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Abstract

Recent image-based rendering (IBR) methods usually
adopt plenty of views to reconstruct dense scene geometry.
However, the number of available views is limited in prac-
tice. When only few views are provided, the performance
of these methods drops off significantly, as the scene geom-
etry becomes sparse as well. Therefore, in this paper, we
propose Sparse-IBRNet (SIBRNet) to perform robust IBR
on sparse scene geometry by depth completion. The SIBR-
Net has two stages, geometry recovery (GR) stage and light
blending (LB) stage. Specifically, GR stage takes sparse
depth map and RGB as input to predict dense depth map
by exploiting the correlation between two modals. As in-
accuracy of the complete depth map may cause projection
biases in the warping process, LB stage first uses a bias-
corrected module (BCM) to rectify deviations, and then ag-
gregates modified features from different views to render a
novel view. Extensive experimental results demonstrate that
our method performs best on sparse scene geometry than re-
cent IBR methods, and it can generate better or comparable
results as well when the geometric information is dense.1

1. Introduction

Image-based rendering (IBR), as one of the classic ap-
proaches of novel view synthesis, aims to synthesize novel
view from real views. It has been widely used to enhance
the visualization in various applications, such as virtual nav-
igation [15], video stabilization [24], AR\VR [37, 38]. A
novel view is generated in IBR by warping pixels from
source view into target view with scene geometry and ag-
gregating them with blending methods. The output quality
depends on the accuracy and completeness of geometry in-
formation and the effectiveness of blending strategy.

1This work is supported by NSFC (Grant No.: U2001209, 61902076)
and Natural Science Foundation of Shanghai (21ZR1406600).
* Corresponding author: Bo Yan.
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Figure 1. Strategy Comparison. (a) simulates dense view sam-
pling on a tank model, while the red cameras represent sparse
view sampling. (b) shows the strategy of recent IBR methods.
They adopt dense views to generate a dense depth map for a better
warped result (below the depth map) and then synthesize a novel
view. (c) shows the paradigm of our SIBRNet. Given sparse views,
a sparse depth map is generated by MVS before sent into a geom-
etry recovery stage for completion. The complete depth map has
a comparable warped result to the dense depth map. And then a
light blending stage is applied to render the final result. Red boxes
indicate the effect of two stages.

Recent IBR methods [1, 31, 32] ask for dense geome-
try to guarantee adequate correct projections. As shown in
Figure 1.(b), they use plentiful views to reconstruct dense
proxy geometry by multi-view stereo algorithm (MVS)
[16,34,51]. This process is time-consuming and can only be
conducted offline. Moreover, dense views are not available
easily in practice. When input views are sparse, the scene
geometry produced by MVS becomes sparse as well, lead-
ing to a rapid decline on performance for these methods.

In order to reduce the dependence on dense views, we
propose SIBRNet to perform robust IBR on sparse scene
geometry. It contains two stages, geometry recovery (GR)
stage and light blending (LB) stage. Inspired by recent ge-
ometry recovery works like point cloud upsampling [21,54]
and depth completion [25, 46, 56], the GR stage introduces
a learning-based depth completion network into IBR to pre-
dict a complete depth map from the sparse one. As shown
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FVS SVS Ours GT Sparse depth map

Figure 2. Visual comparisons with recent IBR methods on Tanks and Temples dataset. FVS [31] and SVS [32] will produce a blur in
the area where the input sparse depth map misses, while our method can still synthesize a photorealistic result.

in Figure 1.(c), given a sparse depth map, the GR stage can
ensure a comparable warped result to the dense depth map.
The LB stage is used to aggregate different source views
and synthesize a novel view. In this way, our method can
synthesize much better results than recent IBR methods on
sparse scene geometry. In addition, although our method
focuses on sparse geometry input, it can also achieve better
or comparable results when the input geometry is dense.

Specifically, the GR stage takes a sparse depth map and
the associated RGB image as input to predict a complete
depth map. In order to take advantage of the correlation
between depth and color, we design two subnetworks to ex-
tract different information. The final complete depth map is
generated by fusing the results from two subnetworks. The
LB stage utilizes the complete depth maps to warp source
view feature maps into target view through a 3D warping.
As the inaccurate depth value will produce projection bi-
ases, we design a bias-corrected module (BCM) to rectify
these warped features. After that, a Bi-ConvLSTM is ap-
plied for aggregating information from different view points
and synthesizing a candidate image and a confidence map
for each view. Finally, a novel view is generated by blend-
ing all candidate images with a softmax.

We also propose a new dataset called Surround to evalu-
ate IBR methods in a surround setting. In addition, in order
to train and evaluate our method on sparse scene geome-
try, we preprocess two public datasets, Tanks and Temples,
Free View Synthesis, and our Surround dataset to gener-
ate depth maps at different sparsity levels. Quantitative and
qualitative experiments on the three datasets show that our
method is robust on different depth sparsity. It can generate
more realistic results, especially on sparse scene geometry,
as shown in Figure 2. Our method has obvious advantages
in the depth missing area. Our code and dataset will be re-
leased here.

In summary, this paper has the following contributions:

• In order to reduce the dependence of existing methods
on dense input views, we propose a two-stage model
named SIBRNet to perform robust IBR on sparse
scene geometry by introducing a learning-based depth
completion network for the first time. It is robust for
scene geometry on different sparsity levels.

• The inaccurate complete depth value will result in pro-
jection biases during the warping process, which may
cause image distortions in the final result. Therefore,
we design a bias-corrected module (BCM) using de-
formable convolution to rectify these deviations.

• A new dataset called Surround is proposed for evaluat-
ing. It contains a 360-degree panorama for each scene
and is useful to evaluate IBR methods in a surround
setting.

2. Related Work
Traditional image-based rendering methods. IBR has
a long history in the field of computer vision and graphics.
Early classical works [8,14,20,22,26,42] focus on light field
and view interpolation, which require regularly-distributed
camera array and small-baseline view. For wide-baseline
situation, most methods [2,3,9,15,19] reconstruct dense 3D
proxy geometry in different ways to guarantee good results.
Some methods [3,9] compensate for poor 3D geometry with
depth synthesis algorithm or optical flow, which share the
same idea with us. However, our method conducts it in a
deep-learning manner.
Leaning-based image-based rendering methods. In re-
cent years, deep learning methods has achieved an appeal-
ing effect in IBR. Flynn et al. [13] firstly apply convolu-
tional neural network (CNN) within plane-sweep volumes
in view interpolation. Some methods [30, 43, 58] use im-
plicit geometry and image generation methods to synthesize
novel views. These methods only focus on single object or
narrow-baseline imagery.

Scene representations are widely used to understand
scene geometry explicitly or implicitly in novel view syn-
thesis methods lately. Explicit methods use discrete repre-
sentation to describe scene geometry, such as multi-plane
images (MPI) [12, 28, 41, 57], layered depth images (LDI)
[39,41,45], point cloud [49]. They usually require extensive
memory and computational costs. Implicit methods con-
sider deep networks as an implicit function of scene geom-
etry to achieve a continuous representation. NeRF [29] and
its variants [17,27,55] achieve impressive result by applying
a 5D radiance field to estimate both geometry and appear-
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Figure 3. Pipeline of SIBRNet. The GR stage generates a complete depth map dci for each view Ii by fusing the results from two branches,
the global and local nets. The LB stage first extracts feature maps {fi}Ni=1 from N source views, and then warped them into target view
{fw

i }Ni=1 with per-view complete depth maps {dci}Ni=1. As the inaccurate depth value will cause projection biases, all features are modified
{fmw

i }Ni=1 by a bias-corrected module (BCM) and blended in a Bi-ConvLSTM to synthesize a candidate view Iti and a confidence map
Ct

i for each view. Finally, we use a softmax fusing each view to render the final result It.

ance. Some latest works [44,47,53] extend NeRF to unseen
data and sparse inputs. However, they only work well on
synthetic objects or small sliding view of real scenes, while
our method focuses on more complex and open scenario.

Following the traditional manner, some recent IBR meth-
ods reconstruct 3D proxy geometry by MVS algorithms
[16,51] and then blend pixels in deep networks. Riegler and
Koltun [31, 32] use hundreds of images to generate dense
depth maps by COLMAP [34]. Their methods can pro-
duce high-quality images, but require dense views for re-
constructing dense proxy geometry. In another way, Choi
et al. [6] estimate depth probability for source views by
DeepMVS [16] and Shi et al. [36] introduce MVS mod-
ule directly into the network for end-to-end training. Al-
though their methods allow sparse views, they require huge
memory costs due to the complexity and are not suitable
for high-resolution (HR) input. In contrast, our method can
achieve realistic results on sparse scene geometry by intro-
ducing a depth completion network. It reduces the number
of required views and allows HR images at the same time.

Depth completion. The main purpose of depth comple-
tion task is to compensate poor depth captured by low-cost
LiDAR and commercial RGB-D camera. Depending on
whether there is an RGB as input, depth completion meth-
ods can be divided into two categories, depth-only meth-
ods [5, 10, 23] and image-guided methods [11, 25, 46, 56].
Since an RGB can provide strong prior on semantic and
edge information, image-guided methods usually have a

better result. Inspired by these works, our method applies
depth completion to sparse depth maps reconstructed from
sparse views. The complete depth maps can produce com-
parable warped results to dense depth maps.

3. Method
In this section, we present our method, SIBRNet. We

begin with a dataset preprocessing step that prepares depth
maps at different sparsity levels in Section 3.1. Then in
Section 3.2 and Section 3.3, the GR stage and LB stage in
SIBRNet are described in details. At last, loss functions and
implementation details are shown in Section 3.4 and Section
3.5. Full pipeline of SIBRNet is shown in Figure 3.

3.1. Preprocessing

In order to train and evaluate our method on sparse scene
geometry, we use COLMAP to generate depth maps at dif-
ferent sparsity levels. We first follow Riegler and Koltun
[31] to estimate camera poses and dense depth maps from
all source views by the structure-from-motion (SfM) and
MVS method implemented in COLMAP. Since the gener-
ated depth maps become sparse when the number of input
images reduces, we use the input number K to divide the
depth sparsity levels. After setting K, we sample uniformly
in source images and sent them into COLMAP to generate a
sparse depth map at level K for each view. Specifically, we
set K as 4 and 8. The dense depth maps obtained from all
source views are considered as ground-truth, with K = all.
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We show the visualization of different depth maps in Figure
4.(a) when K=4, 8 and all.

3.2. Geometry-Recovery Stage

Early work [46, 56] in image-guided depth completion
shows that RGB and depth include different cues for com-
pletion. RGB can provide image structure and semantics,
while depth can provide details like edges. Inspired by this
idea, we design two subnetworks to extract different infor-
mation separately. The global net takes an RGB image Ii,
its sparse depth map dsi and valid depth mask mi as input
to generate a complete depth map dgi and a confidence map
Cg

i . In order to extract color information, it follows a U-
Net [33] structure with several skip connections. Moreover,
we take a deep feature from the global net to guide the local
net. We express the global net as:

Cg
i , d

g
i , fglobal = GlobalNet(Ii, d

s
i ,mi) (1)

The local net only requires a sparse depth map dsi and a
valid depth mask mi. It uses a residual-add design to pre-
serve origin depth as much as possible, which is shown in
Figure 3 “Local Net”. The guidance from the global net
is used to ensure a large receptive field. The local net also
generates a complete depth map dgi and a confidence map
Cg

i :

Cl
i , d

l
i = LocalNet(dsi ,mi, fglobal) (2)

The final complete depth map dci is generated by adding
dgi and dli with weights, which is obtained by a softmax from
Cg

i and Cl
i . The process can be described as:

dci = wg
i ∗ dgi + wl

i ∗ dli. (3)

where wg
i , w

l
i = softmax(Cg

i , C
l
i). Illustrations for two

confidence maps Cg
i and Cl

i in Figure 3 “GR Stage” show
that the global net and local net focus on different areas in
depth completion. The global net pays more attention to
scene structure like the trunk area of the horse, while the
local net concerns high-frequency details like the limbs of
the horse.

3.3. Light-Blending Stage

Each pixel in a 2D image can be regarded as a light ray
captured from the observed scene’s light field. Our LB stage
takes N source views {Ii}Ni=1 as input to blend lights from
different views and synthesize a novel view It. Three oper-
ations, warp, bias-correction and blending, are executed in
sequence.
Warp. We first use a feature extractor with several residual
blocks to extract feature maps {fi}Ni=1 for each source view.
And then we take the per-view feature and the complete

Complete depth map

GT depth map

Warped image

GT

K = 4 K = 8 K = all
(a)

(b)

Figure 4. Illustration for depth maps and image distortions. (a)
shows depth maps at different sparsity levels when K = 4, 8 and all.
(b) shows image distortions caused by inaccurate complete depth.
The red box in the complete depth map shows an inaccurate area.
It causes projection biases during the 3D warping process, leading
to distortions in the yellow box of the warped image.

depth map obtained from GR stage to perform a 3D warp-
ing. 3D warping implements transformation of 2D pixel co-
ordinates by projecting them into identical locations in 3D
space. Taking depth D, camera intrinsic K and extrinsic
[R|t] (R and t refer to rotation and translation matrices) as
input, the 3D warping is conducted following the equation:

K−1
s Ds(ps) ∗ ps = RrK

−1
t Dt(pt) ∗ pt + tr,

whereRr = RsR
T
t , tr = ts −Rrtt. (4)

p is the homogeneous coordinate of a 2D pixel, and s, t rep-
resent source view and target view. For each source view Ii,
we use the complete depth map dci to project its feature fi
into the target view directly by forward warping. Through
this process, we obtain warped features fw

i . We visualize
the feature maps before and after warping, as shown in Fig-
ure 3 “LB Stage”. It is clear to see that {fi}Ni and {fw

i }Ni
are aligned with the source views and the target view re-
spectively.
Bias-corrected module. Ideally, the warped features
{fw

i }Ni are strictly aligned with the pixels in target view.
However, the inaccuracy of predicted depth values will
cause projection biases in the warped features. It is crit-
ical to remove these biases because the misaligned feature
may lead to content distortions shown in Figure 4.(b). Since
the tree in the background is missing in the complete depth
map, it bends incorrectly in the warped image. To address
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this problem, we adopt a bias-corrected module (BCM). As
the input sparse depth map dsi has accurate values in the
valid area, we utilize it to obtain a accurate sparse-area fea-
ture fsw

i and a corresponding bias-potential mask Msw
i by

3D warping. After that, we calculate an offset ∆pi from
the source feature fi and the warped feature fw

i in the bias-
potential area with several convolution layers:

∆pi = Conv(fi, f
w
i ,Msw

i ) (5)

The offset and warped features {fw
i }Ni are then input into

deformable convolutions [7,59] to generate a revised feature
fdw
i .

fdw
i = DConv(fw

i ,∆pi), (6)

Finally, we aggregate the sparse accurate warped feature
fsw
i and the revised feature fdw

i with the sparse warped
mask Msw

i to create the final modified warped feature fmw
i :

fmw
i = Msw

i ∗ fsw
i + (1−Msw

i ) ∗ fdw
i . (7)

Blending. Following [31], we try to use a recurrent neu-
ral network (RNN) to establish connections between N
source views. However, a simple single-directional RNN
is not appropriate for IBR because there is no strict order
in source input views. Therefore, we apply a bidirectional
ConvLSTM (Bi-ConvLSTM) [35, 50] for blending. Empir-
ically, it is more robust for arbitrary input orders. The Bi-
ConvLSTM takes N modified warped features {fmw

i }Ni as
input to aggregate information from different source views,
and then generates a candidate image Iti and a confidence
map Ct

i for each view:

{Iti , Ct
i}Ni=1 = Bi-ConvLSTM(fmw

1 , ..., fmw
N ) (8)

And then we calculate weights {wi}Ni=1 from confidence
maps {Ct

i}Ni=1 through softmax. The final result It is pro-
duced by fusing all candidate images with a weighted add
It =

∑N
i=1 wi ∗ Iti .

3.4. Loss Functions

We train GR stage and LB stage with different losses for
depth and color.
Loss in GR stage. The global net and local net in GR stage
will produce two different depth maps, dgi and dli. And
then the final complete depth map dci is generated by fusing
them together. We use the same depth L2 Loss Ld for the
three depth maps above. As the range of depth in different
scenes vary greatly, we normalize the L2 loss by dividing
the ground-truth depth dti, described as:

Ld(di) =
∥di − dti∥2

dti
(9)

Moreover, inspired by recent monocular depth estima-
tion work [52], we add an edge-aware depth smooth loss to

the final result dci using the RGB image Ii to preserve sharp
edges.

Ls(di) = ∇|di| · exp(-|∇Ii|) (10)

where |·| means absolute value and ∇ means differential
operator. The total loss in GR stage is:

LGR = Ld(d
g
i ) + Ld(d

l
i) + Ld(d

c
i ) + Ls(d

c
i ) (11)

Loss in LB stage. The LB stage uses N source views
{Ii}Ni=1 to synthesize a novel view It. The image recon-
struction loss consists of a L1 loss and a perceptual loss [4].
They are used for pixel-level and feature-level supervision
separately. Given the predicted image It and ground-truth
image Igt , the loss is:

LLB = ∥It − Igt ∥1 +
∑
l

λl∥Φl(It)− Φl(I
g
t )∥1 (12)

Φl denotes the outputs of middle layers of a pretrained
VGG-19 network [40]. The weights λl are set as in [31].

3.5. Implementation Details

The GR stage and LB stage in our SIBRNet are trained
separately. We train the GR stage firstly. The global net
in GR stage is a U-Net structure with four stages and each
stage has two convolution layers followed by an average
pooling. The local net has two down-sample layers consists
of four residual blocks and two transposed convolutions for
up-sampling. We train GR stage with 60 epochs and batch
size is set as 10. After that, we fix the GR stage and train
the LB stage. The feature extractor consists of 16 residual
blocks and our BCM module adopts a pyramid cascading
deformable (PCD) module [48]. We train LB stage with 40
epochs with batch size as 1. The number of input source
views N is set as 5. In both stages, we use Adamax opti-
mizer and set learning rate as 1e-4, patch size as 256× 256.
We train all the networks on an NVIDIA RTX 3090.

4. Experiments and Analysis
4.1. Experimental Settings

Public Datasets. Two public datasets, Tanks and Tem-
ples [18] and Free View Synthesis [31], are used for training
or evaluation. We preprocess them as described in Section
3.1. We train our method on Tanks and Temples, follow-
ing Riegler and Koltun [31]. It has 21 scenes. 17 scenes are
used as training dataset and 4 scenes are selected out as test-
ing dataset. Free View Synthesis dataset is a testing dataset.
It contains 6 scenes, and each scene provides a source im-
age sequence and a target image sequence. For simplicity,
we only use the target image sequence for evaluation.
Surround dataset. Recent applications for IBR focus on
circle-around scenarios, such as basketball and soccer sta-
diums, they wish to achieve a smooth circular view move-
ment. Therefore, we propose a new dataset called Surround
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Method Input K Train Playground M60 Truck
↑ PSNR ↑ SSIM ↓ LPIPS ↑ PSNR ↑ SSIM ↓ LPIPS ↑ PSNR ↑ SSIM ↓ LPIPS ↑ PSNR ↑ SSIM ↓ LPIPS

FVS [31]
5 4

18.96 0.6688 0.3001 21.54 0.6711 0.2758 19.25 0.7132 0.2917 20.18 0.7013 0.2416
SVS [32] 17.34 0.6638 0.3769 19.70 0.6683 0.3530 17.22 0.6917 0.3983 19.90 0.7279 0.2858

Ours 22.54 0.7549 0.1374 25.00 0.7681 0.1287 23.92 0.8162 0.1210 22.99 0.7799 0.1194
FVS [31]

5 8
21.25 0.7433 0.1899 24.88 0.7875 0.1270 23.61 0.8259 0.1419 22.38 0.7700 0.1355

SVS [32] 20.28 0.7850 0.2228 25.31 0.8782 0.1094 22.86 0.8544 0.1734 23.64 0.8479 0.1437
Ours 23.44 0.7905 0.1161 26.50 0.8234 0.0922 26.08 0.8704 0.0846 23.75 0.8092 0.0992

EVS [6] 5 - 20.53 0.6795 0.1585 23.87 0.7558 0.1018 22.68 0.7884 0.1168 19.97 0.6419 0.1891
SVNVS [36] 6 - 20.43 0.6512 0.2125 22.43 0.6968 0.1451 22.36 0.7817 0.1346 21.42 0.7142 0.1439

Our 5 4 22.54 0.7549 0.1374 25.00 0.7681 0.1287 23.92 0.8162 0.1210 22.99 0.7799 0.1194

Table 1. Quantitative comparisons on Tanks and Temples dataset. “Input” and “K” denotes the number of input source views and depth
sparsity levels, respectively. We show the best results in bold.

FVS SVS EVS SVNVS Ours GT

Figure 5. Qualitative comparisons on Tanks and Temples dataset when K = 4. FVS [31] and SVS [32] perform badly on sparse scene
geometry. EVS [6] misses image content, and SVNVS [36] cause obvious color changes. Our method achieves the best realistic results.

Method Input K Total
↑ PSNR ↑ SSIM ↓ LPIPS

FVS [31]
5 4

26.46 0.8454 0.0924
SVS [32] 26.52 0.8798 0.1273

Ours 29.19 0.8880 0.0645
FVS [31]

5 8
26.91 0.8510 0.0857

SVS [32] 27.55 0.8980 0.1097
Ours 29.23 0.8891 0.0636

EVS [6] 5 - 27.31 0.8600 0.0686
SVNVS [36] 6 - 24.94 0.8175 0.1151

Ours 5 4 29.19 0.8880 0.0645

Table 2. Quantitative comparisons on Free View Synthesis.

for evaluating IBR methods in surround setting. By taking
a handheld camera to shoot a scene in a circle, we can cap-
ture a 360-degree video around the scene. And then we uni-
formly sample this video to extract source views. Surround
contains 6 scenes, Basketball, Meetingroom, Park, Philoso-
pher, Soccer and Statue. The Meetingroom is an indoor
scene, while the others are outdoor scenes, and each scene
has 150 to 300 images. We use COLMAP to estimate cam-
era poses, depth maps and 3D point clouds. We described
this dataset in our supplementary materials in detail.

View selection. In both training and testing, we choose one
image as target and select N nearby images as source views.

4.2. Comparisons with State-of-the-Art

We compare our method with four recent state-of-the-
art (SOTA) IBR methods, FVS [31], SVS [32], EVS [6]
and SVNVS [36]. FVS [31] and SVS [32] use hundreds
of views to estimate dense depth maps. When depth maps
become sparse, their methods result in a blur in the region
where depth misses. EVS [6] and SVNVS [36] can be used
in sparse input views. However, they require huge com-
putation and memory costs due to complexity and are not
suitable for HR images. We reduce the resolution of input
images to about 250 × 500 for evaluating them. For fair
comparison, we retrain FVS [31] and SVS [32] in the same
pre-processed Tanks and Temples dataset. For EVS [6] and
SVNVS [36], we use the provided pretrained model.

Quantitative and qualitative comparisons on Tanks and
Temples dataset are shown Table 1 and Figure 5, where
”Input” denotes the input number of each method, and ”K”
represents the number of images used to reconstruct proxy
geometry as described in Section 3.1. Our method achieves
significant superiority on sparse scene geometry.

We conduct more careful experiments on Tanks and
Temples dataset. Instead of using K, we directly calcu-
late a valid depth ratio to represent the depth sparsity level.
The valid depth ratio is the percentage of number of pixels
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FVS SVS SVNVS Ours GTEVS

Figure 6. Qualitative results on Free View Sythesis and Surround dataset when K = 4. The first row show results on Free View
Synthesis dataset, while the others are on Surround dataset. FVS [31], SVS [32] will produce blur. EVS [6] and SVNVS [36] produce
artifacts and color change. Our method generates results close to ground-truth.

Method Input K Basketball Meetingroom Park Philosopher Soccer Statue
↑ PSNR ↓ LPIPS ↑ PSNR ↓ LPIPS ↑ PSNR ↓ LPIPS ↑ PSNR ↓ LPIPS ↑ PSNR ↓ LPIPS ↑ PSNR ↓ LPIPS

FVS [31]
5 4

26.19 0.0774 25.97 0.0650 27.29 0.0861 26.84 0.1274 24.61 0.1568 26.92 0.1152
SVS [32] 26.76 0.0687 24.57 0.1751 26.59 0.1337 26.00 0.1873 23.23 0.2549 26.37 0.1625

Ours 28.46 0.0588 27.63 0.0500 28.27 0.0688 28.79 0.0946 26.11 0.1129 29.23 0.0770
FVS [31]

5 8
26.47 0.0726 26.32 0.0611 27.68 0.0776 27.12 0.1238 25.06 0.1338 27.44 0.1000

SVS [32] 27.32 0.0612 25.78 0.1356 27.75 0.0917 26.59 0.1749 24.86 0.1922 27.70 0.1252
Ours 28.37 0.0600 27.66 0.0502 28.32 0.0682 28.68 0.0951 26.15 0.1114 29.26 0.0763

EVS [6] 5 - 25.64 0.0684 24.49 0.1175 27.57 0.0837 27.43 0.0912 24.41 0.1152 27.87 0.0722
SVNVS [36] 6 - 24.27 0.0890 24.55 0.1066 24.09 0.1334 24.37 0.1133 23.59 0.1425 24.78 0.1058

Ours 5 4 28.46 0.0588 27.63 0.0500 28.27 0.0688 28.79 0.0946 26.11 0.1129 29.23 0.0770

Table 3. Quantitative comparisons on Surround dataset. Our result performs best in all 6 scenes.

Method Input K Tanks and Temples Free View Synthesis Surround
↑ PSNR ↓ LPIPS ↑ PSNR ↓ LPIPS ↑ PSNR ↓ LPIPS

FVS [31]
5 all

24.77 0.0907 27.71 0.0689 27.16 0.0862
SVS [32] 26.25 0.0688 29.07 0.0780 27.69 0.1054

Ours 25.48 0.0860 29.33 0.0619 28.18 0.0768

Table 4. Quantitative comparisons when K = all. When depth
map is dense, our method also has better or comparable results.

with valid depth values to the total pixel number. We use
more sampling strategies and different K to generate differ-
ent valid depth ratios and show the result in Figure 7. When
the valid depth ratio becomes small, the performance of
FVS [31] and SVS [32] drops off rapidly, while our method
keeps high performances with only a slight drop.

Table 2 shows comparison on Free View Synthesis
dataset. For simplicity, we only show total results, and the
detailed results on 6 scenes are provided in the supplemen-
tary material. We also evaluate these methods on our pro-
posed Surround dataset in Table 3. Qualitative comparisons
are in Figure 6. FVS [31] and SVS [32] lose image con-
tent and details, while EVS [6] and SVNVS [36] will cause
artifacts and color changes. In contrast, our method can
synthesize more realistic results.

Though our method focuses on sparse scene geometry, it
can also achieve better or comparable results than FVS [31]
and SVS [32] on dense scene geometry. We show the com-

Figure 7. PSNR comparison at different depth sparsity levels
on Tanks and Temples dataset. The performance of FVS [31]
and SVS [32] drops off rapidly when input depth map becomes
sparse, while our method is able to maintain PSNR at a high level.

parison results on three datasets in Table 4. When the input
depth map is dense as K = all, our method performs best
in Free View Synthesis and Surround datasets and only per-
forms slightly worse than SVS [32] in Tanks and Temples.
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Train Playground M60 Truck
↑ PSNR ↑ SSIM ↓ LPIPS ↑ PSNR ↑ SSIM ↓ LPIPS ↑ PSNR ↑ SSIM ↓ LPIPS ↑ PSNR ↑ SSIM ↓ LPIPS

SIBRNet w/o BCM 20.80 0.7427 0.1553 23.81 0.7608 0.1385 22.18 0.8066 0.1325 21.42 0.7709 0.1330
SIBRNet w/o GR stage 21.31 0.7330 0.1888 24.02 0.7511 0.1706 22.15 0.7847 0.1924 22.27 0.7627 0.1527

SIBRNet w/o Bi-ConvLSTM 21.74 0.7380 0.1545 24.48 0.7555 0.1426 23.56 0.8051 0.1332 22.60 0.7678 0.1330
SIBRNet 22.54 0.7549 0.1374 25.00 0.7681 0.1287 23.92 0.8162 0.1210 22.99 0.7799 0.1194

Table 5. Quantitative results of ablation study. By disabling each component of SIBRNet, we show its impact on the final result. GR
stage and BCM has a great influence on LPIPS and PSNR respectively. Our full model achieves the best performance.

w/o GR stage w/o BCM w/o Bi-ConvLSTM SIBRNet GT

Figure 8. Qualitative results of ablation study. SIBRNet w/o GR stage will miss image content, resulting in a blur result, while the
SIBRNet w/o BCM will cause distortions. SIBRNet w/o Bi-ConvLSTM will also lose some details. The full SIBRNet can synthesize the
most realistic novel view.

Geometric / Photometric error Train Playground M60 Truck
Sparse depth 27.01/0.0567 32.24/0.0574 31.05/0.0728 31.85/0.0531

GR stage w/o Local Net 14.05/0.0394 10.96/0.0319 10.66/0.0380 11.09/0.0337
GR stage w/o Global Net 13.34/0.0391 11.97/0.0319 11.51/0.0396 10.88/0.0341

GR stage 12.83/0.0389 9.21/0.0316 10.54/0.0383 8.29/0.0332

Table 6. Ablation study on GR stage. GR stage reduces the ge-
ometric and photometric error greatly compared to sparse depth.
And the separate global and local net will drop off the perfor-
mance.

4.3. Ablation Study

We conduct the ablation study on Tanks and Temples
dataset with K as 4. Quantitative and qualitative results are
shown in Table 5 and Figure 8. Removing any component
will lead to a significant drop in performance.
GR stage. GR stage generates a dense depth map from the
sparse one to ensure more warped pixels. In GR stage, the
global net is used to learn semantics, while the local net
focus on details. We remove each of them and show the
geometric and photometric error changes in Table 6. The
geometric error is a normalized L2 loss described in equa-
tion 9, while the photometric error is a L1 loss between the
image warped by the complete depth and the ground-truth
depth. In Table 5, the LPIPS increases a lot when we re-
move the GR stage. The reason is that an image warped by
a sparse depth map has lots of invisible pixels, which will
lead to a blur result, as shown in Figure 8“w/o GR stage”.
This has more severe impacts on LPIPS than on PSNR.
BCM and Bi-ConvLSTM. BCM module can rectify the
projection biases caused by some inaccurate depth values
predicted by GR stage. Without BCM, biases in the warped
feature will produce content distortions, such as the pillar
in Figure 8 “w/o BCM”. These misaligned pixels preserve
some semantic information, so the LPIPS does not change

a lot, but they result in a great descent on PSNR, as shown
in Table 5. Bi-ConvLSTM is used to aggregate informa-
tion from different views, which can preserve image details.
By removing Bi-ConvLSTM, the final result will lose clear
edges, as shown in Figure 8 “w/o Bi-ConvLSTM”.

5. Limitation

The GR stage plays an important role in our SIBRNet, it
generates a complete depth map from the sparse one to guar-
antee more visible pixels in the LB stage. The accuracy and
completeness of the complete depth map is critical for the
final synthesized result. Our GR stage can recover dense
depth information of global scene structure, but may lose
some details, such as thin objects like trees or pillars. These
objects are very small and hard to distinguish from the back-
ground, which makes it difficult to complete or predict the
depth in these areas. It will be our future work to propose
an improved depth completion network for this problem.

6. Conclusion

In this paper, we propose a two-stage model named
SIBRNet to perform IBR on sparse scene geometry by in-
troducing a learning-based depth completion network for
the first time. It is robust for scene geometry at differ-
ent sparsity levels and generate better or comparable results
than recent IBR methods whether the input depth map is
sparse or dense. As the inaccuracy of complete depth maps
will cause projection biases, which may result in image dis-
tortions, we design a bias-corrected module (BCM) to re-
move these biases for ensuring realistic results. We also
propose a new dataset Surround, which is useful to evaluate
IBR methods in a surround setting.
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