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Abstract

Label noise has been a practical challenge in deep learn-

ing due to the strong capability of deep neural networks in

fitting all training data. Prior literature primarily resorts to

sample selection methods for combating noisy labels. How-

ever, these approaches focus on dividing samples by order

sorting or threshold selection, inevitably introducing hyper-

parameters (e.g., selection ratio / threshold) that are hard-

to-tune and dataset-dependent. To this end, we propose

a simple yet effective approach named PNP (Probabilistic

Noise Prediction) to explicitly model label noise. Specifi-

cally, we simultaneously train two networks, in which one

predicts the category label and the other predicts the noise

type. By predicting label noise probabilistically, we iden-

tify noisy samples and adopt dedicated optimization objec-

tives accordingly. Finally, we establish a joint loss for net-

work update by unifying the classification loss, the auxil-

iary constraint loss, and the in-distribution consistency loss.

Comprehensive experimental results on synthetic and real-

world datasets demonstrate the superiority of our proposed

method. The source code and models have been made avail-

able at https://github.com/NUST-Machine-
Intelligence-Laboratory/PNP.

1. Introduction
Although deep neural networks (DNNs) have attained

impressive achievements, surpassing traditional methods in
various vision tasks [3, 15, 28, 31, 38, 46], their requirement
for large-scale high-quality human-labeled training samples
(e.g., ImageNet [4] and COCO [21]) can often pose a bot-
tleneck when applied to real-world scenarios. Precise anno-
tation is always labor-expensive and time-consuming, espe-
cially when domain-specific expert knowledge is necessary
(e.g., fine-grained visual categorization [13, 24, 41]). To al-
leviate this issue, one promising alternative is to resort to
web images for training deep networks [19,22,34,35,39,43,
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Figure 1. Early sample selection methods (a) tend to divide sam-
ples into two subsets (i.e., clean and noisy), neglecting differences
between ID and OOD noisy samples. Some recent methods (b) en-
deavor to identify clean, ID noisy, and OOD noisy samples. How-
ever, these methods usually suffer from tuning dataset-dependent
threshold hyper-parameters (denoted as decision boundaries in (a)
and (b)). In contrast, our proposed approach (c) seeks to model
noisy labels in a probabilistic manner. PNP employs a dedicated
predictor to estimate the probability distribution of noise type.

45, 47–49, 53, 54]. However, noisy labels are inevitable in
web images [34]. It has been demonstrated that noisy labels
can impair the performance of deep networks since the over-
parameterization equips DNNs with not only large learn-
ing capacities but also strong memorization power [16, 52].
Consequently, it is of great significance to develop robust
models for learning from noisy labels.

Noisy labels in real-world datasets can be categorized
into two types: open-set and closed-set [48]. In the closed-
set scenario, the true label of a noisy sample comes from
a known label space Yknown present in the training data.
Conversely, in the open-set scenario, true labels of sam-
ples are outside Yknown. In other words, closed-set noisy
samples are in-distribution (ID) ones, while open-set noisy
samples are out-of-distribution (OOD) ones. A large body
of prior literature primarily focuses on closed-set scenarios,
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assuming that only in-distribution noise exists. However,
the ID-noise-only assumption may not hold true in real-
world applications. Recently, an increasing number of re-
searchers have been attracted to the open-set noisy problem,
which is also the primary focus of this work.

There are mainly two common strategies to tackle noisy
labels: loss correction [5, 9, 26, 29, 33, 39, 50, 56] and sam-
ple selection [1, 6, 11, 25, 42, 51]. Classic loss correction
methods either attempt to estimate the noise transition ma-
trix [2, 5, 9, 26, 33] or seek to regularize losses based on
network predictions [29, 56]. Unfortunately, the noise tran-
sition matrix is challenging to estimate, while prediction-
based loss correction suffers from error accumulation.

Sample selection methods essentially follow an intuitive
but straightforward idea: eliminating noisy data and train-
ing with the cleaner subset. Researchers have recently wit-
nessed that deep networks tend to fit clean and simple pat-
terns before memorizing noisy labels [16,52]. Accordingly,
many approaches have been proposed to exploit this ob-
servation and regard low-loss samples as clean ones. For
example, Co-teaching [6] maintains two networks simul-
taneously and enables them to select low-loss samples for
their peer networks. Early sample selection methods usu-
ally split samples into two subsets: clean and noisy, neglect-
ing the difference between in-distribution noisy and out-
of-distribution noisy labels. More recently, CRSSC [34]
and Jo-SRC [48] are proposed to divide samples into three
groups: clean ones, in-distribution noisy ones, and out-of-
distribution noisy ones, and treat them differently. The for-
mer employs a two-step sample selection process to cat-
egorize samples into three groups, while the latter pro-
poses global sample selection criteria to distinguish differ-
ent types of noise. Despite that promising results have been
observed, existing methods inevitably involve hard-to-tune
and dataset-dependent threshold hyper-parameters for se-
lecting samples, posing a limit to the reliability and scalabil-
ity of these methods in various larger real-world scenarios.

To address aforementioned issues, we propose a sim-
ple yet effective approach, named PNP (Probabilistic Noise
Prediction), to probabilistically model label noise in an end-
to-end manner. Specifically, we simultaneously train two
networks, in which one (i.e., label predictor network) pre-
dicts the category of the input data while the other (i.e.,
noise predictor network) predicts the noise type (i.e., clean
/ ID noisy / OOD noisy). The clean, ID noisy, OOD noisy
samples can be naturally identified according to the predic-
tion from the noise predictor network. To enable effective
learning of the noise predictor network, we propose to op-
timize it in a regression manner, using JS divergence be-
tween prediction-label pairs and prediction-prediction pairs.
Finally, we impose a consistency regularization on in-
distribution data to further advance the learning of our label
predictor network and noise predictor network. A compar-

ison between our PNP and existing sample selection meth-
ods is visualized in Fig. 1. Our major contributions are:

(1) We propose a simple yet effective approach, named
PNP, to combat noisy labels. PNP simultaneously predicts
the category label and noise type for all training samples.
By adopting distinct loss functions for different samples,
PNP can robustly learn from noisy training data.

(2) PNP employs an auxiliary regression loss for em-
powering the model to learn to predict the noise type of
each sample. JS divergence between prediction-label pairs
and prediction-prediction pairs is adopted to approximate
the ground-truth noise type. Furthermore, consistency be-
tween different views of in-distribution data is encouraged
to reinforce the recognition ability.

(3) We evaluate two paradigms of sample selection in our
method: PNP-hard (hard selection) and PNP-soft (soft se-
lection). We validate the effectiveness and superiority of our
method by providing extensive experimental results on both
synthetic and real-world noisy datasets. Moreover, compre-
hensive ablation studies are established to verify each com-
ponent of our approach.

2. Related Works
Prior works on learning from noisy labels can be briefly

categorized into three families:
Label. Early methods primarily focus on correcting cor-

rupted labels. For example, F-correction [26] proposes to
adopt a two-step method for estimating the noise transition
matrix. S-model [5] proposes to adopt an additional soft-
max layer to model the noise transition matrix. For these
approaches, a well-estimated noise transition matrix is criti-
cal in achieving superior and robust performance. However,
the noise transition matrix is difficult to estimate, especially
in complicated scenarios (e.g., real-world noisy datasets).

Sample. From the perspective of sample, the core idea is
to perform sample re-weighting or sample selection. Sam-
ple re-weighting methods primarily seek to assign different
weights to training samples. For example, Ren et al. [30]
propose a meta-learning algorithm to weight training data
differently. However, this line of work tends to involve a
complicated optimization process and require a small set of
clean validation data. Different from sample re-weighting,
sample selection methods aim to select correctly-labeled
samples for training. Researchers have demonstrated that
low-loss samples are more likely to possess correct labels.
For example, Co-teaching [6] trains two networks and lets
them select low-loss samples for each other. JoCoR [42]
employs a joint loss to select low-loss data, encouraging
agreement between networks. CRSSC [34] adopts a loss-
based selection and a confidence-based selection to iden-
tify clean, ID noisy, and OOD noisy samples. Jo-SRC [48]
exploits the Jensen-Shannon (JS) divergence and prediction
disagreement to globally select different types of noisy data.
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Figure 2. The overall framework of PNP. Each input image xi is fed into two networks in parallel. The noise predictor network accordingly
predicts the probability of xi being clean (Pclean) / ID (Pid) / OOD (Pood). Meanwhile, xi is augmented into two weakly and one strongly
augmented views before fed into the label predictor network, leading to three label predictions p(vwi ), p(vw

0
i ), and p(vsi ). Afterward, the

classification loss Lcls is computed based on the estimated noise type and the selection paradigm (hard / soft) in the classification module.
The constraint loss Laux is attained resorting to the approximated ground-truth noise type in the auxiliary module. The consistency loss
Lcons is obtained by encouraging the (label) prediction agreement between different views of in-distribution samples in the consistency
module. Finally, our model is updated by back-propagating a joint loss, which is essentially a weighted sum of the above three losses.

Loss. Besides above two types of methods, some exist-
ing works concentrate on employing robust loss functions
[23, 29, 40, 56]. For example, the bootstrapping loss [29]
adds a perceptual loss term to the conventional classification
loss. GCE [56] integrates the mean absolute loss and the
cross-entropy loss. However, these methods tend to yield
unsatisfactory performance in real-world cases.

3. The Proposed Method
Preliminaries. Given a N -sample C-class dataset D =

{(xi, yi)|1  i  N}, in which xi denotes th i-th training
sample and yi 2 {0, 1}C is its annotated label. We denote
the true label of xi as y⇤i . Conventionally, we implicitly
assume all annotated labels are accurate (i.e., yi = y⇤i ) and
thus optimize the model by minimizing the empirical loss

L = ED[lce(xi, yi)] =
1

N

NX

i=1

lce(xi, yi), (1)

in which

lce(xi, yi) = �
CX

c=1

yci log(p
c(xi,⇥)). (2)

⇥ denotes the model parameters. pc(xi,⇥) denotes the pre-
dicted softmax probability of the i-th training sample xi

over its c-th class. (For simplicity, we use the notation pci
hereinafter.) Nevertheless, the clean-label assumption may
be too restrictive for real-world scenarios and noisy labels
are inevitable in many real-world datasets. In this paper, we
focus on the scenario where annotated labels are not guar-
anteed to be correct. Due to the memorization effect [16],

noisy labels are prone to leading to inferior performance
when used for network training. Thus, it is urgent to design
noise-robust methods for addressing noisy labels.

3.1. Probabilistic Noise Modeling
One of the most common strategies for tackling label

noise is to find clean samples based on a pre-designed se-
lection process. Owing to the behavior of DNNs in learning
simple patterns before fitting noisy labels, previous works
have witnessed promising results by selecting low-loss sam-
ples as clean ones. However, these methods tend to involve
complicated hyper-parameters tuning. For example, Co-
teaching [6] and JoCoR [42] require to estimate the noise
ratio, while CRSSC [34] and Jo-SRC [48] need to choose
a proper selection threshold. Unfortunately, these hyper-
parameters (e.g., noise ratio and selection threshold) are
usually hard to tune and dataset-dependent.

To alleviate the aforementioned issue, we propose to di-
rectly model label noise in an end-to-end probabilistic man-
ner. Specifically, we propose to train two parallel networks.
The first network, termed as label predictor network (LPN),
is trained to predict the category label:

p(xi) = �(h(f(xi, ),�L)) 2 RC , (3)

where �L denotes parameters of the prediction head of
LPN.  denotes parameters of the backbone. f(·, ) and
h(·,�L) are mapping functions of the backbone and the pre-
diction head. �(·) is the softmax function. Conversely, the
second network, termed as noise predictor network (NPN),
is trained to predict the noise type:

t(xi) = �(g(f(xi, ),�N )) 2 R3, (4)
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in which �N denotes parameters of the prediction head of
NPN. g(·,�N ) is the mapping function of this prediction
head. In our implementation, the prediction head of NPN
is a multi-layer perception (MLP) network with one hidden
layer. Here, we define t(0)(xi), t(1)(xi), and t(2)(xi) as
the likelihood of xi belonging to the clean, ID, and OOD
set, respectively. For simplicity, we henceforward denote
Pclean
i = t(0)(xi), Pid

i = t(1)(xi), and Pood
i = t(2)(xi). It

should be noted that, in our implementation, to reduce the
resource consumption and enable an end-to-end joint opti-
mization, LPN and NPN share the same backbone feature
extractor but differ in their prediction heads. By probabilis-
tically modeling label noise, we can conveniently identify
and tackle different types of noisy samples accordingly.

3.2. Classification Losses for Different Noise
The NPN predicts the noise type of each sample by esti-

mating its “likelihood” of being clean / ID / OOD. We adopt
different loss functions for different types of noisy samples.
For clean samples, we employ the cross-entropy loss along
with an entropy regularization term:

lclean(xi, yi) = �
CX

c=1

yci log(p
c
i )�

CX

c=1

pci log(p
c
i ), (5)

For in-distribution / out-of-distribution noisy samples,
inspired by unsupervised consistency training [44], we pro-
pose to treat outputs of strongly and weakly augmented in-
puts as predictions and targets, respectively. More specifi-
cally, for an ID noisy sample xi, we feed its two augmented
views (i.e., a strongly augmented one vsi and a weakly aug-
mented one vwi ) into our network. The LPN accordingly
produces predictions p(vsi ) and p(vwi ), which are then lever-
aged to compute the cross-entropy loss:

lid(xi) = lce(p(v
s
i ), "(p(v

w
i ), ⌧)), (6)

in which
"(z, T ) =

exp(z/T )P
z⇤ exp(z⇤/T )

. (7)

Similarly, for an OOD noisy sample xi, we also employ its
two augmented views for computing the classification loss:

lood(xi) = lce(p(v
s
i ), "(p(v

w
i ), 1/⌧)). (8)

Here, inspired by Jo-SRC [48], we empirically set ⌧ = 0.1,
making "(·, ·) a sharpening operation in Eq. (6) but a flat-
tening operation in Eq. (8).

Discussion. The motivation of employing Eqs. (6)
and (8) for noisy samples is three-folded. Firstly, by op-
timizing losses computed from Eqs. (6) and (8), we implic-
itly enhance consistency between strongly and weakly aug-
mented views of each noisy sample, leading to a smoother
model and an improved sample efficiency. Secondly, strong

augmentations tend to provide more diverse and natural
views, benefiting the generalization performance. Lastly,
although first terms (i.e., predictions) in lce are identical
between Eqs. (6) and (8), the second terms (i.e., targets)
are constructed distinctively based on the nature of ID and
OOD noisy samples. For ID noisy samples, predictions
from a well-trained model tend to be more reliable than
given annotations. Therefore, we employ a sharpening op-
eration to advance training by enforcing more confident pre-
dictions. On the contrary, OOD noisy samples usually con-
fuse models due to their out-of-task ground-truth categories.
By imposing a flattening operation, their predictions will fit
an approximately uniform distribution, leading to a boosted
robustness and generalization performance.

3.3. Constraint of Probabilistic Noise Modeling
We propose to train an additional predictor (i.e., NPN)

for estimating the noise type of each sample. However, the
NPN is difficult to optimize due to the absence of ground-
truth supervision. In this work, we propose to approximate
the ground-truth noise type for each sample and accordingly
train the NPN. Specifically, we follow Jo-SRC [48] and
adopt the Jensen-Shannon (JS) divergence [20] to approx-
imate the probability Qclean of a sample xi being clean:

Qclean
i = Qclean(xi) = 1�DJS(p(v

w
i )kyi), (9)

where DJS(·k·) is the JS divergence function. Moreover,
inspired by [48], we employ prediction divergence to esti-
mate the “likelyhood” Qood of a sample being OOD. Differ-
ent from [48], to enable a smoother optimization, we design

Qood
i = Qood(xi) = DJS(p(v

w
i )kp(vw

0

i )), (10)

in which vw
0

i denotes another weakly augmented view of xi.
Once approximations of the ground-truth noise type are

obtained, the following auxiliary constraint loss is adopted
to optimize the NPN:

laux(xi) = |Pclean
i �Qclean

i |+ |Pood
i �Qood

i |. (11)

Discussion. (1) Although Eq. (11) only provides a weak
constraint due to the ground-truth approximation, the opti-
mization of this auxiliary loss drives the estimation of noise
type to its correct direction. (2) The optimization of Eq. (11)
is actually a regression task. Therefore, the loss function
could be any applicable regression loss (e.g., Mean Abso-
lute Error, Mean Squared Error, etc.). For simplicity, we
empirically employ Mean Absolute Error (MAE) loss in our
implementation. (3) Jo-SRC [48] uses prediction disagree-
ment to measure the prediction divergence, producing a 0/1
“likelyhood”. Conversely, we employ the JS divergence to
estimate the prediction disagreement so that our NPN can
be optimized in a smoother manner.

5314



3.4. Consistency of In-distribution Data
Intuitively, a well-trained model should predict consis-

tently on different variations of in-distribution samples but
contradictorily on those of out-of-distribution data. Due to
the employment of prediction divergence in detecting out-
of-distribution samples, we propose to impose a consistency
regularization loss (i.e., Eq. (12)) on in-distribution data.

lcons(xi) = D(p(vwi )kp(vw
0

i )) +D(p(vw
0

i )kp(vwi )). (12)

D(·k·) denotes the Kullback-Leibler (KL) divergence. The
consistency regularization not only implicitly enhances
representation learning, but also explicitly empowers our
model to better discriminate ID noise and OOD noise.

3.5. PNP-hard and PNP-soft
The overall workflow of our PNP method is shown in

Fig. 2. Our algorithm is trained in a two-step manner. Start-
ing with a warm-up period, our network is trained with the
original noisy labels by optimizing Eq. (1) for a few epochs.
This step facilitates us with a reasonable model for sub-
sequent robust learning. After the warm-up step, we start
our PNP training by optimizing the following objective loss
function in an end-to-end manner:

L = Lcls + �Laux + !Lcons, (13)

where � and ! are designed to balance different loss terms.
In this work, we evaluate two paradigms of sample selec-

tion: hard selection and soft selection. Following the idea of
hard sample selection [34, 48], PNP-hard employs different
loss functions on different types of samples:

8
>>>>><

>>>>>:

Lcls =ED[ Pclean
i �max(Pid

i ,Pood
i )lclean(xi, yi)

+ Pid
i >max(Pclean

i ,Pood
i )lid(xi)

+ Pood
i >max(Pid

i ,Pclean
i )lood(xi)],

Lcons = ED[ Pood
i <max(Pid

i ,Pclean
i )lcons(xi)].

(14)

A is a indicator function, which equals 1 if A is true, and
0 otherwise. Contrarily, PNP-soft adopts soft sample selec-
tion, re-weighting losses based on predictions of noise type:

8
>><

>>:

Lcls = ED[Pclean
i lclean(xi, yi)

+Pid
i lid(xi) + Pood

i lood(xi)],

Lcons = ED[(Pclean
i + Pid

i )lcons(xi)].

(15)

Comparison between PNP-hard and PNP-soft. PNP-
hard is intuitive and straightforward, assigning each sam-
ple a discrete tag that reveals its noise type. Different loss
functions are accordingly employed based on the estimated

noise type. On the contrary, PNP-soft adopts a re-weighting
schema when computing losses. While hard selection can
concretely identify the noise type, it may amplify the risk
of incorrect predictions, leading to a potential overfitting
problem. Conversely, PNP-soft is beneficial by guarantee-
ing that at least part of the loss is correctly optimized even
if the noise type is wrongly predicted. However, PNP-soft
may suffer from the underfitting issue. Empirically, PNP-
hard achieves better performance if the noise situation is
insignificant and a trustworthy NPN can be attained. When
the training data is heavily corrupted, PNP-soft would be
superior, owing to its robustness against errors from NPN.

4. Experiments
4.1. Experiment Setup

Datasets. We evaluate our PNP approach on two syn-
thetic datasets (i.e., CIFAR100N and CIFAR80N) and four
real-world datasets (i.e., Web-Aircraft, Web-Bird, Web-Car,
and Food101N). CIFAR100N and CIFAR80N stem from
CIFAR100 [14]. Specifically, we follow Jo-SRC [48] to
create the closed-set noisy dataset CIFAR100N and the
open-set noisy dataset CIFAR80N. We adopt two classic
noise structures: symmetric and asymmetric. Web-Aircraft,
Web-Bird, and Web-Car are sub-datasets of WebFG-496
[36], which is a webly supervised fine-grained datasets.
Food101N [17] is large-scale real-world noisy dataset.

Evaluation Metric. For assessing the performance of
our proposed PNP approach, we adopt the test accuracy as
our evaluation metric. Reported results are averaged perfor-
mance of five repeated experiments under identical settings.

Implementation Details. We adopt a seven-layer DNN
[48] for CIFAR100N and CIFAR80N. Adam optimizer [12]
is employed during training. We set the initial learning rate
as 0.001 and the batch size as 128. We warmup the network
for 10 epochs. The learning rate starts to decay linearly
after 80 epochs of training. The entire training lasts for
200 epochs. For obtaining further performance gains, we
adopt the label smoothing regularization (LSR) [38] tech-
nique when calculating clean samples’ classification losses
(i.e., Eq. (5)). The LSR parameter ✏ is empirically set to
0.6. � and ! are set as 1.0 in default. For Web-Aircraft,
Web-Bird, and Web-Car, we leverage ResNet-50 [8] pre-
trained on ImageNet as our backbone to compare PNP with
other state-of-the-art methods. We update network param-
eters using SGD optimizer [37] with a momentum of 0.9.
The initial learning rate and batch size are 0.0005 and 16,
respectively. The warm-up stage lasts for 10 epochs and we
train networks for 120 epochs. We start decay learning rate
after 10 epochs in a cosine annealing manner. � and ! are
also set as 1.0 in default. For Food101N, we follow set-
tings in Jo-SRC [48] and employ pre-trained ResNet-50 for
comparison. Default values of � and ! are 1.0 and 0.2.
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Methods Publication CIFAR100N CIFAR80N
Sym � 20% Sym � 80% Asym � 40% Sym � 20% Sym � 80% Asym � 40%

Standard - 35.14 ± 0.44 4.41 ± 0.14 27.29 ± 0.25 29.37 ± 0.09 4.20 ± 0.07 22.25 ± 0.08
Decoupling [25] NeurIPS 2017 33.10 ± 0.12 3.89 ± 0.16 26.11 ± 0.39 43.49 ± 0.39 10.01 ± 0.29 33.74 ± 0.26
Co-teaching [6] NeurIPS 2018 43.73 ± 0.16 15.15 ± 0.46 28.35 ± 0.25 60.38 ± 0.22 16.59 ± 0.27 42.42 ± 0.30

Co-teaching+ [51] ICML 2019 49.27 ± 0.03 13.44 ± 0.37 33.62 ± 0.39 53.97 ± 0.26 12.29 ± 0.09 43.01 ± 0.59
JoCoR [42] CVPR 2020 53.01 ± 0.04 15.49 ± 0.98 32.70 ± 0.35 59.99 ± 0.13 12.85 ± 0.05 39.37 ± 0.16

Jo-SRC [48] CVPR 2021 58.15 ± 0.14 23.80 ± 0.05 38.52 ± 0.20 65.83 ± 0.13 29.76 ± 0.09 53.03 ± 0.25
PNP-hard - 64.25 ± 0.12 30.26 ± 0.15 56.01 ± 0.31 65.87 ± 0.23 30.79 ± 0.16 56.17 ± 0.42

PNP-soft - 63.27 ± 0.14 31.32 ± 0.19 60.25 ± 0.21 67.00 ± 0.18 34.36 ± 0.18 61.23 ± 0.17

Table 1. Average test accuracy (%) on CIFAR100N and CIFAR80N over the last 10 epochs (“Sym” and “Asym” denote the symmetric and
asymmetric label noise, respectively).

Baselines. To evaluate our PNP approach on synthetic
datasets, we follow Jo-SRC [48] and compare PNP-hard
/ PNP-soft with state-of-the-art sample selection methods:
Decoupling [25], Co-teaching [6], Co-teaching+ [51], Jo-
CoR [42], and Jo-SRC [48]. For evaluating on Web-
Aircraft, Web-Bird, and Web-Car, we additionally com-
pare PNP with other state-of-the-art methods (e.g., SELFIE
[32], PENCIL [50], AFM [27], CRSSC [34], Self-adaptive
[10], DivideMix [18], PLC [55], and Peer-learning [36]).
We follow Jo-SRC [48] when evaluating our approach on
Food101N. We compare our approach with CleanNet [17],
DeepSelf [7], and Jo-SRC [48]. Finally, we denote “Stan-
dard” as the baseline case in which we train a deep network
using noisy datasets directly. We implement all above meth-
ods using PyTorch for performing fair comparison.

4.2. Evaluation on Synthetic Noisy Datasets

We first evaluate PNP on synthetic datasets. By varying
the structure and ratio of label noise, we can better under-
stand the effectiveness of PNP in different noise situations.

Results on CIFAR100N. Starting from evaluating our
approach in closed-set scenarios, we present the compari-
son in test accuracy with state-of-the-art approaches on CI-
FAR100N in Tab. 1. Results of existing methods are drawn
from Jo-SRC [48] and those of our method are obtained un-
der the same experimental settings. From Tab. 1, we can ob-
serve that both PNP-hard and PNP-soft consistently achieve
the leading performance. While existing state-of-the-art ap-
proaches almost fail in the most inferior case (i.e., Sym-
80%), our PNP-hard and PNP-soft still achieve the most ap-
pealing performances. We can observe that PNP-hard out-
performs PNP-soft only when the noise structure and ratio
is Sym-20%. This verifies our argument that hard selection
(PNP-hard) will achieve better results only when the noise
situation is insignificant. In other cases, PNP-soft consis-
tently performs better than PNP-hard. It should be noted
that real-world noisy labels are mostly asymmetric. Tab. 1
reveals that our PNP-hard / PNP-soft performs notably bet-
ter than state-of-the-art methods in the case of Asym-40%.

The remarkable superiority of our method in asymmetric
noise indicates that PNP will achieve satisfactory results in
real-world noisy datasets.

Results on CIFAR80N. CIFAR80N is specifically cre-
ated to simulate the real-world (open-set) noisy scenario.
The comparison between our method with state-of-the-art
approaches is also provided in Tab. 1. Results of exist-
ing methods are directly from Jo-SRC [48], and perfor-
mances of our method are obtained under the same exper-
imental settings. From Tab. 1, we can have the following
observations: (1) Our PNP-hard / PNP-soft method consis-
tently outperforms state-of-the-art approaches across differ-
ent noise scenarios. Our model can achieve the best per-
formance even when facing severe label noise (i.e., Sym-
80%). (2) PNP-soft exhibits better performance than PNP-
hard in all noisy cases. We believe this results from the com-
plicated noisy labels existed in the open-set noisy dataset
CIFAR80N. (3) PNP-hard and PNP-soft obtain impressive
performance boost in the case of Asym-40%, validating
our design for open-set real-world (asymmetric) problems.
These observations firmly validate the effectiveness and su-
periority of our proposed method in open-set noisy cases.

4.3. Evaluation on Real-world Noisy Datasets

Beyond the above evaluations, we conduct experiments
on real-world noisy datasets, including three medium-scale
web-image-based fine-grained datasets and one large-scale
food dataset, to verify the effectiveness of PNP.

Results on Web-Aircraft / Bird / Car. Web-Aircraft,
Web-Bird, and Web-Car are three real-world web image
datasets for fine-grained vision categorization. Within each
dataset, more than 25% of training samples are associ-
ated with unknown (asymmetric) noisy labels. Even worse,
these datasets do not provide any label verification infor-
mation, making it a practical and challenging label noise
problem. Tab. 2 illustrates a comparison between our
method with state-of-the-art methods. From this table, the
leading performance obtained by our method can be wit-
nessed. PNP-hard and PNP-soft both outperform state-of-
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Methods Publications Backbone Performances (%)

Web-Aircraft Web-Bird Web-Car

Standard - ResNet50 60.80 64.40 60.60
Decoupling [25] NeurIPS 2017 ResNet50 75.91 71.61 79.41
Co-teaching [6] NeurIPS 2018 ResNet50 79.54 76.68 84.95

Co-teaching+ [51] ICML 2019 ResNet50 74.80 70.12 76.77
SELFIE [32] ICML 2019 ResNet50 79.27 77.20 82.90
PENCIL [50] CVPR 2019 ResNet50 78.82 75.09 81.68

JoCoR [42] CVPR 2020 ResNet50 80.11 79.19 85.10
AFM [27] ECCV 2020 ResNet50 81.04 76.35 83.48

CRSSC [34] ACM MM 2020 ResNet50 82.51 81.31 87.68
Self-adaptive [10] NeurIPS 2020 ResNet50 77.92 78.49 78.19

DivideMix [18] ICLR 2020 ResNet50 82.48 74.40 84.27
Jo-SRC [48] CVPR 2021 ResNet50 82.73 81.22 88.13

PLC [55] ICLR 2021 ResNet50 79.24 76.22 81.87
Peer-learning [36] ICCV 2021 ResNet50 78.64 75.37 82.48

PNP-hard - ResNet50 85.03 81.20 89.93
PNP-soft - ResNet50 85.54 81.93 90.11

Table 2. Comparison with state-of-the-art approaches in test accuracy (%) on Web-Aircraft, Web-Bird, and Web-Car.

Method Backbone Test accuracy
Stardard ResNet-50 84.51

CleanNet !hard [17] ResNet-50 83.47
CleanNet !soft [17] ResNet-50 83.95

DeepSelf [7] ResNet-50 85.11
Jo-SRC [48] ResNet-50 86.66

PNP-hard ResNet-50 87.31
PNP-soft ResNet-50 87.50

Table 3. Comparison with state-of-the-art approaches in test accu-
racy (%) on Food101N.

the-art methods on Web-Aircraft and Web-Car by a consid-
erably large margin (2.30% / 2.81% on Web-Aircraft and
1.80% / 1.98% on Web-Car). Although PNP-hard achieves
a slightly lower result than CRSSC [34] and Jo-SRC [48] on
the Web-Bird dataset, PNP-soft still exhibits the best perfor-
mance. Besides the superior performance, PNP-soft consis-
tently surpasses PNP-hard on all three datasets. This behav-
ior once again confirms our argument that PNP-soft is more
robust against complicated noisy labels than PNP-hard.

Results on Food101N. Food101N is another real-world
noisy dataset, consisting of 101 different food categories
and over 310k training samples. This dataset also contains
a large proportion of noisy labels. Tab. 3 presents the ex-
perimental results of our methods compared with state-of-
the-art approaches. As illustrated in Tab. 3, PNP-hard and
PNP-soft both achieve superior test accuracy than existing
methods, supporting our claim that PNP is effective in alle-
viating noisy labels in large-scale real-world applications.

Clean ID OOD AUX CONS PNP
hard soft

X 42.10 47.13
X X 49.34 52.11
X X X 50.69 54.09
X X X X 52.90 57.35
X X X X 51.30 60.20
X X X X X 58.54 62.18

Table 4. Impacts of different ingredients in test accuracy (%) on
CIFAR80N (Asym-40%). Results at the best epochs are presented.

4.4. Ablation Study
4.4.1 Influence of Different Ingredients

Tab. 4 illustrates impacts of different ingredients in PNP.
Clean, ID, and OOD denote the adoption of Eq. (5), Eq. (6),
and Eq. (8), respectively. AUX indicates that the constraint
loss Eq. (11) is utilized. CONS suggests the employment of
in-distribution consistency regularization. LSR is adopted
in default. The best result of “Standard” is 29.11%, and that
of “Standard + LSR” is 33.10%. From this table, we can ob-
serve that each ingredient exhibits a non-trivial significance
in our approach. Firstly, by using NPN to identify clean / ID
noisy / OOD noisy samples, the performance is promoted
by a large margin compared to “Standard + LSR”. Secondly,
the employment of the auxiliary constraint empowers the
model to achieve more performance boost. Lastly, through
imposing consistency regularization on in-distribution data,
PNP-hard and PNP-soft are further advanced in robustness.
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Figure 3. The prediction accuracy (%) of different types of training samples. (a)-(c) present results on CIFAR100N (Asym-40%). (d)-(f)
provide comparison on CIFAR80N (Asym-40%)
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Figure 4. The sensitivity of hyper-parameter � and !. (Experi-
ments are conducted on CIFAR80N with Sym-20% label noise.)

4.4.2 Prediction Accuracy over Different Samples

It has been established that the over-parameterized deep
networks possess extraordinary learning capability and can
memorize all training data. Therefore, the fundamental
principle in learning from noisy labels is to hinder deep net-
works from overfitting noisy samples. Fig. 3 exhibits the
prediction accuracy of different types of training samples
(i.e., clean, ID noisy, and OOD noisy samples). Besides,
we additionally analyze the prediction accuracy of ID noisy
samples w.r.t. their true labels. Fig. 3 (a) and (d) show cases
of “Standard”, in which networks eventually overfit noisy
samples. The cyan curves (i.e., ID noisy samples w.r.t. their
true labels) justify the claim that deep networks tend to learn
clean and simple patterns before overfitting noisy samples.
From Fig. 3 (b)(c)(e)(f), we can observe that clean samples
are fitted progressively during training, but the overfitting
on noisy samples is significantly suppressed by adopting
PNP-hard / PNP-soft. Despite lack of correct supervision,
knowledge from ID noisy samples is still learned by our ap-
proach. By comparing results of PNP-hard and PNP-soft,
we can find the latter has a stronger capability to hinder the
network from overfitting noisy samples (especially for in-
distribution noisy ones), certifying its superior robustness.

4.4.3 Sensitivity of Hyper-parameters

For studying sensitivity of hyper-parameters, we primar-
ily investigate two parameters (i.e., � and !) in the value
range of {0.2, 0.4, 0.6, 0.8, 1.0}. Fig. 4 presents the results
on the CIFAR80N (Sym-20%) dataset. For better under-
standing these two hyper-parameters, we additionally pro-
vide experimental results of � = 0 and ! = 0. The left

sub-figure reveals that our method is considerably robust
against the value of �. The sharp performance increase
from � = 0 to � > 0 demonstrates the importance of em-
ploying the auxiliary constraint loss (i.e., Eq. (11)). The
right sub-figure exhibits the sensitivity of !. From this sub-
figure, we can observe that while PNP-soft is fairly robust
against !, PNP-hard can benefit from the value increase
of this hyper-parameter. Our hypothesis is that the supe-
rior noise-robustness of PNP-soft weakens the impact of !.
Since PNP-hard is less robust to label noise, a stronger con-
sistency regularization may better boost the model perfor-
mance. This sub-figure also reveals a notable performance
gap between ! = 0 and ! > 0, manifesting the necessity of
adopting in-distribution consistency regularization.

5. Conclusion
In this paper, we focused on the challenge of learn-

ing from real-world (open-set) noisy labels. To mitigate
their negative impact, we proposed a simple yet effective
approach named PNP to model label noise in an end-to-
end probabilistic manner. PNP followed the sample selec-
tion paradigm but bypassed the requirement for selection
thresholds, which were hard-to-tune and dataset-dependent.
Specifically, PNP trained two networks in parallel, enabling
simultaneous predictions of the category label (i.e., LPN)
and the noise type (i.e., NPN). Moreover, a regression task
was proposed to optimize the NPN and a consistency regu-
larization was adopted to empower the discrimination abil-
ity. Finally, we evaluated two selection paradigms of PNP
(i.e., PNP-hard and PNP-soft). A series of experimental re-
sults on synthetic and real-world datasets justified the effec-
tiveness and superiority of our proposed approach.
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