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Abstract

Human trajectory prediction task aims to analyze human
future movements given their past status, which is a crucial
step for many autonomous systems such as self-driving cars
and social robots. In real-world scenarios, it is unlikely to
obtain sufficiently long observations at all times for predic-
tion, considering inevitable factors such as tracking losses
and sudden events. However, the problem of trajectory pre-
diction with limited observations has not drawn much at-
tention in previous work. In this paper, we study a task
named momentary trajectory prediction, which reduces the
observed history from a long time sequence to an extreme
situation of two frames, one frame for social and scene con-
texts and both frames for the velocity of agents. We perform
a rigorous study of existing state-of-the-art approaches in
this challenging setting on two widely used benchmarks.
We further propose a unified feature extractor, along with
a novel pre-training mechanism, to capture effective infor-
mation within the momentary observation. Our extractor
can be adopted in existing prediction models and substan-
tially boost their performance of momentary trajectory pre-
diction. We hope our work will pave the way for more re-
sponsive, precise and robust prediction approaches, an im-
portant step toward real-world autonomous systems.

1. Introduction
Human trajectory prediction [2,9,15] plays an important

role in the area of human behavior understanding [17, 18,
28, 40] and autonomous driving systems [3, 15, 31] by in-
vestigating future movements of traffic agents given their
past status observed from a video. Despite the good per-
formance achieved by existing methods, these approaches
are developed on historical observations over several sec-
onds. However, accurate tracking over long periods of
time is quite difficult, especially in congested traffic sce-
narios [11, 16, 21, 25, 29]. Further, responsive and precise
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Figure 1. The necessity of momentary prediction in emergency
situations. The figures illustrate some sudden events, often occur-
ring in highly occluded areas such as underground parking lots and
congested roads. The pedestrian’s trajectory have to be precisely
and immediately predicted to avoid the potential collision in a very
short time.

predictions are important and necessary for safety purposes
when emergency situations suddenly come into view (see
Fig. 1). Therefore, a prediction task with momentary obser-
vation is essential to be studied.

In this paper, we focus on the most extreme case that
only two frames are available for observation, one frame
for social and scene context and both frames for the veloc-
ity of agents. We refer to the task as Momentary Trajec-
tory Prediction. Note that we exclude the case of single-
shot (one-frame observation) where the basic information,
velocity magnitude, is missing. After reducing the obser-
vation horizon in previous approaches, we observe obvious
degradation of their performance (see Fig. 2).

Despite the lack of temporal features, three common
types of information still widely exist between two adjacent
frames and provide a large number of leads for trajectory
prediction: i) velocity of agents, ii) social contexts, and iii)
scene contexts. The velocity provides motion basis of hu-
man short-term behavior, while context information implies
enough clues to predict long-term trends and disturbances
of movements. A fundamental aspect of momentary trajec-
tory prediction is how to explore and integrate these poten-
tial information implicit in the limited observations. In this
paper, we raise a unified input formulation to join the three
types of information as a whole (see Fig. 4), integrating all
information at data level. The major insight of this input
formulation is to consider scene restrictions as static inter-
active objects while surrounding traffic agents as dynamic
interactive objects with corresponding velocities. Then Mo-
mentary Observation feature Extractor (MOE) (see Fig. 5)
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Figure 2. Qualitative comparison of trajectory prediction between traditional and momentary observation time on [6,32,35], including state-
of-the-art PCCSNet [35]. Lines in yellow denote ground truth trajectories in the past (8 frames/3.2 sec) and future (12 frames/4.8 sec),
lines in cyan denote predictions with traditional observation time (8 frames/3.2 sec) and lines in red denote predictions with momentary
observation time (2 frames/0.8 sec). The frame rate is 2.5fps. Obvious degradation occurs as the observation time reduces.

is proposed to directly explore a joint historical representa-
tion from the input.

Our feature extraction process enjoys a significant ad-
vantage by avoiding the need for feature alignment between
social and scene context. Previous work such as [12,19,30]
models these different types of information by separately
encoding them, then fusing them together with a fusion
module or concatenation, and finally decoding the fused
feature for prediction results. This paradigm in previous
work adds a burden of feature alignment on the fusion mod-
ule or the following decoder, since there is a big difference
between the feature of trajectories (coordinate sequences)
and scene contexts (RGB images). This burden is enlarged
in the momentary observation setting, considering a good
social feature is much harder to obtain due to the lack of
historical trajectories. In comparison, by integrating these
information at data level and encoding the input in a uni-
fied manner, our approach subtly avoids the need of feature
alignment and learns a better momentary observation repre-
sentation.

Moreover, another potential problem resulting from the
reduced observation is that prediction models become more
difficult to fit, since they have to map the observation space
with a much lower dimension to the original prediction
space. We alleviate this by introducing a novel pre-training
mechanism for the MOE, named soft pre-training, lever-
aging ideas from multi-task learning and self-supervised
learning. In soft pre-training, the supervisions are sev-
eral sub-tasks related to trajectory prediction yet much eas-
ier. We raise masked trajectory complement and context
restoration as two sub-tasks in our implementation. After
pre-training, the MOE can be easily integrated into existing

prediction frameworks to improve their momentary predic-
tion performance.

Exhaustive experiments are conducted on ETH/UCY
dataset [13,27] and SDD [28] (Stanford Drone Dataset). We
first perform a rigorous study of the performance of exist-
ing state-of-the-art approaches on this challenging setting.
Then, we adopt the MOE into multiple prediction frame-
works to show substantial improvement can be brought with
the aid of our approach.

2. Related Work and Motivation

Human Trajectory Prediction. Given a period of obser-
vation, the trajectory prediction task [2, 10, 15, 30, 38, 41]
is proposed to forecast possible future movements of traf-
fic agents. It has already been widely adopted in the field
of robotics, security surveillance and autonomous driving.
Previous studies have covered different aspects of trajectory
prediction. A large number of work mainly focuses on min-
ing and exploiting representations that are useful for pre-
diction, including social interactions [2, 6], environment re-
strictions [19, 30] and human kinematics [19]. Meanwhile,
some researchers study the multimodal nature of trajectory
prediction [6, 15]. Pioneers mainly conduct human trajec-
tory prediction research based on typical settings (i.e. obser-
vation lasts 3.2sec and predicting future 4.8sec). Recently,
more challenging prediction settings have been studied to
push a step forward to real-world autonomous systems. For
example, [4, 23] are raised for long term trajectory predic-
tion and achieve great performance. In this paper, we focus
on the momentary observation setting, which is inevitable in
many real-world scenarios. We perform a rigorous study of
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Benchmark New Agents Tracking Losses Station to Movement Total Duration/sec
SDD 10300 / 0.59 20335 / 1.17 8031 / 0.46 38666 / 2.22 17384

ETH/UCY 1950 / 0.98 - 83 / 0.04 2033 / 1.02 1980

Table 1. The appearance quantity (times) / frequency (times per second) of agents with only momentary observation.

the performance of existing approaches on this new setting
in Sec. 5.

Feature Extraction for Trajectory Prediction. Noticing
the observation clues for human trajectory prediction often
come from different sources such as social interactions, en-
vironment restrictions and etc., approaches of feature ex-
traction for trajectory prediction various a lot. Many stud-
ies encode social interactions by integrating pooling mech-
anisms [2, 6] or GNNs [12, 24, 34] into a temporal or recur-
rent pipeline. To take environment restrictions into consid-
eration, Sophie [30] extracts rich information from images
with deep convolutional neural networks. Next [19] ana-
lyzes person keypoints with CNNs to take a step further.
To fuse deep features from different sources together, the
majority of studies [12, 19, 30] use attention mechanisms
or simple concatenations. However, in the momentary ob-
servation setting, the feature alignment between social and
scene features becomes much harder, leading to unsatisfac-
tory prediction results. In this paper, we integrate different
types of observation clues at data level following a novel
input formulation, and then design the MOE to jointly learn
them in a unified manner.

Self-supervised Learning. Self-supervised learning is of
great interest recently in many areas [5, 14, 39]. Tradi-
tional self-supervised learning approaches mainly follow
two lines, generative [5, 8] and contrastive [7, 26]. A gener-
ative learning method uses reconstruction loss to supervise
whether the decoder can accurately reconstruct the original
input with learned representations. A contrastive method,
on the other hand, aims to train the model to discriminate
between different inputs on the feature space. In this paper,
both sub-tasks, masked trajectory complement and context
restoration, proposed for pre-training is performed in a gen-
erative self-supervised learning manner.

Multi-task Learning. Multi-task learning [36] aims to
improve the performance and generalization of models by
leveraging domain-specific information contained in the
training signals of related tasks. One of its great advantages
is that more comprehensive representations can be learned
since associated tasks often share complementary informa-
tion. Recently, multi-task learning models combining tra-
jectory prediction and other vision tasks including pedes-
trian detection [20, 22, 42], tracking [20] and action recog-
nition [19] have attracted a lot of interest. We introduce this
idea in our pre-training process to encourage our model to

learn compact and comprehensive representations revealing
both human motions and surrounding contexts.

3. Momentary Trajectory Prediction

Problem Formulation. Given two frames of the video at
time instants [1, 2], speed of all agents and an image of
the scene can be first pre-processed as observed informa-
tion. Assume the displacement of an agent between the
two frames is ∆x and the frame rate is r, the speed of this
agent can be estimated by ∆x × r. Based on these obser-
vations, the task aims to predict future possible trajectories
Ŷ = {(x̂t, ŷt)} for prediction horizon t ∈ [3, 2 + Tpred].

A Prevalent Situation. Although the setting of momen-
tary trajectory prediction is extreme, this situation is preva-
lent in real-world scenarios. In general, three widely ex-
isting common cases will lead to agents with only momen-
tary observation: i) new agents coming into the view, ii)
tracking losses, and iii) stationary agents suddenly starting
to move. We count the three cases on two major large-
scale human trajectory prediction benchmarks, SDD [28]
and ETH/UCY [13, 27], see Tab. 1. The statistics show that
agents with only momentary observations appear every sec-
ond on average. Thus, momentary trajectory prediction is
an essential topic that should not be ignored to develop safer
autonomous systems. Note that ETH/UCY datasets do not
give annotations for tracking losses, we only consider the
other two situations.

Discussion. Comparing with traditional formulation that
the observation time instants are [1, Tobs] (Tobs is usually 8
in experiments of previous work), our formulation shortens
the number of observed frames to an extreme level. In this
situation, temporal motion behavior information implicit in
historical paths is missing. Since these missing information
usually includes clues for acceleration, deceleration, redi-
rection and many others behaviors which are essential for
trajectory prediction, momentary prediction is much more
challenging. Still, there are three types of potential infor-
mation still widely existing in momentary observations: ve-
locity estimated by the displacement between two frames,
social context and scene context. Other information such as
skeletons and facial expressions may also be extracted from
some momentary observations.

To develop a momentary prediction algorithm, there are
two inevitable issues that have to be addressed. One is how
to effectively extract observation representations of poten-
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Figure 3. An overview of our proposed approach including: i) feature extraction with Momentary Observation feature Extractor (blue) and
ii) soft pre-training with Masked Trajectory Complement (yellow) and Context Restoration (green). R denotes the learned representation
output by MOE, S∗, A∗ are restored labels indicating scene semantics and the presence of traffic agents referring to Eq. 3 and 4. How we
formulate the input is illustrated in Fig. 4, and the detailed structure of MOE is shown in Fig. 5. After pre-training the MOE according to
the flowchart, it can be adopted in existing prediction frameworks as the feature extraction part.

tial information in momentary observations (i.e. social and
scene context). The paradigm in previous work [12, 19, 30]
that integrates social and scene information in feature level
(with fusion modules or concatenation) shows certain de-
fects in feature alignment, considering satisfactory social
features become much harder to obtain because of the lack
of historical trajectories. The other is how to effectively
fitting the model. As the dimension of observation space
greatly narrows, prediction models have to fill a larger gap
between the observation space and the prediction space.

Note that we do not study the case of one-shot observa-
tion that only one frame is considered as input, because the
magnitude of velocity cannot be estimated. Without such an
important lead, models may be able to plan a reasonable fu-
ture path but fail to align the time and locations accurately.

4. Approach

As mentioned above, there are two inevitable issues that
have to be addressed in the momentary trajectory prediction
configuration: i) effectively extracting momentary observa-
tion representations, and ii) facilitating better fitting of the
model. An illustration of our approaches is in Fig. 3. We
discuss about our proposed Momentary Observation feature
Extractor (MOE) to address issue i in Sec. 4.1 and the soft
pre-training to address issue ii in Sec. 4.2. Further, we show
how to integrate our MOE into existing prediction frame-
works and implementation details in Sec. 4.3.

4.1. Momentary Observation Feature Extraction

Different from previous approaches [12, 19, 30] that in-
tegrate social and scene context information at the feature
level, our insight is to integrate them at the data level, which

directly avoids the potential problems in feature alignment.
To model this insight, we design a novel formulation for
both social and scene information into a unified input for-
mat I , and then use the MOE to learn joint representations.

Input formulation. The formulation of our input is illus-
trated in Fig. 4. We organize it as a context map I by consid-
ering scene restrictions as static interactive objects and traf-
fic agents as dynamic interactive objects with corresponding
velocity. In detail, the input can be generated as following:

1. Pre-process the scene by semantic segmentation and
map the semantic label to the coordinate system of tra-
jectories by mapping each pixel to a coordinate.

2. Rotate the coordinate system so that the velocity direc-
tion of the target agent points to the positive X-axis,
for normalization. Then mark an effective context area
with the target as its center and split it into patches.
In our implementation, the effective area is a square
whose length is m ∗ l, and it is split into m × m sub
squares.

3. Represent each patch with an n ∗ 5 dimensional patch
tensor p of n ∗ (S, vx, vy, ox, oy), where n denotes
the number of traffic agents in the patch, S denotes
the semantic label of the patch, vx, vy indicate the ve-
locity of the agent, and ox, oy indicate its offset from
the patch center. For those patches outside the scene,
we consider their semantic label as inaccessible areas.
For patches containing areas with different semantic
labels, we regard the semantic label of the patch cen-
ter as S. For patches with no agents, n is one and
(vx, vy, ox, oy) are all zeros as placeholder.
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Figure 4. Schematic of the input formulation. a. The preprocessed
scene in the trajectory coordinate system including the position
and velocity of agents and scene semantics; b. The patch-form
effective area on the rotated scene; c. A closer look in a patch.
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Figure 5. Detailed structure of the MOE. The architecture of the
transformer encoder follows [37].

With this formulation, each 5D vector (S, vx, vy, ox, oy)
can represent an interactive object surrounding the target
agent and we generate context map I = {pi|i ∈ [1,m2]}
for the following encoding operation.

Feature extractor. The MOE receives the context map I
as input and outputs a deep representation R for the tar-
get agent (see Fig. 3). A detailed architecture of MOE
is in Fig. 5, consisting of two parts: in-patch and cross-
patch feature aggregation. The in-patch feature aggrega-
tion part takes 5D vectors of n agents in a patch tensor
as input, encodes each vector with multi-layer perceptrons
(mlps) which share the same weights, and then aggregates
the features by max pooling. The cross-patch feature ag-
gregation part is designed as a transformer architecture, a
popular feature extractor for patch form data. We adopt a
learnable variable matrix for positional embedding. Fur-
ther, the velocity feature of the target agent embedded by
mlps is prepended to the sequence of embedded patches,
whose state at the output of the transformer encoder will
serve as our learned representation R. With both in-patch
and cross-patch feature aggregation, the representation R
contains rich information of the momentary observation,
and can be then fed into any proper types of decoder to get
prediction results.

4.2. Soft Pre-training

As the observed information greatly reduced, learning
a mapping between the observation space and the predic-
tion space becomes more difficult, making the model much
harder to fit when directly using the whole future ground
truth trajectory as supervision. To alleviate this issue, we
propose the soft pre-training mechanism, which pre-trains
the MOE on several sub-tasks related to trajectory predic-
tion yet much easier in a multi-task learning manner. We
raise masked trajectory complement and context restoration
as sub-tasks, aiming at learning effective and comprehen-
sive historical representation R incorporating two essential
aspects for human trajectory prediction: human motion be-
haviors and context information.

Masked trajectory complement. Masked trajectory com-
plement softens the prediction task by giving some clues of
future trajectories. As shown in Fig. 3, some parts of the
ground truth future trajectory are first masked (in grey) in
random positions, and the task requires to complement the
masked parts according to the representation R, which can
be written as

Y ∗ = Dm([R,Em(Ym)]) (1)

where Ym and Y ∗ denotes the masked ground truth trajec-
tory and complemented future trajectory. The Em encodes
Ym into deep features, which then are concatenated with R
to feed into the decoder Dm to complement Ym. We adopt
a transformer as Em to better handle sequence Ym which is
in random length and has dynamic time intervals due to the
random masks. Dm is an LSTM decoder. The loss of this
task Lm is performed as

Lm = MSE(Y, Y ∗) (2)

where Y denotes the ground truth trajectory and MSE is
mean square error.

Context restoration. We introduce context restoration task
to encourage the model to perceive comprehensive social
and scene context information. Receiving R as input, the
task restores the context information for each patch: i) scene
semantic label S and ii) the presence of traffic agents A (1
if any agent exists in the patch and 0 otherwise), written as

S∗ = Ds(R) (3)

A∗ = Da(R) (4)

Ds, Da are mlp classifiers for scene semantic labels and
agents’ presence respectively, and S∗, A∗ denote restored
S,A. The loss of this task Lr is performed as

Lr = CrossEntropy(S, S∗) + CrossEntropy(A,A∗) (5)
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Observation Method ETH HOTEL UNIV ZARA1 ZARA2 AVG SDD

Traditional

SGAN [6] 0.71/1.29 0.48/1.02 0.56/1.18 0.34/0.69 0.31/0.64 0.48/0.96 16.67/33.18
Next [19] 0.73/1.65 0.30/0.59 0.60/1.27 0.38/0.81 0.31/0.68 0.46/1.00 -

Social-STGCNN [24] 0.64/1.11 0.49/0.85 0.44/0.79 0.34/0.53 0.30/0.48 0.44/0.75 15.50/26.66
Trajectron++ [31] 0.58/1.04 0.16/0.25 0.31/0.55 0.22/0.42 0.17/0.32 0.29/0.52 11.19/19.17

SGCN [32] 0.63/1.03 0.32/0.55 0.37/0.70 0.29/0.53 0.25/0.45 0.37/0.65 13.49/23.61
PCCSNet [35] 0.28/0.54 0.11/0.19 0.29/0.60 0.21/0.44 0.15/0.34 0.21/0.42 8.62/16.16

Momentary

SGAN [6] 0.86/1.60 0.52/0.99 0.57/1.20 0.41/0.79 0.36/0.74 0.54/1.06 17.76/34.83
Next [19] 0.77/1.81 0.32/0.62 0.61/1.31 0.39/0.82 0.34/0.76 0.49/1.06 -

Social-STGCNN [24] 1.24/2.23 0.77/1.44 0.45/0.81 0.38/0.57 0.35/0.58 0.64/1.13 17.77/29.12
Trajectron++ [31] 0.76/1.43 0.30/0.56 0.36/0.74 0.22/0.42 0.18/0.34 0.36/0.70 13.07/22.88

SGCN [32] 0.88/1.66 0.55/1.16 0.38/0.71 0.30/0.54 0.25/0.46 0.47/0.91 15.40/25.69
PCCSNet [35] 0.34/0.65 0.14/0.25 0.31/0.63 0.23/0.46 0.16/0.37 0.24/0.47 9.19/17.71

Table 2. Comparison of baseline methods’ performance (ADE/FDE) between traditional and momentary prediction setting. Note that i)
the reported results of SGAN are obtained from their official code [1], which are much better than those in their paper [6], ii) we are
unable to conduct experiments of Next on SDD due to the lack of extra annotations such as human skeletons, and iii) the reported results
of Trajectron++ is obtained by fixing the bug mentioned in issue #40 in their official implementation [33].

The overall loss function of our soft pre-training can be
formulated as

L = Lm + λLr (6)

where λ being 0.3 in this work is used to balance the two
losses.

4.3. Implementation

Implementing the MOE to prediction frameworks. After
pre-training the MOE according to Fig. 3, it can be adopted
in existing prediction frameworks as the feature extraction
part. For example, the MOE can be used to replace the per-
son interaction module in Next [19], history modeling part
in Trajectron++ [31], and the past encoder in PCCSNet [35].
After being integrated into the framework, the MOE can be
further tuned to learn adaptive representations for the frame-
work.

Implementation details. For the input formulation, we
split the square area into 36 sub-squares (m = 6). Each
sub-square has a side length l of 1 meters in ETH/UCY, or
40 pixels in SDD. The transformer encoder in the MOE con-
sists of 2 stacked transformer blocks. Each block has 8 at-
tention heads. For the masked trajectory complement task,
we use a mask size of 6. For pre-training, we use the Adam
optimizer with a base learn rate of 0.0005 and a polynomial
decay with the power of 0.95. The model is pre-trained with
batchsize of 128 and max epoch of 100 with early stopping.
The training is carried out on a single RTX 2080Ti.

5. Experiments
Our experiments are conducted from two aspects. First,

we study the performance of existing prediction frame-
works in the momentary prediction setting in Sec. 5.1.
Then, we adopt the proposed MOE to multiple existing

prediction frameworks to show the effectiveness of our ap-
proach in Sec. 5.2.

Benchmarks. Experiments are conducted on widely-used
ETH/UCY dataset [13,27] and a large scale Stanford Drone
Dataset [28] (SDD). The data pre-processing strategy fol-
lows previous work [35]. In the traditional prediction set-
ting [6,35], the observation horizon is 8 frames (3.2 seconds
with a frame rate of 2.5fps) and the prediction horizon is 12
frames (4.8 seconds). In our momentary prediction setting,
the observation horizon is reduced to 2 frames (0.8 seconds)
while the prediction horizon keeps the same. The predic-
tion results are evaluated with Average Displacement Error
(ADE) and Final Displacement Error (FDE). The number
of prediction samples is 20.

Baselines. Experiments are conducted on the following pre-
diction frameworks. Social GAN [6] is a classic GAN based
prediction framework using a pooling module to model so-
cial interactions. Social-STGCNN [24], Trajectron++ [31]
and SGCN [32] improves the modeling of social behaviors
with various Graph Neural Networks. Next [19] takes a fur-
ther step to exploit scene context and human action infor-
mation for trajectory prediction. Recently, PCCSNet [35]
proposes a new framework to solve the trajectory predic-
tion problem in a classification and regression manner, and
achieves state-of-the-art performance with only historical
trajectory information.

5.1. Performance of Existing Frameworks

Quantitative results. We conduct experiments on six typ-
ical existing approaches to quantitatively demonstrate how
their performance changes in the momentary prediction set-
ting. Results in Tab. 2 indicate that all of these methods
suffer from a decline of performance. However, the trend of
performance degradation shows great differences between
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Method ETH HOTEL UNIV ZARA1 ZARA2 AVG SDD
Next [19] 0.77/1.81 0.32/0.62 0.61/1.31 0.39/0.82 0.34/0.76 0.49/1.06 -

+full MOE 0.71/1.57 0.30/0.58 0.52/1.12 0.38/0.81 0.33/0.73 0.45/0.96 -
Trajectron++ [31] 0.76/1.43 0.30/0.56 0.36/0.74 0.22/0.42 0.18/0.34 0.36/0.70 13.07/22.88

+full MOE 0.64/1.12 0.20/0.33 0.33/0.62 0.22/0.42 0.17/0.32 0.31/0.56 11.71/19.54
PCCSNet [35] 0.34/0.65 0.14/0.25 0.31/0.63 0.23/0.46 0.16/0.37 0.24/0.47 9.19/17.71

+full MOE 0.31/0.57 0.13/0.21 0.25/0.53 0.20/0.41 0.14/0.31 0.20/0.41 8.40/16.08

Table 3. Momentary prediction performance (ADE/FDE) of baseline methods after aiding with our proposed approach. full dentoes that
MOE is first pre-trained with the soft pre-training mechanism.

Method ETH/UCY SDD
ADE FDE ADE FDE

NEXT [19] 0.49 1.06 - -
+MOE 0.47 1.00 - -
+full MOE 0.45 0.96 - -

PCCSNet [35] 0.24 0.47 9.19 17.71
+MOE 0.22 0.44 8.75 16.53
+MOE w/ CR 0.21 0.43 8.63 16.44
+MOE w/ MTC 0.21 0.42 8.51 16.28
+full MOE 0.20 0.41 8.40 16.08

Table 4. Ablation study for our approach. CR denotes context
restoration and MTC denotes masked trajectory complement. The
average results of ETH/UCY are reported.

approaches. For approaches without scene context mod-
eling [6, 24, 31, 32, 35], their performance decreases dra-
matically after a reduction in observation time. Specifi-
cally, state-of-the-art approach PCCSNet [35] drops about
14.3%/11.9% on ETH/UCY. In comparison, the approach
with scene context modeling [19] has a relatively low sensi-
tivity of the reduction of observation. Its performance drops
less, about 6.5%/6% on ETH/UCY. This proves that scene
information can provide a large number of clues for future
trajectory prediction, which can compensate for the lack of
temporal information in momentary prediction.

Qualitative results. Fig. 2 gives qualitative comparisons of
existing methods between traditional and momentary con-
figurations. As the observation time reduces, all these mod-
els may make wrong predictions in both speed and direction
aspects. To this end, it is necessary to propose additional
modules to improve the momentary prediction performance
of existing approaches.

5.2. Effectiveness of Proposed Approach

Main results. We implement the full MOE (with soft pre-
training) as the new feature extractor on three typical pre-
diction frameworks [19, 31, 35] to comprehensively show
the effectiveness of our proposed approach. Results are in
Tab. 3. With the aid of our approach, the momentary predic-
tion performance of existing methods can be improved sig-

Mask Size 4 6 8 12

ETH/UCY ADE 0.20 0.20 0.20 0.21
FDE 0.41 0.41 0.42 0.43

SDD ADE 8.44 8.40 8.47 8.63
FDE 16.13 16.08 16.19 16.44

Table 5. Analysis of different mask sizes for masked trajectory
complement on PCCSNet. The average results of ETH/UCY are
reported.

nificantly. Specifically, for state-of-the-art PCCSNet [35],
the ADE/FDE improve about 16.7%/12.8% on ETH/UCY
benchmark and 8.6%/9.2% on SDD.

Ablation study. We deliver comprehensive ablation studies
in Tab. 4 to investigate the contribution of different compo-
nents in our approach. i) We first compare the performance
of NEXT before and after replacing its original feature ex-
tractor with MOE (w/o pre-training), according to line 1
and 2 of the NEXT part. Since the original feature extrac-
tor of NEXT integrates social and scene context at feature
level, this comparison shows the superiority of the design
of MOE which integrates the information at data level to
avoid potential problems in feature alignment. ii) Major ab-
lation studies are conducted on the state-of-the-art model
PCCSNet. According to the results, the MOE can bring
substantial improvement alone, and the performance can be
further boosted benefiting from the soft pre-training mech-
anism which helps the MOE to learn better representations.

Mask size. Tab. 5 studies the sensitivity of the mask size
for masked trajectory complement sub-task. When the size
is in a suitable range, the performance keeps stable. As it
goes larger, the sub-task becomes more difficult and it is
much harder for MOE to learn good representations during
pre-training.

Qualitative results. We qualitatively analyze the perfor-
mance of baseline methods in the momentary prediction
setting with the aid of our approach in Fig. 6. Results show
that our approach can help existing prediction frameworks
give accurate, social plausible and scene consistent momen-
tary prediction results. Social behaviors such as encoun-
tering (row 4, col 2) and following (row 2, col 4) can be
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PCCSNet

PCCSNet
+full MOE

NEXT

NEXT
+full MOE

Figure 6. Qualitative comparison of baseline methods’ performance on momentary prediction between w/ and w/o our approach. Red line
denotes the observed trajectory, green line denotes the ground truth future trajectory, blue dashed line denotes predictions made without
MOE and orange dashed line denotes predictions made with the aid of MOE. Zoom in for a clear view.

well handled. In a challenging case (row 2, col 2), although
the deflection is still not predicted, the speed and direction
of predicted movements are more accurate benefiting from
our approach. Further, unwalkable areas can be success-
fully avoided when making predictions (row 4, col 3 and
4).

5.3. Limitations and Potential Negative Impact

In this paper, we propose an input formulation to inte-
grate social and scene context at data level and design the
MOE to better explore information for momentary predic-
tion. Although the input formulation and MOE can handle
social interactions and scene context, it is difficult to in-
corporate other information such as human skeletons into
our current pipeline. We will list it as our future work.
Since current trajectory prediction systems are usually data-
driven, a potential negative impact of the systems is that
they require expensive computational resources and large
amount of high quality data, which could cost many finan-
cial and environmental resources. We will release our code
and trained models to the community, as part of efforts to
alleviate the repeated training of future work.

6. Conclusion

In this paper, we propose and study the task of momen-
tary trajectory prediction. This task reduces the observation
time to an extreme level and aims to resolve issues aris-
ing from tracking losses and sudden events. We propose
the Momentary Observation feature Extractor to effectively
exploit useful information implicit in momentary observa-
tions. A novel soft pre-training mechanism is further pro-
posed to help MOE learn better representations, including
two sub-tasks: masked trajectory complement and context
restoration. We perform a rigorous study of existing meth-
ods and conduct exhaustive experiments to analyze the per-
formance of our proposed approach on the momentary pre-
diction setting. We hope this work will pave the way for
more responsive, precise and robust prediction systems.
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