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Figure 1. Self-supervised Behavioral Keypoint Discovery. Intermediate representations in the form of keypoints are frequently used for
behavior analysis. We propose a method to discover keypoints from behavioral videos without the need for manual keypoint or bounding
box annotations. Our method works across a range of organisms (including mice, humans, flies, jellyfish and tree), works with multiple
agents simultaneously (see flies and mice above), does not require bounding boxes (boxes visualized above purely for identifying the
enlarged regions of interest) and achieves state-of-the-art performance on downstream tasks.

Abstract
We propose a method for learning the posture and struc-

ture of agents from unlabelled behavioral videos. Start-
ing from the observation that behaving agents are gener-
ally the main sources of movement in behavioral videos,
our method, Behavioral Keypoint Discovery (B-KinD), uses
an encoder-decoder architecture with a geometric bottle-
neck to reconstruct the spatiotemporal difference between
video frames. By focusing only on regions of movement,
our approach works directly on input videos without requir-
ing manual annotations. Experiments on a variety of agent
types (mouse, fly, human, jellyfish, and trees) demonstrate
the generality of our approach and reveal that our dis-
covered keypoints represent semantically meaningful body
parts, which achieve state-of-the-art performance on key-
point regression among self-supervised methods. Addition-
ally, B-KinD achieve comparable performance to super-
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†Current affiliation: Samsung Advanced Institute of Technology

vised keypoints on downstream tasks, such as behavior clas-
sification, suggesting that our method can dramatically re-
duce model training costs vis-a-vis supervised methods.

1. Introduction
Automatic recognition of object structure, for example

in the form of keypoints and skeletons, enables models to
capture the essence of the geometry and movements of ob-
jects. Such structural representations are more invariant
to background, lighting, and other nuisance variables and
are much lower-dimensional than raw pixel values, mak-
ing them good intermediates for downstream tasks, such
as behavior classification [4, 11, 15, 39, 43], video align-
ment [26, 44], and physics-based modeling [7, 12].

However, obtaining annotations to train supervised pose
detectors can be expensive, especially for applications in
behavior analysis. For example, in behavioral neuro-
science [34], datasets are typically small and lab-specific,
and the training of a custom supervised keypoint detector
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presents a significant bottleneck in terms of cost and ef-
fort. Additionally, once trained, supervised detectors often
do not generalize well to new agents with different struc-
tures without new supervision. The goal of our work is to
enable keypoint discovery on new videos without manual
supervision, in order to facilitate behavior analysis on novel
settings and different agents.

Recent unsupervised/self-supervised methods have
made great progress in keypoint discovery [20, 21, 51]
(see also Section 2), but these methods are generally
not designed for behavioral videos. In particular, exist-
ing methods do not address the case of multiple and/or
non-centered agents, and often require inputs as cropped
bounding boxes around the object of interest, which would
require an additional detector module to run on real-world
videos. Furthermore, these methods do not exploit relevant
structural properties in behavioral videos (e.g., the camera
and the background are typically stationary, as observed in
many real-world behavioral datasets [5, 15, 22, 29, 34, 39]).

To address these challenges, the key to our approach is to
discover keypoints based on reconstructing the spatiotem-
poral difference between video frames. Inspired by previ-
ous works based on image reconstruction [20, 37], we use
an encoder-decoder setup to encode input frames into a ge-
ometric bottleneck, and train the model for reconstruction.
We then use spatiotemporal difference as a novel recon-
struction target for keypoint discovery, instead of single im-
age reconstruction. Our method enables the model to focus
on discovering keypoints on the behaving agents, which are
generally the only source of motion in behavioral videos.

Our self-supervised approach, Behavioral Keypoint
Discovery (B-KinD), works without manual supervision
across diverse organisms (Figure 1). Results show that our
discovered keypoints achieve state-of-the-art performance
on downstream tasks among other self-supervised keypoint
discovery methods. We demonstrate the performance of
our keypoints on behavior classification [42], keypoint re-
gression [20], and physics-based modeling [7]. Thus, our
method has the potential for transformative impact in be-
havior analysis: first, one may discover keypoints from be-
havioral videos for new settings and organisms; second, un-
like methods that predict behavior directly from video, our
low-dimensional keypoints are semantically meaningful so
that users can directly compute behavioral features; finally,
our method can be applied to videos without the need for
manual annotations.

To summarize, our main contributions are:
1. Self-supervised method for discovering keypoints
from real-world behavioral videos, based on spatiotempo-
ral difference reconstruction.
2. Experiments across a range of organisms (mice, flies,
human, jellyfish, and tree) demonstrating the generality of
the method and showing that the discovered keypoints are

semantically meaningful.
3. Quantitative benchmarking on downstream behavior
analysis tasks showing performance that is comparable to
supervised keypoints.

2. Related work
Analyzing Behavioral Videos. Video data collected

for behavioral experiments often consists of moving agents
recorded from stationary cameras [1, 4, 5, 11, 15, 22, 33, 39].
These behavioral videos contain different model organisms
studied by researchers, such as fruit flies [4, 11, 15, 24]
and mice [5, 17, 22, 39]. From these recorded video data,
there has been an increasing effort to automatically estimate
poses of agents and classify behavior [13,14,17,24,30,39].

Pose estimation models that were developed for behav-
ioral videos [16, 30, 35, 39] require human annotations of
anatomically defined keypoints, which are expensive and
time-consuming to obtain. In addition to the cost, not all
data can be crowd-sourced due to the sensitive nature of
some experiments. Furthermore, organisms that are translu-
cent (jellyfish) or with complex shapes (tree) can be difficult
for non-expert humans to annotate. Our goal is to enable
keypoint discovery on videos for behavior analysis, without
the need for manual annotations.

After pose estimation, behavior analysis models gener-
ally compute trajectory features and train behavior classi-
fiers in a fully supervised fashion [5, 15, 17, 39, 43]. Some
works have also explored using unsupervised methods to
discover new motifs and behaviors [3, 18, 28, 50]. Here, we
apply our discovered keypoints to supervised behavior clas-
sification and compare against baseline models using super-
vised keypoints for this task.

Keypoint Estimation. Keypoint estimation models aim
to localize a predefined set of keypoints from visual data,
and many works in this area focus on human pose. With the
success of fully convolutional neural networks [40], recent
methods [8,32,45,49] employ encoder-decoder networks by
predicting high-resolution outputs encoded with 2D Gaus-
sian heatmaps representing each part. To improve model
performance, [32,45,49] propose an iterative refinement ap-
proach, [8, 36] design efficient learning signals, and [9, 47]
exploit multi-resolution information. Beyond human pose,
there are also works that focus on animal pose estimation,
notably [16,30,35]. Similar to these works, we also use 2D
Gaussian heatmaps to represent parts as keypoints, but in-
stead of using human-defined keypoints, we aim to discover
keypoints from video data without manual supervision.

Unsupervised Part Discovery. Though keypoints pro-
vide a useful tool for behavior analysis, collecting annota-
tions is time-consuming and labor-intensive especially for
new domains that have not been previously studied. Unsu-
pervised keypoint discovery [20, 21, 51] has been proposed
to reduce keypoint annotation effort and there have been
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Figure 2. B-KinD, an approach for keypoint discovery from spatiotemporal difference reconstruction. It and It+T are video frames
at time t and t+T . Both frame It and frame It+T are fed to an appearance encoder Φ and a pose decoder Ψ. Given the appearance feature
from It and geometry features from both It and It+T (Sec 3.1), our model reconstructs the spatiotemporal difference (Sec 3.2.1) computed
from two frames using the reconstruction decoder ψ.

many promising results on centered and/or aligned objects,
such as facial images and humans with an upright pose.
These methods train and evaluate on images where the ob-
ject of interest is centered in an input bounding box. Most
of the approaches [20, 27, 51] use an autoencoder-based ar-
chitecture to disentangle the appearance and geometry rep-
resentation for the image reconstruction task. Our setup is
similar in that we also use an encoder-decoder architecture,
but crucially, we reconstruct spatiotemporal difference be-
tween video frames, instead of the full image as in previous
works. We found that this enables our discovered keypoints
to track semantically-consistent parts without manual su-
pervision, requiring neither keypoints nor bounding boxes.

There are also works for parts discovery that employ
other types of supervision [21, 37, 38]. For example, [37]
proposed a weakly-supervised approach using class label to
discriminate parts to handle viewpoint changes, [21] incor-
porated pose prior obtained from unpaired data from dif-
ferent datasets in the same domain, and [38] proposed a
template-based geometry bottleneck based on a pre-defined
2D Gaussian-shaped template. Different from these ap-
proaches, our method does not require any supervision be-
yond the behavioral videos. We chose to focus on this set-
ting since other supervisory sources are not readily available
for emerging domains (ex: jellyfish, trees).

In previous works, keypoint discovery has been ap-
plied to downstream tasks, such as image and video gen-
eration [21, 31], keypoint regression to human-annotated
poses [20, 51], and video-level action recognition [25, 31].
While we also apply keypoint discovery to downstream
tasks, we note that our work differs in approach (we dis-
cover keypoints directly on behavioral videos using spa-
tiotemporal difference reconstruction), focus (behavioral
videos of diverse organisms), and application (real-world

behavior analysis tasks [7, 42]).

3. Method
The goal of B-KinD (Figure 2) is to discover semanti-

cally meaningful keypoints in behavioral videos of diverse
organisms without manual supervision. We use an encoder-
decoder setup similar to previous methods [20, 37], but in-
stead of image reconstruction, here we study a novel recon-
struction target based on spatiotemporal difference. In be-
havioral videos, the camera is generally fixed with respect to
the world, such that the background is largely stationary and
the agents (e.g. mice moving in an enclosure) are the only
source of motion. Thus spatiotemporal differences provide
a strong cue to infer location and movements of agents.

3.1. Self-supervised keypoint discovery

Given a behavioral video, our work aims to reconstruct
regions of motion between a reference frame It (the video
frame at time t) and a future frame It+T (the video frame
T timesteps later, for some set value of T .) We accom-
plish this by extracting appearance features from frame
It and keypoint locations (”geometry features”) from both
frames It and It+T (Figure 2). In contrast, previous
works [20, 21, 27, 37, 38] use appearance features from It
and geometry features from It+T to reconstruct the full im-
age It+T (instead of difference between It and It+T ).

We use an encoder-decoder architecture, with shared ap-
pearance encoder Φ, geometry decoder Ψ, and reconstruc-
tion decoder ψ. During training, the pair of frames It and
It+T are fed to the appearance encoder Φ to generate ap-
pearance features, and those features are then fed into the
geometry decoder Ψ to generate geometry features. In our
approach, the reference frame It is used to generate both
appearance and geometry representations, and the future
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frame It+T is only used to generate a geometry represen-
tation. The appearance feature hta for frame It are defined
simply as the output of Φ: hta = Φ(It).

The pose decoder Ψ outputs K raw heatmaps Xi ∈ R2,
then applies a spatial softmax operation on each heatmap
channel. Given the extracted pi = (ui, vi) locations for
i = {1, . . . ,K} keypoints from the spatial softmax, we de-
fine the geometry features htg to be a concatenation of 2D
Gaussians centered at (ui, vi) with variance σ.

Finally, the concatenation of the appearance feature hta
and the geometry features htg and ht+T

g is fed to the decoder
ψ to reconstruct the learning objective Ŝ discussed in the
next section: Ŝ = ψ(hta, h

t
g, h

t+T
g ).

3.2. Learning formulation

3.2.1 Spatiotemporal difference

Our method works with different types of spatiotemporal
differences as reconstruction targets. For example:

Structural Similarity Index Measure (SSIM) [48].
This is a method for measuring the perceived quality of
the two images based on luminance, contrast, and struc-
ture features. To compute our reconstruction target based on
SSIM, we apply the SSIM measure locally on correspond-
ing patches between It and It+T to build a similarity map
between frames. Then we compute dissimilarity by taking
the negation of the similarity map.

Frame differences. When the video background is static
with little noise, simple frame differences, such as absolute
difference (S|d| = |It+T − It|) or raw difference (Sd =
It+T − It), can also be directly applied as a reconstruction
target.

3.2.2 Reconstruction loss

We apply perceptual loss [23] for reconstructing the spa-
tiotemporal difference S. Perceptual loss compares the L2
distance between the features computed from VGG network
ϕ [41]. The reconstruction Ŝ and the target S are fed to
VGG network, and mean squared error is applied to the fea-
tures from the intermediate convolutional blocks:

Lrecon =
∥∥∥ϕ(S(It, It+T ))− ϕ(Ŝ(It, It+T ))

∥∥∥
2
. (1)

3.2.3 Rotation equivariance loss

In cases where agents can move in many directions (e.g.
mice filmed from above can translate and rotate freely),
we would like our keypoints to remain semantically con-
sistent. We enforce rotation-equivariance in the discovered
keypoints by rotating the image with different angles and
imposing that the predicted keypoints should move corre-
spondingly. We apply the rotation equivariance loss (simi-

+

Figure 3. Behavior Classification Features. Extracting informa-
tion from the raw heatmap (Section 3.3): the confidence scores and
the covariance matrices are computed from normalized heatmaps.
Note that the features are computed for all x, y coordinates. We
visualize the zoomed area around the target instance for illustra-
tive purposes.

lar to the deformation equivariance in [46]) on the generated
heatmap.

Given reference image I and the corresponding geome-
try bottleneck hg , we rotate the geometry bottleneck to gen-
erate pseudo labels hR

◦

g for rotated input images IR
◦

with
degree R = {90◦, 180◦, 270◦}. We apply mean squared er-
ror between the predicted geometry bottlenecks ĥg from the
rotated images and the generated pseudo labels hg:

Lr =
∥∥∥hR◦

g − ĥg(I
R◦

)
∥∥∥
2
. (2)

3.2.4 Separation loss

Empirical results show that rotation equivariance encour-
ages the discovered keypoints to converge at the center of
the image. We apply separation loss to encourage the key-
points to encode unique coordinates, and prevent the dis-
covered keypoints from being centered at the image coordi-
nates [51]. The separation loss is defined as follows:

Ls =
∑
i ̸=j

exp

(
−(pi − pj)

2

2σ2
s

)
. (3)

3.2.5 Final objective

Our final loss function is composed of three parts: recon-
struction loss Lrecon, rotation equivariance loss Lr, and
separation loss Ls:

L = Lrecon + 1epoch>n(wrLr + wsLs). (4)

We adopt curriculum learning [2] and apply Lr and Ls once
the keypoints are consistently discovered from the semantic
parts of the target instance.
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3.3. Feature extraction for behavior analysis

Following standard approaches [5, 17, 39], we use the
discovered keypoints from B-KinD as input to a behavior
quantification module: either supervised behavior classi-
fiers or a physics-based model. Note that this is a sepa-
rate process from keypoint discovery; we feed discovered
geometry information into a downstream model.

In addition to discovered keypoints, we extracted addi-
tional features from the raw heatmap (Figure 3) to be used
as input to our downstream modules. For instance, we
found that the confidence and the shape information from
the of the network prediction of keypoint location was infor-
mative. When a target part is well localized, our keypoint
discovery network produces a heatmap with a single high
peak with low variance; conversely, when a target part is oc-
cluded, the raw heatmap contains a blurred shape with lower
peak value. This “confidence” score (heatmap peak value)
is also a good indicator for whether keypoints are discov-
ered on the background (blurred over the background with
low confidence) or tracking anatomical body parts (peaked
with high confidence), visualized in Supplementary materi-
als. The shape of a computed heatmap can also reflect shape
information of the target (e.g. stretching).

Given a raw heatmap Xk for part k, the confidence
score is obtained by choosing the maximum value from the
heatmap, and the shape information is obtained by comput-
ing the covariance matrix from the heatmap. Figure 3 visu-
alizes the features we extract from the raw heatmaps. Using
the normalized heatmap as the probability distribution, ad-
ditional geometric features are computed:

σ2
x(Xk) =

∑
ij

(xi − uk)
2Xk(i, j),

σ2
y(Xk) =

∑
ij

(yj − vk)
2Xk(i, j), (5)

σ2
xy(Xk) =

∑
ij

(xi − uk)(yj − vk)Xk(i, j).

4. Experiments
We demonstrate that B-KinD is able to discover con-

sistent keypoints in real-world behavioral videos across a
range of organisms (Section 4.1.1). We evaluate our key-
points on downstream tasks for behavior classification (Sec-
tion 4.2) and pose regression (Section 4.3), then illustrate
additional applications of our keypoints (Section 4.4).

4.1. Experimental setting

4.1.1 Datasets

CalMS21. CalMS21 [42] is a large-scale dataset for behav-
ior analysis consisting of videos and trajectory data from a
pair of interacting mice. Every frame is annotated by an

expert for three behaviors: sniff, attack, mount. There are
507k frames in the train split, and 262k frames in the test
split (video frame: 1024 × 570, mouse: approx 150 × 50).
We use only the train split on videos without miniscope ca-
ble to train B-KinD. Following [42], the downstream be-
havior classifier is trained on the entire training split, and
performance is evaluated on the test split.

MARS-Pose. This dataset consists of a set of videos
with similar recording conditions to the CalMS21 dataset.
We use a subset of the MARS pose dataset [39] with
keypoints from manual annotations to evaluate the ability
of our model to predict human-annotated keypoints, with
{10, 50, 100, 500} images for train and 1.5k images for test.

Fly vs. Fly. These videos consists of interactions be-
tween a pair of flies, annotated per frame by domain ex-
perts. We use the Aggression videos from the Fly vs. Fly
dataset [15], with the train and test split having 1229k and
322k frames respectively (video frame: 144× 144, fly: ap-
prox 30 × 10). Similar to [43], we evaluate on behaviors
of interest with more than 1000 frames in the training set
(lunge, wing threat, tussle).

Human 3.6M. Human 3.6M [19] is a large-scale motion
capture dataset, which consists of 3.6 million human poses
and images from 4 viewpoints. To quantitatively measure
the pose regression performance against baselines, we use
the Simplified Human 3.6M dataset, which consists of 800k
training and 90k testing images with 6 activities in which
the human body is mostly upright. We follow the same eval-
uation protocol from [51] to use subjects 1, 5, 6, 7, and 8 for
training and 9 and 11 for testing. We note that each subject
has different appearance and clothing.

Jellyfish. The jellyfish data is an in-house video dataset
containing 30k frames of recorded swimming jellyfish
(video frame: 928×1158, jellyfish: approx 50 pix in diame-
ter). We use this dataset to qualitatively test the performance
of B-KinD on a new organism, and apply our keypoints to
detect the pulsing motion of the jellyfish.

Vegetation. This is an in-house dataset acquired over
several weeks using a drone to record the motion of sway-
ing trees. The dataset consists of videos of an oak tree and
corresponding wind speeds recorded using an anemometer,
with a total of 2.41M video frames (video frame: 512×512,
oak tree: varies, approx 1

4 of the frame). We evaluate this
dataset using a physics-based model [7] that relates the vi-
sually observed oscillations to the average wind speeds.

4.1.2 Training and evaluation procedure

We train B-KinD using the full objective in Section 3.2.5.
During training, we rescale images to 256× 256 and use T
of around 0.2 seconds, except Human3.6M, where we use
128 × 128. Unless otherwise specified, all experiments are
ran with all keypoints discovered from B-KinD with SSIM
reconstruction and with 10 keypoints for mouse, fly, and jel-
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Figure 4. Comparison with existing methods [20], full image,
bounding box, and SSIM reconstruction (ours). “Jakab et al. ”
and “full image” results are based on full image reconstruction.
“White mouse bounding box” and “black mouse bounding box”
show the results when the cropped bounding boxes were fed to the
network for image reconstruction.

lyfish, 16 keypoints for Human3.6M, 15 keypoints for Veg-
etation. We train on the train split of each dataset as spec-
ified, except for jellyfish and vegetation, where we use the
entire dataset. Additional details are in the Supplementary
materials.

After training the keypoint discovery model, we extract
the keypoints and use it for different evaluations based on
the labels available in the dataset: behavior classification
(CalMS21, Fly), keypoint regression (MARS-Pose, Hu-
man), and physics-based modeling (Vegetation).

For keypoint regression, similar to previous works [20,
21], we compare our regression with a fully supervised 1-
stack hourglass network [32]. We evaluate keypoint regres-
sion on Simplified Human 3.6M by using a linear regressor
without a bias term, following the same evaluation setup
from previous works [27,51]. On MARS-Pose, we train our
model in a semi-supervised fashion with 10, 50, 100, 500
supervised keypoints to test data efficiency. For behav-
ior classification, we evaluate on CalMS21 and Fly, using
available frame-level behavior annotations. To train be-
havior classifiers, we use the specified train split of each
dataset. For CalMS21 and Fly, we train the 1D Convolu-
tional Network benchmark model provided by [42] using
B-KinD keypoints. We evaluate using mean average preci-
sion (MAP) weighted equally over all behaviors of interest.

4.2. Behavior classification results

CalMS21 Behavior Classification. We evaluate the ef-
fectiveness of B-KinD for behavior classification (Table 1).
Compared to supervised keypoints trained for this task,
our keypoints (without manual supervision) is comparable
when using both pose and confidence as input. Compared to
other self-supervised methods, even those that use bounding
boxes, our discovered keypoints on the full image generally
achieve better performance.

Keypoints discovered with image reconstruction, similar
to baselines [20,37] cannot track the agents well without us-
ing bounding box information (Figure 4) and does not per-

CalMS21 Pose Conf Cov MAP

Fully supervised

MARS † [39]
✓ .856± .010
✓ ✓ .874± .003
✓ ✓ ✓ .880± .005

Self-supervised
Jakab et al. [20] ✓ .186± .008

Image Recon.
✓ .182± .007
✓ ✓ .184± .006
✓ ✓ ✓ .165± .012

Image Recon. bbox†
✓ .819± .008
✓ ✓ .812± .006
✓ ✓ ✓ .812± .010

Ours
✓ .814± .007
✓ ✓ .857± .005
✓ ✓ ✓ .852± .013

Table 1. Behavior Classification Results on CalMS21. “Ours”
represents classifiers using input keypoints from our discovered
keypoints. “conf” represents using the confidence score, and “cov”
represents values from the covariance matrix of the heatmap. †
refers to models that require bounding box inputs before keypoint
estimation. Mean and std dev from 5 classifier runs are shown.

Fly MAP

Hand-crafted features
FlyTracker [15] .809± .013

Self-supervised + generic features
Image Recon. .500± .024
Image Recon. bbox† .750± .020
Ours .727± .022

Table 2. Behavior Classification Results on Fly. “FlyTracker”
represents classifiers using hand-crafted inputs from [15]. The
self-supervised keypoints all use the same “generic features” com-
puted on all keypoints: speed, acceleration, distance, and angle. †
refers to models that require bounding box inputs before keypoint
estimation. Mean and std dev from 5 classifier runs are shown.

form well for behavior classification (Table 1). When we
provide bounding box information to the model based on
image reconstruction, the performance is significantly im-
proved, but this model does not perform as well as B-KinD
keypoints from spatiotemporal difference reconstruction.

For the per-class performance (see the Supplementary
materials), the biggest gap exists between B-KinD and
MARS on the “attack” behavior. This is likely because dur-
ing attack, the mice are moving quickly, and there exists a
lot of motion blur and occlusion which is difficult to track
without supervision. However, once we extract more in-
formation from the heatmap, through computing keypoint
confidence, our keypoints perform comparably to MARS.

Fly Behavior Classification. The FlyTracker [15] uses
hand-crafted features computed from the image, such as
contrast, as well as features from tracked fly body parts,
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Figure 5. Keypoint data efficiency on MARS-Pose. The su-
pervised model is based on [39] using stacked hourglass [32],
while the semi-supervised model uses both our self-supervised
loss and supervision. PCK is computed at 0.5cm threshold, av-
eraged across nose, ears, and tail keypoints, over 3 runs. “b” and
“w” indicates the black and white mouse respectively.

such as wing angle or distance between flies. Using discov-
ered keypoints, we compute comparable features without
assuming keypoint identity, by computing speed and accel-
eration of every keypoint, distance between every pair, and
angle between every triplet. For all self-supervised meth-
ods, we use keypoints, confidence, and covariance for be-
havior classification. Results demonstrate that while there
is a small gap in performance to the supervised estimator,
our discovered keypoints perform much better than image
reconstruction, and is comparable to models that require
bounding box inputs (Table 2).

4.3. Pose regression results

MARS Pose Regression. We evaluate the pose estima-
tion performance of our method in the setting where some
human annotated keypoints exist (Figure 5). For this ex-
periment, we train B-KinD in a semi-supervised fashion,
where the loss is a sum of both our keypoint discovery ob-
jective (Section 3.2.5) as well as standard keypoint estima-
tion objectives based on MSE [39]. For both black and
white mouse, when using our keypoint discovery objective
in a semi-supervised way during training, we are able to
track keypoints more accurately compared to the supervised
method [39] alone. We note that the performance of both
methods converge at around 500 annotated examples.

Simplified Human 3.6M Pose Regression. To com-
pare with existing keypoint discovery methods, we evalu-
ate our discovered keypoints on Simplified Human3.6M (a
standard benchmarking dataset) by regressing to annotated
keypoints (Table 3). Though our method is directly appli-
cable to full images, we train the discovery model using
cropped bounding box for a fair comparison with baselines,
which all use cropped bounding boxes centered on the sub-
ject. Compared to both self-supervised + prior information
and self-supervised + regression, our method shows state-

Simplified H36M all wait pose greet direct discuss walk

Fully supervised:
Newell [32] 2.16 1.88 1.92 2.15 1.62 1.88 2.21

Self-supervised + unpaired labels
Jakab [21]‡ 2.73 2.66 2.27 2.73 2.35 2.35 4.00

Self-supervised + template
Schmidtke [38] 3.31 3.51 3.28 3.50 3.03 2.97 3.55

Self-supervised + regression
Thewlis [46] 7.51 7.54 8.56 7.26 6.47 7.93 5.40
Zhang [51] 4.14 5.01 4.61 4.76 4.45 4.91 4.61
Lorenz [27] 2.79 – – – – – –

Ours (best) 2.44 2.50 2.22 2.47 2.22 2.77 2.50
Ours (mean) 2.53 2.58 2.31 2.56 2.34 2.83 2.58
Ours (std) .056 .047 .062 .048 .066 .048 .063

Table 3. Comparison with state-of-the-art methods for land-
mark prediction on Simplified Human 3.6M. The error is in
%-MSE normalized by image size. All methods predict 16 key-
points except for [21]‡, which uses 32 keypoints for training a
prior model from the Human 3.6M dataset. B-Kind results are
computed from 5 runs.

Learning Objective %-MSE

Image Recon. 2.918 ± 0.139
Abs. Difference 2.642 ± 0.174
Difference 2.770 ± 0.158
SSIM 2.534 ± 0.056
Self-supervised + extracted features
SSIM 2.494 ± 0.047

Table 4. Learning objective ablation on Simplified Hu-
man3.6M. %-MSE error is reported by changing the reconstruc-
tion target. Extracted features correspond to keypoint locations,
confidence, and covariance. Results are from 5 B-KinD runs.

of-the-art performance on the keypoint regression task, sug-
gesting spatiotemporal difference is an effective reconstruc-
tion target for keypoint discovery.

Learning Objective Ablation Study We report the pose
regression performance on Simplified Human3.6M (Ta-
ble 4) by varying the spatiotemporal difference reconstruc-
tion target for training B-KinD. Here, image reconstruction
also performs well since cropped bounding box is used as
an input to the network. Overall, spatiotemporal difference
reconstruction yield better performance over image recon-
struction, and performance can be further improved by ex-
tracting additional confidence and covariance information
from the discovered heatmaps.

4.4. Additional applications

We show qualitative performance and demonstrate addi-
tional downstream tasks using our discovered keypoints, on
pulse detection for Jellyfish and on wind speed regression
for Vegetation.

Qualitative Results. Qualitative results (Figure 6)
demonstrates that B-KinD is able to track some body parts
consistently, such as the nose of both mice and keypoints
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Figure 6. Qualitative Results of B-KinD. Qualitative results for B-KinD trained on CalMS21 (mouse), Fly vs. Fly (fly), Human3.6M
(human), jellyfish and Vegetation (tree). Additional visualizations are in the Supplementary materials.

along the spine; the body and wings of the flies; the mouth
and gonads of the jellyfish; and points on the arms and legs
of the human. For visualization only, we show only key-
points discovered with high confidence values (Section 3.3);
for all other experiments, we use all discovered keypoints.

Pulse Detection. Jellyfish swimming is among the most
energetically efficient forms of transport, and its control and
mechanics are studied in hydrodynamics research [10]. Of
key interest is the relationship between body plan and swim
pulse frequency across diverse jellyfish species. By com-
puting distance between B-KinD keypoints, we are able to
extract a frequency spectrogram to study jellyfish pulsing,
with a visible band at the swimming frequency (Supplemen-
tary materials). This provides a way to automatically anno-
tate swimming behavior, which could be quickly applied to
video from multiple species to characterize the relationship
between swimming dynamics and body plan.

Wind Speed Modeling. Measuring local wind speed is
useful for tasks such as tracking air pollution and weather
forecasting [6]. Oscillations of trees encode information on
wind conditions, and as such, videos of moving trees could
function as wind speed sensors [6, 7]. Using the Vegetation
dataset, we evaluate the ability of our keypoints to predict
wind speed using a physics-based model [7]. This model
defines the relationship between the mean wind speed and
the structural oscillations of the tree, and requires tracking
these oscillations from video, which was previously done
manually. We show that B-KinD can accomplish this task
automatically. Using our keypoints, we are able to regress
the measured ground truth wind speed with an R2 = 0.79,
suggesting there is a good agreement between the propor-
tionality assumption from [7] and the experimental results
using the keypoint discovery model.

Limitations. One issue we did not explore in detail,
and which will require further work, is keypoint discov-
ery for agents that may be partially or completely oc-
cluded at some point during observation, including self-

occlusion. Additionally, similar to other keypoint discov-
ery models [27, 38, 51], we observe left/right swapping of
some body parts, such as the legs in a walking human. One
approach that might overcome these issues would be to ex-
tend our model to discover the 3D structure of the organism,
for instance by using data from multiple cameras. Despite
these challenges, our model performs comparably to super-
vised keypoints for behavior classification.

5. Discussion and conclusion
We propose B-KinD, a self-supervised method to dis-

cover meaningful keypoints from unlabelled videos for be-
havior analysis. We observe that in many settings, be-
havioral videos have fixed cameras recording agents mov-
ing against a (quasi) stationary background. Our proposed
method is based on reconstructing spatiotemporal differ-
ence between video frames, which enables B-KinD to focus
on keypoints on the moving agents. Our approach is gen-
eral, and is applicable to behavior analysis across a range of
organisms without requiring manual annotations.

Results show that our discovered keypoints are seman-
tically meaningful, informative, and enable performance
comparable to supervised keypoints on the downstream task
of behavior classification. Our method will reduce the time
and cost dramatically for video-based behavior analysis,
thus accelerating scientific progress in fields such as ethol-
ogy and neuroscience.
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