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Abstract

Adapting to a continuously evolving environment
is a safety-critical challenge inevitably faced by all
autonomous-driving systems. Existing image- and video-
based driving datasets, however, fall short of capturing the
mutable nature of the real world. In this paper, we intro-
duce the largest multi-task synthetic dataset for autonomous
driving, SHIFT. It presents discrete and continuous shifts in
cloudiness, rain and fog intensity, time of day, and vehi-
cle and pedestrian density. Featuring a comprehensive sen-
sor suite and annotations for several mainstream perception
tasks, SHIFT allows to investigate how a perception sys-
tems’ performance degrades at increasing levels of domain
shift, fostering the development of continuous adaptation
strategies to mitigate this problem and assessing the robust-
ness and generality of a model. Our dataset and benchmark
toolkit are publicly available at www.vis.xyz/shift.

1. Introduction
Recent years have witnessed the remarkable progress of

perception systems for autonomous driving. Betting on the
role that autonomous driving will serve for society, indus-
try [5, 7, 18, 29, 31, 52, 76] and academia [10, 17, 45, 50, 94]
have joined forces to collect and release several large-scale
driving datasets, raising hopes for a forthcoming successful
deployment of self-driving cars.

Providing a playground for different techniques to com-
pete and thrive on multiple tasks, large-scale driving
datasets have played a pivotal role in the prosperity of per-
ception algorithms. However, while their accuracy surges,
progress in terms of generalization to unforeseen environ-
mental conditions has been underwhelming [11, 47].

*Equal contribution.
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Figure 1. SHIFT provides (a) discrete domain shifts: sequences
are collected using separated domain parameters and random ini-
tial states, used for robustness evaluation and domain adaptation;
(b) continuous domain shifts: domain parameters change contin-
uously during driving, used for continuous domain adaptation.

To achieve full autonomy, self-driving cars must adapt to
new environments and identify life-threatening failure cases
to promptly prevent crashes. Examples of domain shifts af-
fecting driving are changes in weather and lighting condi-
tions, scenery, and behavior, appearance, and quantity of
agents on the road. Domain shift [2] is a well-known prob-
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lem for learning algorithms, causing unforeseeable perfor-
mance drops under conditions different from the training
ones. Techniques to prevent, counteract or assess its im-
pact have been developed in the form of, respectively, do-
main generalization [32, 48, 80, 88], domain adaptation [15,
42, 84, 91], uncertainty estimation [14, 36, 43, 58] and out-
of-distribution (OOD) detection [26, 57, 68, 93]. However,
such approaches are typically deployed and tested on toy
datasets [39,69,86] or synthetically corrupted ones [24]. Al-
though there are preliminary attempts at providing driving
datasets with different domains [5,11,55,67,72,73,83,94],
each only covers a limited amount of perception tasks (e.g.
only semantic segmentation [72,73]) and a narrow selection
of domain shift directions (e.g. only rain [83] or snow [55]).
Consequently, current solutions to domain shift cannot un-
dergo scrutiny in controlled autonomous driving scenarios,
making it difficult to verify their safety without risking real-
world car crashes.

Given their short length, sequences from existing driving
datasets are captured under approximately stationary con-
ditions, and only discrete shifts are witnessed among sets
of sequences presenting different homogeneous conditions
from one set to another (e.g. clear weather and rainy). How-
ever, as the ancient Greek philosopher Heraclitus of Eph-
esus uttered, nothing in this world is constant except change
and becoming. Continuous shifts - the intra-sequence shifts
from one domain into another - are a certainty in the real
world, where a sunny day can rapidly turn into a rainy one,
or a quiet road can quickly become busy. Moreover, contin-
uous distributional shift has recently been shown to repre-
sent a critical challenge for current learning systems [59].

An adequate dataset design is thus needed to quantify
and address domain shift both at discrete and continuous
levels. Consequently, we set the goal of overcoming the
outdated paradigm of previous driving datasets and intro-
duce SHIFT, a new synthetic dataset capturing the con-
tinuously evolving nature of the real world through realis-
tic discrete and continuous shifts along safety-critical en-
vironmental directions: time of day, cloudiness, rain, fog
strength, and vehicle and pedestrian density. Collected by
means of the CARLA Simulator [13], SHIFT includes a
comprehensive sensor suite and covers the most important
perception tasks. Counting 4,800+ sequences captured from
a multi-view sensor suite in 8 different locations, it supports
13 perception tasks for multi-task driving systems: seman-
tic/instance segmentation, monocular/stereo depth regres-
sion, 2D/3D object detection, 2D/3D multiple object track-
ing (MOT), optical flow estimation, point cloud registration,
visual odometry, trajectory forecasting and human pose es-
timation.

With our dataset, we aim to foster research in several
under-explored fields related to the generality and relia-
bility of perception systems for autonomous driving, e.g.

domain generalization, domain adaptation, and uncertainty
estimation. Moreover, by collecting incremental discrete
shifts from one domain to another, we hope to foster re-
search in the field of continual learning [20, 87, 90] for au-
tonomous driving, so far only studied on discrete levels of
synthetic corruptions [24] of traditional image classifica-
tion datasets [12, 35]. Finally, by collecting sequences with
realistic intra-sequence continuous domain shifts, we pro-
vide the first driving dataset allowing research on continu-
ous test-time learning and adaptation [56, 77, 81, 82, 90].

We summarize the main contributions of this work:
• We introduce SHIFT, a multi-task driving dataset fea-

turing the most important perception tasks under a vari-
ety of conditions and with a comprehensive sensor setup.
To the best of our knowledge, it is the largest synthetic
dataset for autonomous driving and provides the most
inclusive set of annotations and conditions.

• Using SHIFT, we analyze the importance of modeling
discrete and continuous domain shifts, and demonstrate
new findings on different adaptation and uncertainty es-
timation methods under continuous shifts.

2. Related Work
During the past decade, a large variety of realistic and

synthetic driving datasets emerged, providing a playground
for researchers to develop novel algorithms. Contextually,
domain shift has been identified as a common threat to the
performance and safety of learning-based methods.

We here introduce the most-notable driving datasets and
the techniques to mitigate the domain shift effect. For an
overview of the current driving datasets, refer to Tab. 1.

Real-world driving datasets typically focus on a specific
subset of perception tasks due to the high cost of data col-
lection and annotation. After almost a decade of develop-
ment, the pioneering real-world dataset KITTI [17] supports
almost all the perception tasks for autonomous driving, in-
cluding semantic / instance segmentation, depth estimation,
2D and 3D object detection and tracking, optical flow, scene
flow, and visual odometry. However, its small scale repre-
sents an obvious problem and its diversity is severely lim-
ited compared to modern large-scale datasets. CamVid [4],
Cityscapes [10], and Mapillary [50] are image-based driv-
ing datasets for segmentation, A*3D [54] for 3D object de-
tection, and HD1K [34] for optical flow estimation. Re-
cently, many large-scale datasets, e.g., BDD100K [94],
Waymo Open [76], H3D [52], and nuScenes [5], have been
released with multi-task annotations, although mainly fo-
cusing on object detection and tracking. Our dataset of-
fers a complete set of annotations for all the frames, com-
prehensive of all the most important perception tasks sup-
ported by other datasets, and enabling multi-task learning
on a broader range of tasks and conditions.
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Dataset Cities Tracking Max length for Labels for Annotated frames for
sequences sequence domain shifts Seg. 2D Det. 3D Det. MOT Depth Flow

R
ea

l-w
or

ld

KITTI [17] 1 22 106 sec no 200 15k 15k 15k 93k 389
CamVid [4] 4 - - no 700 - - - - -
Cityscapes [10] 27 - - no 25k - - - - -
Cityscapes-C† [47] 27 - - discrete 25k - - - - -
H3D [52] 4 160 20 sec discrete - - 27k 27k - -
HD1K [34] 1 - - discrete - - - - - 1k
A*3D [53] 1 - - discrete - - 39k - - -
nuScenes [5] 2 1,000 20 sec discrete - - 40k 40k - -
Waymo Open [76] 3 1,150 20 sec discrete - 200k 230k 230k - -
BDD100K [94] multiple 2,000 40 sec discrete 10k 100k - 318k - -

Sy
nt

he
tic

SYNTHIA [67] 3 - - discrete 9,000 200k 200k - - -
GTA-V [65] 1 - - no 25k - - - - -
VIPER [64] 1 184 10 min discrete 320k 320k - 320k - 320k
AIODrive [92] 8 100 100 sec discrete 100k 100k 100k 100k 100k -
SHIFT (ours) 8 4,850 33 min discrete + continuous 2.5M 2.5M 2.5M 2.5M 2.5M 2.5M

Table 1. Comparison of size and supported tasks of existing driving datasets. SHIFT is the largest synthetic dataset and, most notably, the
only dataset providing realistic continuous domain shifts, diverse annotations, and longer annotated sequences. † artificially corrupted.

Synthetic driving datasets are collected using graphic en-
gines and physical simulators. SYNTHIA [67] contains im-
ages and segmentation annotations generated by its simu-
lator. AIODrive [92] is produced using CARLA Simula-
tor with multiple sensor support, focusing on high-density
long-range LiDAR sets. Compared to ours, these datasets
present sequences of limited length and are restricted to dis-
crete domain labels (Tab. 1). Further, video games have
also been used for data generation. GTA-V [28, 65] pro-
vides images and segmentation masks captured from a pop-
ular game. VIPER [64] extends GTA-V by providing opti-
cal flow masks and discrete environmental labels. However,
low-level control of video game engines is hardly accessi-
ble, impeding fine-grained environmental control and the
collection of continuous shifts.

Adverse conditions datasets support the evaluation of
robustness under different OOD conditions. A recent
work [44] collects meteorological and air temperature mea-
surements under discrete real-world shifts. Image-based
datasets, e.g. CIFAR10/100-C [47], ImageNet-R [23] and
Cityscapes-C [24], have been generated by applying artifi-
cial corruptions such as blurring, additive Gaussian noise
and addition of specific patterns on the original dataset.
Though carefully designed, such ad-hoc corruptions cannot
fully represent the challenges presented by visual shifts in
the real world. To this end, recent driving datasets [5,45,53,
76, 94] provide manually labeled tags for various weather
conditions, scene categories, and day periods. However,
each only covers a limited amount of perception tasks
(see Tab. 1) and a narrow selection of domain shift di-
rections. Moreover, ad-hoc datasets have been collected
for specific underrepresented domains, e.g. rain [30, 83],
fog [71, 72, 78], night [11], snow [55]. However, domain
tags remain coarse-grained and only certain tasks and do-

main shift directions are supported. Recently, the ACDC
dataset [73] has been proposed, featuring images evenly
distributed between fog, nighttime, rain, and snow. How-
ever, it supports only semantic segmentation. Interestingly,
the India Driving Dataset [85] is the only dataset to pro-
vide extremely busy roads as adverse conditions. Overall,
BDD100K [94] is the large-scale real-world dataset present-
ing the largest diversity of perception driving tasks and dis-
crete domain labels for the time of day and weather condi-
tions. For this reason, we use it as a reference to validate
empirical observations drawn from our dataset. Neverthe-
less, compared to our dataset, BDD100K only provides an-
notated images from single cameras, does not provide 3D
bounding boxes and optical flow annotations, distribution
of domains is highly imbalanced and the domain is station-
ary within each sequence. In contrast, our dataset provides
a full sensor suite, annotations for multiple tasks, balanced
domain distribution and sets of sequences with continuously
changing time of day, weather conditions (cloudiness, rain
and fog strength), and vehicle and pedestrians density.

Unsupervised domain adaptation (UDA) means simulta-
neously learning on a labeled source and an unlabeled target
domain to find transferable features across domains. UDA
is mainly achieved via feature-space alignment [60, 75],
domain-consistent regularization [15,16,27] and minimiza-
tion of surrogate functions of domain gaps [70, 89]. The
discrete shifts provided in our dataset can be directly used
for training and evaluating UDA approaches.

Continual domain adaptation aims at performing consec-
utive discrete adaptation steps from one domain to multiple
others. Incremental domain adaptation (IncDA) is a subset
of continual DA that requires the source data and assumes
availability of intermediate domains where domain shifts
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Figure 2. The annotation set of the RGB camera in our dataset. Each frame is associated with annotations of 2D/3D bounding boxes with
tracking identities (visualized by different colors), semantic/instance segmentation, depth map and optical flow label.

occur gradually [37, 87, 90], allowing to minimize the gap
between adaptation steps and performing adaptation from
the source to the final target domain more effectively than
with direct UDA. Providing different strengths of variations
along natural axes, our dataset is suitable for IncDA.

Continuous test-time adaptation (ContinuousTTA) as-
sumes that gradual domain shifts occur within the same test
sequence, and adaptation is performed at test time on the in-
coming data stream. ContinuousTTA is a suitable choice for
any scenario where a model is required to adapt on the go to
a shifting domain and no large labeled or unlabeled collec-
tion of data from the target domain is available in advance.
Recent works [49, 77, 90] show the efficiency of TTA when
applied to artificial corruptions in the image-based datasets
ImageNet-C/-R [23, 24]. The continuously shifting video
sequences in our dataset provide instead realistic domain
shift along natural directions, facilitating the development
of ContinuousTTA methods transferable to the real world.

Uncertainty Estimation is a fundamental task for safety-
critical vision applications. Quantifying the confidence
about a model’s prediction allows avoiding dangerous fail-
ures in autonomous driving. However, current uncertainty
estimation techniques [14, 36, 40, 57] mainly focus on clas-
sification on toy datasets [35, 38], while recent work [59]
has observed poor calibration, i.e. uncertainty uncorrelated
with prediction’s error, when such techniques are extended
to more difficult datasets [25] and tasks under distributional
shift. We hope that the domain shifts and multiple tasks
supported in SHIFT will enable the study of uncertainty es-
timation methods on a wide variety of tasks for autonomous
driving and their calibration under distributional shift.

3. The SHIFT Dataset
We provide a driving dataset with a comprehensive sen-

sor suite (Sec. 3.1) and a rich set of annotations (Sec. 3.2),
supporting multiple image- and video-based perception and

forecasting tasks against environmental changes. We detail
our design choices regarding domain shifts in Sec. 3.3.

3.1. Sensor Suite
We collect the data through a comprehensive sensor

suite. Our sensor suite features 11 different sensors, includ-
ing a multi-view RGB camera set with 5 cameras, a stereo
RGB camera set, an optical flow sensor, a depth camera, a
GNSS sensor, and an IMU. All the cameras have a field-of-
view of 90� and resolution of 1280⇥ 800 pixel. Moreover,
we provide point clouds captured by a 128-channel LiDAR
sensor. All sensors are synchronized and captured at a 10Hz
rate. We follow the Scalabel [1] format and right-hand coor-
dinate systems for storing all the annotations. More details
are in the Appendix.

3.2. Annotations
We provide annotations for multiple mainstream percep-

tion tasks in autonomous driving, including 2D/3D bound-
ing box trajectories, instance/semantic segmentation, opti-
cal flow and dense depth. Unlike real-world datasets, whose
annotations are often limited to a group of keyframes due to
prohibitive labeling cost, we offer full annotations for each
frame in the sequences. More details are in the Appendix.

3.3. Dataset Design
Given their short sequence length, existing driving

datasets are captured under approximately stationary con-
ditions, and only discrete shifts are witnessed among sets
of sequences presenting different homogeneous conditions
(e.g. clear weather and rainy). We set the goal of overcom-
ing the outdated paradigm of previous driving datasets and
introduce SHIFT, a new synthetic dataset capturing the con-
tinuously evolving nature of the real world through realis-
tic discrete and continuous shifts along safety-critical en-
vironmental directions: time of day, cloudiness, rain, fog
strength, and vehicle and pedestrian density. We collect
4,850 sequences, of which 4,250 contain stationary environ-
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Figure 3. We evaluate four adaptation strategies: targeted domain adaptation (Targeted DA), untargeted domain adaptation (Untargeted
DA), incremental domain adaptation (Incremental DA) and continuous test-time adaptation (Continuous TTA). The dots in the same row
represent frames from the same sequence; their grayscale marks the degree of domain shift (white dots = source, dark gray dots = target.)
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Figure 4. Examples of the two-level structure for domain labels.
Each discrete label (tag above images) corresponds to an interval
of continuous labels (i.e., severity, axis below images).

mental conditions, i.e. inter-sequence domain shift. Each
sequence is composed of 500 frames collected at 10 Hz,
equivalent to 50 seconds of driving time. The remaining
600 sequences have continuously shifting conditions, i.e.
inter-sequence domain shift. Totalling 70+ hours of driv-
ing and 2,500,000 annotated frames, SHIFT is the largest
synthetic driving dataset available.

Domain shift types. We consider the most-frequent
real-world environmental changes. SHIFT provides domain
shifts in (a) weather conditions, including cloudiness, rain,
and fog intensity, (b) time of day, (c) the density of vehicles
and pedestrians, and (d) camera orientation.

Domain shifts level. To facilitate research on domain
adaptation in different scenarios, SHIFT provides two lev-
els of domain shifts, namely discrete domain shifts and con-
tinuous domain shifts. The discrete set contains 4,250 se-
quences generated with fixed environmental parameters and
random initial states. We group these sequences into dif-
ferent domains, according to their severity. Fig. 4 shows
grouping examples. All possible domain combinations are
uniformly distributed across all sequences. The continu-
ous set contains additional 600 sequences with continuous
domain variations. In particular, each sequence presents a
gradual shift from one domain to another, where the shift

happens through the intermediate domains that would nat-
urally occur in the real world. In total, we collect 500 se-
quences of a basic 20 seconds length (1x), 80 sequences
10x longer than the basic length, and 20 100x longer. Each
set is uniformly divided among the following shifts, each of
which also loops back to the source domain: day �! night,
clear �! rain, clear �! foggy, clear �! overcast. Given a
domain shift direction, e.g. day to night, all other domain
parameters are uniformly distributed across all sequences.
Different sequence lengths allow analyzing the impact of
domain shift speed on continuous TTA strategies (Sec. 4.2).

4. Experiments
SHIFT allows studying the robustness of perception sys-

tems for driving under both discrete and continuous dis-
tributional shifts. We first (Sec. 4.1) assess the impact of
discrete domain shifts on model performance for multiple
perception tasks available in our dataset and empirically
demonstrate that observations from our simulation dataset
transfer to real-world datasets. Moreover, we compare dif-
ferent discrete adaptation strategies and assess the calibra-
tion of uncertainty estimation methods under domain shifts.
In Sec. 4.2 we extend the analysis to continuous domain
shifts and investigate properties of continuous domain adap-
tation methods [90] against incremental adaptation and un-
supervised domain adaptation [89]. Further experiments,
implementation details, and ablations on the data collection
choices are reported in the Appendix, together with addi-
tional experiments on multitask learning.

Domain adaptation strategies. To analyze the impact
of our dataset design choice, we examine the four domain
adaptation strategies allowed by our dataset (Fig. 3). As
Baseline, we consider the model trained on the source do-
main only and directly tested on the other domains. Tar-
geted DA [91] is a traditional computer vision problem
consisting of adapting from a labeled source domain to a
specific unlabeled target domain. We define Untargeted
DA [39, 74] as adapting from a labeled source domain to
a set of various unlabeled shifted domains. Incremental
DA [87] consists in performing incremental steps of targeted
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(a) Object detection (b) Semantic segmentation

Figure 5. Performance degradation for different object detection (left) and semantic segmentation (right) methods under different weather
conditions. Every model is trained under clear weather conditions and tested on other domains. SHIFT shows a similar trend as BDD100K.

Task Method Metric clear-daytime partly cloudy overcast foggy rainy dawn/dusk night

Semantic segmentation DRN-D [95] mIoU (%) " 83.6 79.3 79.4 62.4 54.6 60.8 42.8
Instance segmentation Mask R-CNN [21] mAP (%) " 39.3 39.4 34.0 18.7 35.0 30.7 13.1
Object detection Faster R-CNN [6] mAP (%) " 46.9 47.4 41.1 21.0 41.3 37.3 15.4
MOT QDTrack [51] MOTA (%) " 56.2 53.4 46.2 25.0 41.9 44.7 16.5
Mono. depth estimation AdaBins-UNet [3] SILog # 9.6 10.0 8.9 12.0 10.3 19.7 27.9
Optical flow estimation RAFT [79] EPE (px) # 2.26 2.01 2.35 2.60 2.43 4.17 8.85

Table 2. Performance degradation on SHIFT of different methods for different perception tasks under discrete domain shifts. Training
domain is underlined. The test domains are weather variations in daytime (partly cloudy, overcast, foggy, rainy) and time of day variations
in clear weather (dawn/dusk, night). " (#): the higher (lower) the better.

Scenario Baseline Targeted DA Incremental DA

daytime ! night 42.8 45.3 47.3
clear ! foggy 62.4 59.1 57.3
clear ! rainy 54.6 61.0 64.9

Table 3. Comparison of different adaptation strategies for se-
mantic segmentation under three directions of domain shift. The
source domain is underlined. Incremental DA improves over Tar-
geted DA, except for the case when Targeted DA underperforms
the baseline. (Baseline = without DA)

DA from the source domain to the target domain passing
through intermediate discretely-shifted domains. Continu-
ous TTA [90] aims at adapting frame by frame to a sequence
presenting a continuously shifted domain from source to
target domain.

Implementation details. For the adaptation tasks, we fo-
cus on semantic segmentation and use ADVENT [89] for
the Targeted and Untargeted DA. The segmentation back-
bone is DRN-D-54 [96]. Incremental DA is performed as a
series of Targeted DA steps, while for Continuous TTA we
extend TENT [90] to semantic segmentation and iteratively
apply it on every incoming frame. Every model is trained in
the clear-daytime domain and tested under different weather
domains. While our dataset provides finer domain labels
depending on the severity of the perturbation, we group dif-
ferent degrees of severity to match the environmental labels
in BDD100K [94] in order to assess the compatibility of
conclusions drawn from our dataset with real-world trends.

4.1. Discrete Shifts
As outlined in Sec. 3.3, our dataset provides incremental

discrete shifts along natural environmental directions. We
investigate properties of discrete shifts on the multitude of
supported tasks and report findings on domain adaptation
and uncertainty estimation performance.

Impact of domain shift. We find that many mainstream
algorithms for different perception tasks suffer performance
drops under domain shift (Tab. 2), where the severity in-
creases with the distance from the source domain. In par-
ticular, we train all models in the clear-daytime domain and
test under different weather conditions, showing the overall
negative impact of domain shift on all the vision tasks sup-
ported by our dataset. Nevertheless, in some specific cases
a model may even perform better on a shifted domain, e.g.
instance segmentation on overcast. We leverage the incre-
mental domain shifts provided in our dataset to investigate
in Tab. 3 different discrete adaptation strategies for seman-
tic segmentation, i.e. Incremental DA and Targeted DA. We
find that incrementally adapting from source to target do-
main improves the generalization to the target domain com-
pared to direct Targeted DA. However, clear �! foggy rep-
resents a challenging scenario for which both the adaptation
strategies worsen the baseline performance.

Real-world compatibility. To establish a reliable bench-
mark we must first confirm that trends witnessed in our
simulation dataset are compatible with real-world observa-
tions. We use BDD100K [94] for comparison because it
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T Softmax 3.3 32.6 14.2 48.8 64.3 43.7 64.7 45.2
MCDO 1.2 13.1 7.6 20.8 10.0 27.2 39.6 19.7
Ensemble 1.4 12.3 7.5 23.4 8.9 18.7 36.9 18.0

BD
D Softmax 9.6 23.2 9.9 9.7 7.7 10.6 48.6 18.4

MCDO 12.3 22.0 7.8 13.0 11.4 13.1 41.4 18.1
Ensemble 12.6 18.8 9.2 11.7 11.8 13.9 39.8 17.5

Table 4. Calibration (ECE, %) of uncertainty estimation methods
under distributional shift for semantic segmentation. The lower,
the better. Source domain is clear-daytime. We find that calibra-
tion worsens far from the source, both for SHIFT and BDD100K.

features the largest subset of our tasks available in a real-
world dataset with discrete domain labels. We study the do-
main shift effect on two fundamental perception tasks, i.e.
2D object detection and semantic segmentation, and show
compatible trends for different methods trained on SHIFT
and BDD100K (Fig. 5). We evaluate the one-stage method
YOLO v3 [62], as well as the two-stage methods Faster
R-CNN [63] and Cascade R-CNN [6] for object detec-
tion. For semantic segmentation, we consider three differ-
ent methods, FCN [41], DRN-D [95], and DeepLab v3+ [8].
Our experiments suggest that the performance of different
methods for semantic segmentation and object detection de-
grades under different domain shifts. Moreover, we find that
the ranking of methods and the relative degradation trend
is compatible between SHIFT and the real-world dataset
BDD100K, confirming the usefulness of SHIFT and its con-
sistency with the real world.

Uncertainty estimation. Autonomous driving systems
must deal with life-threatening failure cases. To this end,
uncertainty estimation represents a powerful tool to assess
the reliability of a model’s predictions. Following [19],
we evaluate the Expected Calibration Error (ECE) to assess
the calibration, i.e. correlation with model error, of uncer-
tainty estimation methods under domain shift. In partic-
ular, we evaluate the Softmax Entropy baseline and tradi-
tional Bayesian techniques such as Monte-Carlo Dropout
(MCDO) [14] and Deep Ensembles [36]. We observe that
such uncertainty estimation methods are not well calibrated
under domain shift, and that calibration worsens under in-
cremental shifts on both SHIFT and BDD100K (Tab. 4).
While some domains are more challenging in SHIFT than in
BDD100K, the overall degradation of calibration observed
on SHIFT is confirmed on BDD100K and the ranking of
methods is preserved, further highlighting that conclusions
drawn from our dataset transfer to the real world.

We hope that our dataset will help researchers providing
solutions to the potentially life-threatening shortcomings of
current DA and uncertainty estimation techniques.

Figure 6. Comparison of different adaptation strategies for seman-
tic segmentation on daytime �! night shifts at varying amounts
of available sequences. TTA is the most effective under limited
amounts of data. When enough data becomes available, Incre-
mental DA outperforms all other alternatives.

Figure 7. Performance on the target domain of TTA for different
sequence lengths. Best learning rate on target domain is high-
lighted by black boxes. Both source and target performance are
highly sensitive to the learning rates. Dashed lines = before TTA.

4.2. Continuous Shifts
A key feature of SHIFT is that of providing a set with

continuous intra-sequence domain shifts, allowing to com-
pare different adaptation strategies under continuous shifts
and provide an in-depth analysis on TTA and its properties.

Continual domain adaptation. Fig. 6 compares four dif-
ferent adaptation strategies for semantic segmentation on an
increasing number of sequences. Given a model pretrained
on the source domain, i.e. clear-daytime, and the set of con-
tinuously shifting sequences from one domain to another,
i.e. clear-daytime �! night, we train the TTA algorithm on
each frame of the incoming data stream. TTA is thus per-
formed independently on each sequence. Final performance
is averaged over all the sequences. For the other adapta-
tion strategies, we divide the length of the sequence in 20
bins, consider each bin as a separate domain, and group
corresponding bins from all the provided sequences. For
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Figure 8. Performance of TTA for semantic segmentation under three types of domain shift: daytime �! night, clear �! foggy, clear
�! rainy. Each point corresponds to the performance of the model on the source (top-blue) / target (top-red) / current (bottom) domain
finetuned up to that level of domain shift in the sequence. Horizontal lines in the bottom figure represent the original performance on source
(blue) and target domain (red). After reaching the target domain, every sequence loops back to the original source domain. Catastrophic
forgetting can be observed by the drop in source performance during TTA.

Targeted DA, we thus adapt directly to the last bin, corre-
sponding to the night domain. Untargeted DA is instead
applied on all the bins but the source one. Incremental DA
is performed by incrementally adapting from one bin to the
consecutive one until the end of the sequence is reached. In
particular, we plot the average mIoU against the number of
training sequences (Fig. 6). We find that TTA is extremely
efficient under small target data availability compared to all
other alternatives, and that Incremental DA is consistently
more effective than both Targeted and Untargeted DA.

Test-time adaptation. As intra-sequence continuous shifts
represent one of the main contributions of SHIFT, we fur-
ther focus on TTA by using TENT [90] and evaluate the
effect of the speed at which domain shift happens within a
sequence on TTA performance (Fig. 7). This is made pos-
sible by the sets of sequences of different lengths (1x, 10x,
100x the basic sequence length).

Given a source and a target domain, e.g. daytime and
night, each sequence starts from the source domain and
reaches the target domain at mid-sequence length; then,
it loops back to the original domain. We first observe
that, depending on the domain shift speed, the learning
rate can highly affect the outcome of the TTA (Fig. 7).
Slower (faster) shifts will require lower (higher) learning
rates. Moreover, after reaching the target domain at mid-
sequence, the performance on the target domain has im-
proved compared to its original value, while that on the
source domain has dropped. According to Fig. 7 (1x),
we find that the optimal learning rate in terms of adapta-
tion to the target domain leads to the largest performance
drop on the original source (Fig. 8, top). This problem,
known as catastrophic forgetting [33] in the continual learn-

ing literature, has already been observed for class- and task-
incremental learning.

To further investigate this issue, we loop back to the orig-
inal domain after adapting to the target and find that, while
the performance on the current target domains largely im-
proves over the baseline (Fig. 8, bottom), the original source
domain accuracy cannot be recovered (Fig. 8, top). While
TTA has shown to be extremely effective to adapt on the go,
a model adapted with TTA cannot be safely deployed on the
original source domain. Showing that catastrophic forget-
ting also affects test-time adaptation further demonstrates
the importance of providing continuously shifted sequences
in driving datasets, and we hope that future research will
attempt to mitigate this problem.

5. Conclusion
We introduce SHIFT, a multi-task driving dataset fea-

turing the most important perception tasks under discrete
and continuous domain shifts. Thanks to our dataset design,
we demonstrate several new findings on different adaptation
strategies and uncertainty estimation methods. Although
simulation environments are still far from being a perfect
representation of the real world, they allow inexpensive
data collection and annotation. Moreover, we empirically
demonstrate that conclusions drawn from our dataset hold
in real-world datasets. To the best of our knowledge, SHIFT
is the largest synthetic dataset for autonomous driving, pro-
viding the most inclusive set of annotations and conditions.
We hope that providing the first dataset with realistic con-
tinuous domain shifts will contribute to shaping the data
collection paradigm for real-world driving datasets and pro-
mote advances in test-time learning and adaptation.
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