other hand, the separation between Mt and
Mr guides the model to differentiate instances. Subject to
the constraint αt+αr+αb = 1, we force the model to learn
a mutual exclusive decomposition in a contrastive manner.

3.3. Multi-Instance Refinement

Given n instances, n tri-mattes, i.e., n triplets of
(αt, αr, αb) are derived via the aforementioned mutual
guidance, which encourages intra-instance but not inter-
intance consistencies, which may lead to misalignment
among overlapping tri-mattes from different instances. We
utilize such inter-instance inconsistencies to correct poten-
tial error of the estimated alpha mattes. Based on tri-mattes,
we design a multi-instance refinement module (MIR), illus-
trated in Figure 3 to further promote the quality of alpha
mattes for all target instances.

Overall Structure. Our multi-instance refinement module
comprises of three steps: separation, interaction and aggre-
gation as shown in Figure 3-(a). For each instance, we use
Fi to represent the feature from the final layer before the
prediction head in the matting branch. Though Fi embodies
the information for T , R and B, it is infeasible to perform
individual operation on these three components. Thus, we
use tri-matte to provide spatial attention so as to obtain the
separate features for T , R and B. Specifically, multiplied
by αi,t, αi,r and αi,b, we obtain three features Fi,t, Fi,r and
Fi,t, i ∈ {1, 2, ..., n}.

Separate representations for T , R and B enable free
communications and interactions to a large extent among
instances. In the second step, a novel multi-instance in-
teraction layer is proposed, in which each instance sends
its features to other instances and receives the features from
other instances. As the number of features varies with the
number of instances, feature reduction operation is required
to integrate these received features for refinement. Specifi-
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cally, the refinement consists of three reduction operations,
i.e., T -reduce, R-reduce, and B-reduce, which are defined
in Equation 7–9 (Figure 3-(d)).

F̃i,t =
1

2
(Fi,t +

1

n− 1

n∑
j=1

Fj,r −
n∑

j=1 and j ̸=i

Fj,t) (7)

F̃i,r =
1

2
(Fi,r +

n∑
j=1 and j ̸=i

Fj,t) (8)

F̃i,b =
1

n

n∑
j=1

Fj,b (9)

Equation (7)–(9) can be regarded as an averaging process.
Such ‘averaging’ can provide communication among in-
stances obtained from each individual branch to alleviate
uncertainty and stabilize the convergence. After the multi-
instance interaction layer, we reunify F̃i,t, F̃i,r and F̃i,t to
produce an enhanced feature for tri-matte estimation.

Cycle versus Parallel Refinement. In the multi-instance
interaction layer, after instances interchanging features in-
formation, there are numerous refinement possibilities since
instances can refine their features concurrently or succes-
sively. Here, we discuss two representative refinement
strategies in the multi-instance interaction layer, i.e. cycle
refinement and parallel refinement shown in Figure 3-(b)
and (c) respectively:

• Cycle refinement. Instances refine their features with
the help of other features sequentially. For example,
instance 1 first refines its feature and then sends its re-
fined feature to all other instances. Next, instance 2
refines its features with the refined features from in-
stance 1 and the unrefined features from the rest in-
stances, and so on. Finally, instance n refines its fea-
tures based on the refined features from all the other
instances.

• Parallel refinement. Instances refine their features with
the help of other features simultaneously. All instances
refine their features based on the unrefined features
from the other instances.

Both refinement strategies are effective in utilizing
multi-instance mutual information to alleviate the effect of
outliers. Since cycle refinement is order-sensitive, parallel
refinement is preferable in non-interactive applications. We
adopt parallel refinement in this paper. More comparisons
and implementation details can be found in the supplemen-
tary materials.

3.4. Multi-Instance Constraint

Conventional matting losses, i.e., alpha loss and pyramid
Laplacian loss, are still applicable in instance matting. Spe-
cially, we apply alpha loss and pyramid Laplacian loss for

αt, αr and αb separately. Their summations are denoted by
Lα and Llap.

Alpha loss and pyramid Laplacian loss directly regular-
ize the distance between the estimated alpha matte and the
ground truth, not considering composition constraint and
alpha constraint among multiple instances as well as the
background. We adapt the composition loss to accommo-
date multi-instance composition constraint as Equation 10,

Lmc = ||αtFt + αrFr + αbFb − I||1 (10)

In addition, we employ multi-instance alpha constraint
on tri-matte as Equation 11 to reduce the solution space:

Lmα = ||αt + αr + αb − 1||1 (11)

Finally, the total loss is the summation of the aforemen-
tioned losses as Equation 12,

L = Lα + Llap + Lmc + Lmα (12)

We apply the loss defined in Equation 12 for the tri-
mattes from both the matting branch and the multi-instance
refinement module.

4. Benchmark

Existing benchmarks are designed for instance segmen-
tation such as COCO dataset [37], or matting such as
Composition-1K [55], but not for instance matting. They
cannot provide a comprehensive evaluation for instance
matting. In this paper, we propose a human instance mat-
ting benchmark called HIM2K, which is composed of two
subsets, synthetic image subset and natural image subset re-
spectively containing 1,680 and 320 images.

Synthetic Subset. We collect a variety of human images
and carefully extract the human foregrounds. Then, we ran-
domly select 2–5 such foregrounds Fi, and iteratively com-
posite them onto a non-human background image sampled
from BG20K [32] following Equation 13 below, where I0
is the background image:

Ii = αiFi + (1− αi)Ii−1, i ∈ {1, ..., n} (13)

Expanding Equation 13 for each foreground object layer, a
uniform formula can be derived as Equation 14:

Ii = I0

i∏
j=1

(1− αj) +

i∑
j=1

αjFj

i∏
k=j

(1− αk) (14)

If we use layer L to represent a foreground image F or
background image I0, Equation 14 for the last iteration can
be simplified as Equation 15 which is the same as Equa-
tion 2:

I =

n∑
i=0

α
′

iLi (15)

2651



Figure 4. HIM2K examples: top is synthetic and bottom is natural.

where α
′

i denotes the alpha matte of i-th layer Li, the target
to be estimated for instance i when i > 0.

Natural Subset. In light of the domain gap between syn-
thetic and real images, we construct a natural subset for
fair evaluation. The natural subset consists of 320 images
containing multiple human instances of a variety of poses
and scenarios, with ground truth alpha matte obtained by
manual labeling using Photoshop. Despite the possibly im-
perfect (still reasonably accurate) annotation, we found that
more than 98% of regions contain no more than 3 overlap-
ping areas, which makes annotated ground truth trustwor-
thy. Evaluation on the natural subset can validate the ef-
fectiveness and stability of different methods on real-world
photos. Figure 4 shows examples from the two subsets.

5. IMQ Metric
In this section, we introduce a new metric for instance

matting. Existing metrics are designed for either matting
or instance segmentation including semantic segmentation.
Instance segmentation metrics, such as mask average preci-
sion (mask AP), are used for measuring the binary instance
mask quality, and thus unsuitable for evaluating alpha matte
with fractional values in transitional region. On the other
hand, the most widely used matting metrics, namely, the
four errors MAD (or SAD), MSE, Gradient and Connec-
tivity, measure alpha matte quality without instance aware-
ness. The above limitations of existing metrics necessitate a
new metric, which we call instance matting quality (IMQ).

Instance Matting Quality. IMQ measures instance matte
quality giving attention to both instance recognition quality
and matting quality. Inspired by the panoptic quality [29],
IMQ is defined by Equation 16:

IMQ =

∑
α,α̂∈TP S(α, α̂)

|TP |+ 1
2 |FP |+ 1

2 |FN |
(16)

where S is the similarity measurement function; TP , FP ,
and FN are respectively the true positive, false positive and
false negative sets; α and α̂ are the predicted and ground
truth instance alpha matte. The computation of IMQ has
two steps: instance matching and similarity measurement
as revealed in Equation 16.

Instance Matching. To match the predicted instance mat-
tes with ground-truth instance mattes, the matching crite-
rion is intersection-over-union (IoU) between α and α̂. We
first quantify each instance matte into a binary mask by ap-
plying α > 0 before computing IoU matrix. Based on the
IoU matrix, we apply Hungarian matching [1], a greedy as-
signment strategy to achieve one-to-one assignment. All
assigned predicted instance mattes are treated as TP candi-
dates, where a candidate is assigned to TP if its IoU is above
a threshold (0.5 is adopted in this paper). After settling the
TP set, the FP set and FN set can be derived easily.

Similarity Measurement. The similarity measurement cri-
terion is defined as Equation 17 below, where w is a balance
factor, and E is an error function, e.g., MSE,

S(α, α̂) = 1−min(wE(α, α̂), 1) (17)

We denote IMQ applying MSE error function to measure
similarity as IMQmse. If we replace the error function E by
MAD, Gradient and Connectivity, we respectively obtain
IMQmad, IMQgrad and IMQconn.

Analysis. Similar to panoptic quality, IMQ can be decom-
posed into two components as Equation 18,

IMQ =

∑
α,α̂∈TP S(α, α̂)

|TP |︸ ︷︷ ︸
Matting Quality (MQ)

|TP |
|TP |+ 1

2
|FP |+ 1

2
|FN |︸ ︷︷ ︸

Recognition Quality (RQ)

(18)

RQ has a similar expression to F1-score, a metric widely
used in recognition tasks, while MQ measures the matting
quality for TP set. Different from existing instance segmen-
tation and matting metrics, collaboration of RQ and MQ
provides a fair and comprehensive evaluation for instance
matte quality.

6. Experiments
In this section, we introduce our synthetic training

dataset, evaluation and ablation studies. More details about
the implementation including the network structure, data
augmentations and training schedule can be found in the
supplementary materials.

6.1. Synthetic Training Dataset

Since there is no off-the-shelf human instance matting
training dataset, we construct our synthetic training dataset
following [55], by compositing human instances onto back-
ground images. Specifically, for the foreground, we col-
lect 38,618 human instances with matting annotations from
Adobe Image Matting dataset [55], Distinctions-646 [44]
and self-collected dataset. For the background, we use non-
human high-resolution images from [32, 49].

To produce a synthetic image, we randomly pick 2 to
5 instances from the foreground set, and composite them
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onto a background image. Random crop and zoom are ap-
plied on each foreground image. To avoid degenerate cases,
such as a totally occluded instance, we composite instances
with a random gap or overlap within some reasonable range.
The composition is an iterative procedure following Equa-
tion 13. Finally, a total of 35,000 synthetic images with
multiple instances are included in our training dataset.

6.2. Evaluation
Human Instance Matting. We perform joint qualitative
and quantitative evaluations on multiple datasets, including
HIM2K, RWP636 [56], SPD [2], COCO [37] dataset as well
as more complex real-world images.

HIM2K is the proposed benchmark for human instance
matting. Since our method is the first work to address in-
stance matting, we compare our method with instance seg-
mentation methods [14,22] and a straightforward extension
on existing state-of-the-art matting methods [18, 33, 48, 56]
based on the masks from MaskRCNN [22]. To validate the
effectiveness of our method, we also conduct comparisons
on a human matting benchmark, Real World Portrait 636
(RWP636), and a human segmentation dataset, Supervisely
Person dataset (SPD). SPD consists of 5418 images with
fine mask annotations. We split a subset comprising of 500
images from SPD as the testing dataset. Table 1 and 2 tabu-
late the quantitative results on the three testing sets, showing
our method achieves the state-of-the art performance.

Figure 5 shows qualitative comparisons on complex im-
ages, demonstrating that instance matting is capable of solv-
ing challenging cases with multiple and overlapping in-
stances, which cannot be addressed by other existing in-
stance segmentation or matting techniques. Note on the
other hand while COCO is a widely used testing dataset
in detection and segmentation tasks, the mask annotations
are labeled by rough polygons thus making COCO inap-
propriate in quantitative results comparison for the instance
matting task. Thus, we instead conduct qualitative com-
parisons on COCO dataset in Figure 6. Compared with in-
stance segmentation algorithms, our InstMatt framework is
significantly better in handling complex matting scenarios
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Method HIM2K (Synthetic Subset) HIM2K (Natural Subset) RWP636
IMQmad IMQmse IMQgrad IMQconn IMQmad IMQmse IMQgrad IMQconn IMQmad IMQmse

MaskRCNN [22] 18.37 25.65 0.45 19.07 24.22 33.74 2.27 26.65 20.26 25.36
MaskRCNN + CascadePSP [14] 40.85 51.64 29.59 43.37 64.58 74.66 60.02 67.20 42.20 52.91
MaskRCNN + GCA [33] 37.76 51.56 38.33 39.90 45.72 61.40 44.77 48.81 33.87 46.47
MaskRCNN + SIM [48] 43.02 52.90 40.63 44.29 54.43 66.67 49.56 58.12 34.66 46.60
MaskRCNN + FBA [18] 36.01 51.44 37.86 38.81 34.81 48.32 36.29 37.23 35.00 47.54
MaskRCNN + MaskGuided [56] 51.67 67.08 53.03 55.38 57.98 71.12 66.53 60.86 30.64 53.16
InstMatt (Ours) 63.59 78.14 64.50 67.71 70.26 81.34 74.90 72.60 51.10 73.09

Table 1. Quantitative comparisons on HIM2K and RWP636 [56]. The balance factor w in Equation 17 is set to 10. For IMQmad, IMQmse,
IMQgrad and IMQconn, the higher, the better. Bold numbers indicate the best performance.

Image 𝑀! 𝑀! +𝑀" 𝑀! +𝑀" +𝑀#

Figure 8. Comparisons among different mask guidance settings.
See in particular the zoom-ins showing the best results when all
three components are enabled, where the blonde’s hairs and the
man’s shoulder are clearly delineated.

Image

Instance 1

Instance 2

before MIR after cycle MIR after parallel MIR

before MIR after cycle MIR after parallel MIR

Figure 9. Alpha matte before and after multi-instance refinement.

at the instance level, such as defocus, motion, blurry or thin
hairy structures.

Instance Matting Beyond Humans. This paper takes hu-
man instance matting as our focused contribution in in-
stance matting. Notably, our method, including mutual
guidance, multi-instance refinement, multi-instance con-
straints, and the proposed instance matting metric IMQ as
well can be also applied to instance matting on other seman-
tic classes. We adapt our method on another two popular
classes, i.e., cat and dog. Preliminary results shown in Fig-
ure 7 indicate that our method may generalize well to other
semantic classes in instance matting.

6.3. Ablation Study

Tri-mask. The tri-mask provides mutual guidance for both
instances versus background as well as instances versus in-
stances. Table 3 tabulates the results on models with differ-

Method IMQmad IMQmse
MaskRCNN [22] 18.44 18.48
MaskRCNN + CascadePSP [14] 30.54 33.37
InstMatt (Ours) 30.67 39.56

Table 2. Quantitative results on SPD [2].

Mt Mr Mb MIR IMQmad IMQmse
✓ ✗ ✗ ✗ 57.98 71.12
✓ ✓ ✗ ✗ 62.25 74.35
✓ ✓ ✓ ✗ 69.40 79.74
✓ ✓ ✓ ✓ 70.26 81.34

Table 3. Results on tri-mask and multi-instance refinement.

ent mask guidance settings. The tri-mask guides the model
to assign each pixel partially to the target instance, other
instances or the background. Notably, with tri-mask, some
missing part due to occlusion are recovered as shown in the
examples in Figure 8. The representation of the missing
part is similar to that of the target instance, which cannot be
ascribed to background or other instances due to the mutual
exclusive supervision.

Multi-Instance Refinement. Multi-instance refinement
aligns alpha matte predictions among multiple tri-mattes.
Table 3 shows that the IMQmse of our model with and with-
out multi-instance refinement module is 81.34 and 79.74,
indicating an improvement from our multi-instance refine-
ment. Figure 9 further shows that multi-instance refinement
is helpful in erasing outliers due to the information synchro-
nization among different instances.

7. Conclusion
In this paper, we propose a new task, instance matting

with human instance matting as the first significant example
by proposing a novel instance matting framework. Our In-
stMatt utilizes mutual exclusive guidance to guide the mat-
ting branch to extract alpha matte for each instance, which is
followed by a multi-instance refinement module to synchro-
nize information among co-occurring instances. InstMatt
is capable of handling challenging cases with multiple and
overlapping instances, which can be adapted to other se-
mantic class instance matting beyond human instances. We
hope the proposed method, alongside with the new instance
matting metric and the human instance matting benchmark,
will encourage more future works.
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