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Abstract

Deep Implicit Functions (DIFs) represent 3D geometry
with continuous signed distance functions learned through
deep neural nets. Recently DIFs-based methods have
been proposed to handle shape reconstruction and dense
point correspondences simultaneously, capturing semantic
relationships across shapes of the same class by learn-
ing a DIFs-modeled shape template. These methods pro-
vide great flexibility and accuracy in reconstructing 3D
shapes and inferring correspondences. However, the point
correspondences built from these methods do not intrin-
sically preserve the topology of the shapes, unlike mesh-
based template matching methods. This limits their ap-
plications on 3D geometries where underlying topologi-
cal structures exist and matter, such as anatomical struc-
tures in medical images. In this paper, we propose a
new model called Neural Diffeomorphic Flow (NDF) to
learn deep implicit shape templates, representing shapes
as conditional diffeomorphic deformations of templates, in-
trinsically preserving shape topologies. The diffeomor-
phic deformation is realized by an auto-decoder consist-
ing of Neural Ordinary Differential Equation (NODE)
blocks that progressively map shapes to implicit tem-
plates. We conduct extensive experiments on several
medical image organ segmentation datasets to evaluate
the effectiveness of NDF on reconstructing and aligning
shapes. NDF achieves consistently state-of-the-art organ
shape reconstruction and registration results in both ac-
curacy and quality. The source code is publicly available
at https://github.com/Siwensun/Neural_
Diffeomorphic_Flow--NDF.

1. Introduction

3D geometry representation is fundamental to many
downstream tasks in computer vision such as 3D model
understanding, reconstruction, and matching. In particu-
lar, shape representation is of vital importance to many

Figure 1. Our model deforms back and forth between shape in-
stances and learned templates through neural diffeomorphic flow,
in a invertible and progressive manner. Colors on the shape surface
show the correspondences and edges show the topologies.

medical image applications such as organ segmentation
[10, 44, 45, 51, 53, 56, 57], medical image reconstruction
[52, 54, 55], shape abnormality detection and surgical navi-
gation [31, 43].

Recently deep implicit functions (DIFs) have emerged
as an effective and efficient tool for modeling 3D objects
[12, 36, 40, 42, 50]. Compared to traditional representa-
tions such as voxel grids, point clouds, and polygon meshes,
DIF-based 3D representations have the advantages of being
compact while at the same time enjoying strong represen-
tation power, making it more suitable for modeling com-
plex shapes with fine geometric details. However, DIFs do
come with a strong drawback - it is difficult to establish
correspondences between two shapes, unlike the traditional
method such as meshes. This drawback limits the applica-
tion of DIFs for shape analysis, especially in many medical
image applications, where being able to map and compare

120845



shapes is often a necessity.
A number of methods have been proposed to address the

limitation of DIFs. The DIT (Deep Implicit Templates)
[59] and DIF-Net (Deformed Implicit Field), build upon
DeepSDF [40], formulates DIFs as conditional deforma-
tions of a template deep implicit function, and uses a spa-
tial warping module to explicitly model the conditional de-
formations and infer point-wise transformations. [32] learns
dense 3D shape correspondence from semantic part embed-
ding by introducing an inverse implicit function to BAE-
Net [11].

However, a common drawback of the above methods is
that the conditional deformation modeled by these meth-
ods (e.g., LSTM in DIT) is agnostic of the topology of the
shapes. This will be problematic in situations where two
shapes share the same topology and we want the topology
to be preserved after deformation. Applications falling into
this category include modelling 3D shapes of human body,
anatomical structures in medical images, and other objects
with fixed topologies. What’s more, considering the small
number of anatomical shapes available for training, it is
challenging to generalize the learned deformations to un-
seen data if no shape prior is utilized.

In this work, we propose a new formulation of DIFs
called Neural Diffeomorphic Flow (NDF) for representing
3D shapes. Similar to DIT and DIF-Net, NDF models
shapes as conditional deformations of a template DIF. But
different from DIT, the conditional deformation is intrin-
sically diffeomorphic, thereby ensuring that the resulting
deformation is topology preserving. NDF is also different
from AtlasNet [23], which can preserve topology but re-
quires predefined fixed topology as its shapes are modeled
by meshes.

Our main contributions are summarized as follows:

• We introduce invertible NDF to match a shape to its
implicit template. It can align point clouds or meshes
without sacrificing accuracy while guaranteeing topol-
ogy preservation.

• We design a quasi time-varying velocity field to learn
diffeomorphic flows based on neural ODEs, allowing
us to model shape deformation in a progressive and
time-invertible manner.

• We tested NDF on multiple organ datasets and demon-
strated that it leads to state-of-the-art shape reconstruc-
tion and registration results on both existing and new
shapes. On shape registration, NDF generates one or
several order of magnitude fewer unpleasant faces .

2. Related works

Deep Implicit Functions. Traditional implicit function is
defined in the grid space and extracts the explicit shape sur-

(a) Train

(b) Reconstruction

(c) Point Correspondence

Figure 2. Overview of NDF - (a): We train deform code ci, de-
formation module D and deep sdf reprsentations T jointly. p is a
sampled 3D position and p′ is the deformation position of p in the
template space. We sample points from the continuous 3D space,
but we draw grids here only for illustration; (b): Suppose we have
already optimized ci, to reconstruct an unseen shape, we input
grid points into our model and the reconstructed mesh is obtained
via marching cube (MC) model output; (c): illustration of point
correspondences as in Eq.13.

face from its zero-level set. Deep implicit function is the ex-
tension of traditional implicit function to represent shapes
in continuous 3D space and have shown great representa-
tion capacity. DeepSDF [40] is an example of auto-decoder
models representing continuous SDF. Many works are de-
veloped based on it, among which [6, 28, 46] try to depict
finer structures by modelling SDF in the unit of local re-
gions. Additionally, DualSDF [25] designs dual pathways
(primitive and accurate) to represent SDF with VAD frame-
work and C-DeepSDF [18] intends to improve the training
strategy via curriculum learning. Occupancy Network [36]
represents another branch of deep implicit function that
constructs the solid mesh via classifying 3D points whether
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are included in mesh or not. Occupancy Flow [39] follows
similar ideas of Occpancy Network in shape representation
but extend it to 4D with a continuous vector field in time
and space.

Point Correspondence and Shape Registration. There
are several ways to achieve point correspondence such as
template learning [23, 27, 29, 33, 49], elementary represen-
tation [16,21,22], deformation field-based methods [35,38]
and so on. Mesh-based templates are very popular in rep-
resenting similar shapes such human body, face and hand,
where the templates topology are fixed, so they cannot deal
with topological changes. Element-based methods can only
capture structure-level features because they aim to describe
complex shapes with simple elements. DIF-Net [15] and
DIT [59] are typical deformation field-based methods and
DIT can generate smoother deformation because it applies
LSTM to do deformations. Our work can be seen as de-
formation field-based methods but our deformation field is
topology-preserving and invertible.

Diffeomorphic Transformation. A diffeomorphism is an
invertible mapping where the forward and backward trans-
formations are smooth. It is widely used in nonrigid reg-
istration and shape analysis. Model complexity and com-
putation makes it hard to be incorporated with deep learn-
ing solution. [17] is the first paper that built diffeomorphic
image transformations into a deep classification model via
CPAB transformations [20]. In terms of medical registra-
tion problem, people usually assume the velocity field is
stationary and defined in the grid space [2]. Many works
[3, 4, 13, 14, 30] used scaling and squaring method [1] to do
fast integration of stationary velocity field. Recently, with
the power of neural ordinary differential equation (NODE)
solver [8, 9], optimizing a neural diffeomorphic flow effi-
ciently became possible. Occupancy Flow [39], based on
Occupany Network, learns 4D reconstruction with implicit
correspondences by modelling a temporally and spatially
continuous vector field. Neural Mesh Flow [24] focuses on
generating manifold mesh from images or point clouds via
conditional continuous diffeomorphic flow.

3. Method

Our Deep Implicit Function representation via NDF fol-
lows the formulation of Deep Implicit Templates (DIT)
[59], which decompose a Coded Shape DeepSDF [40] into
a Single Shape DeepSDF and a conditional spatial warping
function. Our work depicts this spatial warping function
as a conditional diffeomorphic flow under which topology
is preserved. In this section, we first review Deep Implicit
Templates and then introduce our proposed conditional spa-
tial deformation.

3.1. Review of Deep Implicit Templates

Deep Implicit Templates, same as DeepSDF, represent a
3D shape Xi with a continuous signed distance field (SDF)
F . Given a random 3D point p and deform code ci of length
k, F outputs the point’s distance to the closest surfaces,
whose sign indicates whether the point lies inside or out-
side the underlying shape surface:

F(p, ci) = s, where p ∈ R3, ci ∈ Rk, s ∈ R (1)

During training, each shape code is paired with one train-
ing shape Xi. During inference, the deform code corre-
sponding to a new shape is obtained via optimization. The
underlying shape surface is implicitly expressed as the zero-
level set surface ofF , obtained with, for example, Marching
Cubes [34].

Different from DeepSDF where the physical meaning of
latent code c is ambiguous, DIT treats c as a variable con-
trolling how each shape deforms to a template shape, so that
the conditional continuous SDF F can be decompose into
T ◦ D

F(p, ci) = T (D(p, ci)) (2)

where D : R3 × Rk 7→ R3 is the conditional spatial
deformation module that maps the coordinate of p of shape
Xi to a canonical position p′ given deform code ci and T is
essentially a single shape DeepSDF modeling the implicit
template. By this design, it builds up point correspondences
between the learned template and each shape instance, on
top of which correspondences across all shapes within one
category are achieved.

3.2. Neural Diffeomorphic Flow

Diffeomorphic Flow. We intend to establish dense point
correspondences between each shape object and the tem-
plate shape, and keep the desired geometric topology using
diffeomorphic flow. Let Φi(p, t) : R3 × [0, 1] → R3 de-
scribe the continuous trajectory of a 3D point (p) during the
time interval [0, 1] where the starting points and destination
points respectively located in the SDF of shape Xi and the
template shape. And let vi(p, t) : R3 × [0, 1] → R3 de-
fine the velocity field of 3D points with respect to shape Xi

in time interval [0, 1]. The diffeomorphic flow Φi of shape
Xi is the solution of the initial value problem (IVP) of an
ordinary differential equation (ODE) as below:

∂Φi
∂t

(p, t) = vi(Φi(p, t), t) s.t. Φi(p, 0) = p (3)

where p ∈ R3 is a 3D position on the SDF of shape Xi.
Thus, the diffeomorphic deformations moduleD condition-
ing on the deform code of shape Xi is given by:

D(p, ci) = Φi(p, 1) (4)

320847



If velocity field vi(·, ·) is globally Lipschitz continuous,
the solution for the IVP exists and is unique in the inter-
val [0, 1], which means any two ODE trajectories do not
cross each other [19]. This can provide the diffeomorphic
flow with the property of topology preservation to maintain
structure consistency.

Diffeomorphic flow is invertible, thus the inverse flow
Ψi : R3× [0, 1]→ R3 from template shape to shapeXi can
be obtained by solving the following ODE:

∂Ψi

∂t
(p, t) = −vi(Ψi(p, t), t) s.t. Ψi(p, 0) = p (5)

D−1(p, ci) = Ψi(p, 1) (6)

where p is a 3D point on the SDF of template shape and
D−1 denotes the inverse diffeomorphic field. So far, the
invertible deformation between any shape instance and the
templates of its category can be described as the integral of
the velocity field.

Conditional Quasi Time-varying Velocity Field. Our goal
is to learn a neural network that parameterizes the velocity
field to capture the dense topology-preserved point corre-
spondence across shape objects. In this section, we will de-
scribe how we design it. We denote v as the neural network
representing the velocity field in time and space, and vi de-
scribes the neural velocity field with respect to the shape
Xi, i.e., vi(p, t) = v(p, ci, t), where ci a vector controls
how neural velocity field deforms points in the SDF of Xi.

vi(p, t) is a general expression of velocity field depend-
ing on both time and position, here we call it time-varying
velocity field to distinguish with stationary velocity field
vi(p), where the velocity of a point in the field only de-
cided by its position. In our case, training time-varying
velocity field might be difficult because unlike 4D recon-
struction [39] having adequate training samples of multiple
frames, our model can only be supervised on t = 0 and
t = 1. In dealing with the medical registration problem
defined in regular grid space, people often assume the de-
formable transformation is based on a stationary velocity
field because it can be efficiently integrated through scaling
and squaring technique [26, 37].

Our insight is to design a quasi time-varying veloc-
ity field composed of several subsequent stationary veloc-
ity fields to realize progressive deformations. Concretely,
we hope the first several diffeomorphic flows are able to
roughly align the shape instance to its template shape while
the last several diffeomorphic flows take the minor adjust-
ment in geometric details. Suppose this quasi time-varying
velocity field is made up with K stationary velocity fields.
Let vki (·) : R3 → R3 describe the k-th stationary velocity
field of shape Xi and χA(·) is an indicator function of A.

The velocity field is governed by the following formula

vi(Φi(p, t), t) =

K∑
k=0

χ[ k
K ,

k+1
K ](t) · v

k
i (Φi(p, t)) (7)

As shown in Eq.7, the quasi time-varying velocity field
is basically a step function regarding time t. We can further
derive the diffeomorphic flow by integrating vi(·, ·)

Φi(p, t) = Φi(p,
k

K
) +

∫ t− k
K

k
K

vki (Φi(p, t))dt (8)

where t ∈
[
k
K ,

k+1
K

]
and k ∈ {0, 1, ...,K − 1}. This

equation can be solved with a neural ordinary differential
equation (NODE) solver [9]. In other words, Φi(p, t) is the
output of a NODE block receiving v(p, ci, t) as dynamic
function. To make this conditional velocity field neural net-
work compatible with NODE, the conditional parameters
(deform codes c) stay unchanged when solving the integral.

We use residual MLP architecture similar to [24, 39] to
represent the velocity field. For each shapeXi, we initialize
the deform code ci as [40] suggests, which can be either
concatenated or multiplied to the point features.

3.3. Training

We employ two modules to represent continuous SDF:
a conditional deformation module D and a single shape
DeepSDF T . Like the other auto-decoder models, these two
modules and deform code c are trained jointly (as illustrated
in Fig. 2a) with a reconstruction loss and a regularization
loss:

L = Lrec + λregLreg (9)

Since the deformation between a shape and the template
shape performs in a progressive manner, we choose to use
the curriculum learning strategy same as [18, 59]. [18] set
different curriculum learning hyper-parameters at different
training stages and [59] set different hyper-parameters for
different warping stages. In our work, we will count the
deformations of different timestamps into curriculum learn-
ing. To this end, the reconstruction loss can be written as:

Lrec =
∑
t∈T

N∑
i=1

S∑
j=1

Lεt,λt

(
T
(
Φi(pj , t)

)
, si,j

)
(10)

where T is the set of evaluating timestamps, N is the
number of training shapes, S is the number of SDF sam-
ples for one shape, si,j is the ground truth SDF of the j-th
samples point pj from the i-th shape and Φi(p, t) is defined
as in Eq.8. Lεt,λt is the curriculum training loss where ε
controls the width of the tolerance zone and λ controls the
importance of the hard and semi-hard examples. The eval-
uation timestamps T is set to be {0.25, 0.5, 0.75, 1.0} in
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practice. For more details about curriculum learning, please
refer to [18].

Our regularization loss is very concise because NODE
solver can largely prevent self-intersection [19, 58] with
no explicit regularization. In other words, we don’t need
to design the point pair regularization [59] or deformation
smoothness prior [15] to avoid the local distortion. In [24],
the authors showed a toy example to demonstrate the ”regu-
larfzizar’s delemma” that introducing strong regularization
in training might lead to an unpleasant mesh reconstruction
results. In our setting, we only need to constrain the magni-
tude of deformation field as well as learned deform codes.

Lreg =
∑
t∈T

N∑
i=1

S∑
j=1

L0.25

(∥∥Φi(pj , t)− pj
∥∥
2

)
+

K∑
k=1

‖ck‖22

(11)
where L0.25 is the Huber loss with δ = 0.25. The goal of
this point-wise regularization loss is to prevent the model
from learning an over-simplified template but to look for
a template shape which owns the most common structures
that all shape instances within one category share.

3.4. Inference

At inference, after fixing the trained parameters of NDF,
a deform code ci for a new shape Xi should be obtained
via optimization in the first place. In our work, shape re-
construction is to extract the zero-level set surface from the
SDF of an unseen shape object, which is predicted by our
model given the optimized deform code. The correspon-
dence between two shape objects Xi and Xj can be found
via forward diffeomorphic deformations from Xi to tem-
plate space and then backward diffeomorphic deformations
from template space to Xj , given ci and cj respectively.

Learn deform code. Same as DeepSDF [40], a deform
code ci of shapeXi is the Maximum-a-Posterior estimation
as:

ĉi = arg min
ci

∑
(p,s)∈Xi

` (F(p, ci), s) +
1

σ2
‖ci‖22 (12)

Different from the progressive reconstruction loss we de-
signed for training, `(·, ·) here is the absolute error between
model outputs and ground truth.

Reconstruction. Having learned the deform code ci, shape
Xi comes from the zero-level set surface of F(pgrid, ci)
(shown in Fig. 2b), where pgrid ∈ Z3

+. The resolution of
reconstructed mesh can be manipulated by the number of
grid points. In practice, we sample 2563 grid points for all
deep implicit functions for comparison.

Point correspondence and Shape Registration. In At-
lasNet [23], the points that could find correspondence are

only template mesh vertices. As for implicit template-based
methods such as [15, 59], they learn dense point correspon-
dence, which is approximated since it is built by nearest
neighbour search in the template space.

In our work, suppose we have a 3D point pi in shapeXi,
its correspondence point pj in shape Xj can be found by
(also shown in Fig. 2c):

pj = D−1 (D(pi, ci), cj) (13)

where ci and cj are the optimized deform codes of shape
Xi and Xj respectively.

Compared to point correspondence, shape registration
not only seeks the aligned point set but also the aligned
mesh. That means, given the source meshMs with vertices
Vs and edges Es, the target aligned mesh Mt is (Vt, Es),
where Vt is the correspondence point set of Vs.

4. Experiments

Datasets. NDF focuses on reconstructing shapes with com-
mon intrinsic topology, we choose to demonstrate our re-
sults on four medical datasets: Pancreas CT [41], Multi-
Modality Whole Heart Segmentation [60], Lung and Liver,
since these four types of organ have clear common topology
but are of fair shape variation as can be learned from the dif-
ference between learned templates and shape instances. For
more details about data source and preparation, please refer
to supplementary material.

Experimental Setup. We conduct two types of experi-
ments to support the effectiveness of NDF. First, we inves-
tigate the representation power of our diffeomorphic flow-
based methods on training samples and the reconstruction
power on unseen shapes. We then evaluate the quality of the
learned correspondence between two meshes (shape regis-
tration).

The natural baselines for shape registration are DIT [59]
and DIF-Net [15] because we share the similar shape repre-
sentation formula based on deep implicit function. We also
compare our model with AtlasNet [23] which reconstructs
shape using explicit mesh parameterization. To make our
comparisons fair, we build our model based on the imple-
mentation of DeepSDF and choose it as the baseline for 3D
shape representation basides DIT, DIF-Net and AtlasNet.

4.1. Shape Representation and Reconstruction

We use chamfer distance (CD) and normal consistency
(NC) as the matrices to evaluate the quality of shapes repre-
sentations and reconstructions by all methods. In the scope
of this work, shape representation is to represent seen shape
objects given the trained deform code and shape reconstruc-
tion is to represent unseen shape instances after optimizing
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CD Mean (↓) CD Median (↓) NC Mean (↑) NC Median (↑)
Model / Organ Pancreas Liver Lung Heart Pancreas Liver Lung Heart Pancreas Liver Lung Heart Pancreas Liver Lung Heart

AtlasNet Sph [23] 8.08 3.46 5.01 7.55 7.44 2.46 3.76 7.38 0.703 0.823 0.824 0.808 0.7 0.829 0.826 0.814
AtlasNet 25 [23] 6.05 2.48 207 4.86 5.64 1.72 4.54 3.86 0.65 0.818 0.772 0.824 0.643 0.823 0.791 0.823
DeepSDF [40] 0.711 0.539 0.669 0.951 0.675 0.536 0.661 0.898 0.898 0.866 0.928 0.913 0.903 0.868 0.929 0.92
DIF-Net [15] 4.18 1.58 1.86 2.23 3.97 1.25 1.67 1.83 0.756 0.832 0.882 0.838 0.768 0.837 0.885 0.838
DIT [59] 0.63 0.509 0.712 1.05 0.658 0.505 0.693 0.976 0.903 0.87 0.934 0.919 0.904 0.873 0.934 0.93

Ours 0.512 0.476 0.643 0.993 0.515 0.479 0.631 0.925 0.917 0.873 0.937 0.923 0.918 0.875 0.937 0.932

Table 1. Shape Reconstruction – We demonstrate the reconstruction results of different representation methods on four organ categories.
AtlasNet Sph and AtlasNet 25 are AtlasNet using 3D sphere mesh and 25 square patches as the template shape respectively. The chamfer
distance results shown above are multiplied by 103. ↑ means higher is better and ↓ means lower is better. Here we use ”Lung” to denote
the union shape of lung and trachea organ and use ”Heart” to denote the union structures of blood cavities.

(a) Easy Non-manifold Face (b) Self-intersection

Figure 3. Unpleasant Faces - (a): one face is a E-NMF if its
normal direction is significant different from that of its adjacent
faces; (b): SI faces cross other faces in the same mesh.

the deform code. So, shape representation tells the effec-
tiveness of representation methods while shape reconstruc-
tion reflects the generability. Due to space limitation, we
only report the complete shape representation results for all
datasets in supplementary material.

Generally speaking, DIF-Net shows the strongest shape
representation ability but very poor shape reconstruction
performance. We believe the overfitting is a result of its
point sampling strategy that many surface points are in-
volved in training and inference. In Tab. 1, we can ob-
serve NDF achieves the best reconstruction results in terms
of both chamfer distance and normal consistency for almost
all datasets, compared to the state-of-the-art methods.

4.2. Shape Registration

We have described how we realize shape registration on
top of dense point correspondence in Sec. 3.4. In our ex-
periments of shape registration, the source meshesMs are
basically the template meshes and the target meshesMt are
all shape instances. To make different methods compara-
ble, we apply Approximated Centroidal Voronoi Diagrams
(ACVD) [47, 48] to the template meshes of DIT, DIF-Net
and NDF to make their template meshes meet the same res-
olution and similar topology. Specifically, we re-mesh these
template meshes into Ms with 2500 vertices (clusters) or
5000 vertices.

Apart from CD and NC, we design two more metrics to
evaluate the geometrical fidelity of registration results: easy
non-manifold face (E-NMF) ratio and self-intersection (SI)

ratio, as shown in Fig. 3, NMFs are such faces that have
opposite normal direction to their adjacent faces. But in our
scenario, this definition is too harsh because for organs such
as lung and liver, the sudden change of face normal direc-
tions might take place in some local regions. As a result,
one face will be defined as an E-NMF if the cosine similar-
ity between normal directions of any of its adjacent faces
and itself is less than δ. It is set to be 0 when we evaluate
heart and pancreas organs, and set to be -0.5 and -0.8 for
lung and liver respectively.

Tab. 2 strongly supports that our NDF can densely align
points across shapes while maintaining the topology. NDF
achieves the best results in accuracy whatever experiment
settings and organ classes are. Also, as for E-NMF ratio and
SI ratio, our model can also outperform the other methods in
most cases. AtlasNet Sph beats us on liver, lung and heart
regarding E-NMF ratio in a price of the over-smoothened
reconstruction results. Notably, in comparison with DIF-
Net and DIT that are very competitive in shape representa-
tion and reconstruction, our method obviously outperforms
them in all metrics due to the properties of deep diffeomor-
phic flow (Sec. 3.2). In summary, NDF is superior to the
other state-of-the-art methods with respect to shape regis-
tration accuracy as well as fidelity by a great margin. We
also report shape registration results on seen shape objects
in supplementary material.

4.3. Qualitative Results

Fig. 1 demonstrates how NDF deforms shape instances
to the learned templates in a coarse to fine manner while
preserving the topology. Fig. 4 shows an example of pan-
creas shape representation and registration that can suggest
why NDF stands out in Tab. 2.. From Fig. 4a, we can see
the pancreas template learned by DIF-Net is problematic
that the structure marked by a red circle has no anatomical
meaning. Different from DIF-Net and DIT which use near-
est neighbours searching to match points, NDF is invertible
and topology-preserved. Therefore, our shape registration
results will have the comparable quality of shape recon-
struction results. In Fig. 4a and Fig. 4b, there are many
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# of CD Mean(↓) NC Mean(↑) E-NMF Ratio Mean(↓) SI Ratio Mean(↓)
Vertices Model / Organ Pancreas Liver Lung Heart Pancreas Liver Lung Heart Pancreas Liver Lung Heart Pancreas Liver Lung Heart

2500

AtlasNet Sph 8.08 3.46 5.01 7.55 0.703 0.823 0.824 0.808 31 0.391 1.65 0 5860 29.5 13.8 0
AtlasNet 25 6.05 2.48 207 4.86 0.65 0.818 0.772 0.824 48.4 42.4 43.3 73.4 24500 25100 18700 24800
DIF-Net 7.44 1.74 1.98 2.44 0.736 0.834 0.879 0.842 540 16.8 63.9 76.1 4990 595 553 642
DIT 0.682 0.543 0.758 1.09 0.893 0.867 0.928 0.917 24.4 2 13.6 27.6 149 6.23 1.76 0

Ours 0.53 0.507 0.704 1.06 0.915 0.872 0.935 0.922 0.191 1.02 8.58 25.4 0 0.89 0 0

5000
DIF-Net 10.5 2.06 1.94 2.42 0.694 0.832 0.881 0.838 276 8.27 45.2 98.1 2560 4.61 786 1090
DIT 0.677 0.528 0.736 1.07 0.893 0.868 0.931 0.918 66.6 2.18 7.06 14.8 346 11.8 2.06 0

Ours 0.518 0.49 0.67 1.02 0.916 0.873 0.936 0.923 0.191 0.378 2.68 14.1 0 2 0 0

Table 2. Shape Registration on Unseen Shape Instances – We align all unseen shape instance to the source mesh Ms for four organ
categories. For AtlasNet, Ms is defined as their explicit template mesh. For DIF-Net, DIT and our NDF, Ms is defined as the re-meshed
learned template mesh. We compare AtlasNet Sph and AtlasNet 25 to the other methods having 2500 vetices in Ms after re-mesh. We
also compare DIF-Net, DIT and NDF provided Ms is of 5000 vertices after remesh. Even though the number of vertices in Ms of
AtlasNEt Sph is not 2500 (very close to), we still put them in comparison with methods having 2500-vertice Ms. The E-NMF ratio results
shown above are multiplied by 105

(a) DIF-Net (b) DIT (c) NDF

Figure 4. Qualitative Results Comparison - For each method, they have four type of mesh shown above. Mesh A is the learned template
mesh, Mesh B is the re-meshed template mesh with 2500 vertices, Mesh C is a reconstructed shape and Mesh D is the shape registration
result. We also zoom in Mesh D for a better qualitative comparison.

Exp. CD Mean NC Mean

1 SV 1.42 0.907
2 QTV4 0.516 0.914
3 QTV4 + CL 0.51 0.916
4 QTV8 + CL 0.51 0.916
5 QTV4 + CL + w/o pp 0.512 0.917
6 TV 1.65 0.902
7 TV + CL 125 0.885

Table 3. Ablation Study in Shape Reconstruction – The nota-
tions of experiments are described in Sec. 4.4. The subscript of
QTV is the number of progressive reconstruction steps. These ex-
periments are conducted on the unseen pancreas shapes.

unpleasant triangles Fig. (3) in the local regions where the
shape distortions between the shape instance and template
are large. On the contrary, the registration result generated
by NDF is clean, smooth and accurate. More qualitative
results can be found in supplementary material.

4.4. Ablation Study

Our ablation study is developed on pancreas shapes to
investigate the effects of three designs in our approach. In
this section, ”SV”, ”QTV”, ”TV” sequentially stands for
stationary, our quasi time-varying and time-varying velocity
field, ”CL” is the short term for curriculum learning and
”pp” denotes the point pair loss, which acts as a smooth

Exp. CD Mean NC Mean E-NMF Mean SI Mean

1 SV 1.46 0.906 1.43 0
2 QTV4 0.521 0.914 0 0
3 QTV4 + CL 0.52 0.915 0 0
4 QTV8 + CL 0.521 0.915 2.38 0
5 QTV4 + CL + w/o pp 0.518 0.916 1.91 0
6 TV 1.65 0.902 0.953 0
7 TV + CL 162 0.884 12.9 0.103

Table 4. Ablation Study in Shape Registration – All these ex-
periments are conducted on unseen pancreas shapes given the Ms

with 5000 vertices.

regularization. Our final approach is labeled as Exp.5 in
Tab. 3 and Tab. 4.

Quasi Time-varying Velocity Field. From the compar-
isons among Exp.1, 2 and 6 in Tab. 3, our quasi time-
varying velocity field wins in all aspects. Time-varying ve-
locity field should be a natural choice but without enough
temporal information, the generability will be questionable.
Stationary velocity field is widely applied in the medical
image/surface registration problem, but it turns out to be
hard to get the optimal if assume the continuous velocity
field is independent of time. We also explore the effect of
progressive representation steps by comparing Exp.4 and 8,
we have not observed some extra improvements resulting

720851



Figure 5. Label Transfer - LeftMost: Sub-heart ground truth;
MiddleLeft: Label Transfer; MiddleRight: Lobe groud truth;
RightMost: Label Transfer

from more representation steps. Fig. 1 also indicates most
deformations have been done in the starting phrases.

Curriculum learning. The improvements earned from
curriculum learning are significant in other work [18, 59].
While in our work, it is beneficial but not essential, as can
be seen in Tab. 3 and Tab. 4. Furthermore, it is even harmful
when used together with a time-varying velocity field.

Smooth Regularization. Our opinion that the smooth regu-
larization term is not needed when training deep diffeomor-
phic flow is supported. In Tab. 3 and 4, we can see Exp.5
and Exp.6 get the very close reconstruction accuracy and
both of them generate very few unpleasant faces in shape
registration. In summary, even with the most basic train-
ing loss and training strategy, our design of model can get
a very competitive performance in shape reconstruction and
registration.

5. Applications and Limitations
5.1. Applications

NDF keeps most of the benefits of DeepSDF such as
shape completion and shape interpolation. As for medical
meaning, NDF can help post-process the segmentation re-
sults and do plausible data augmentation.

Our model can also help transfer labels from seen shape
to unseen shape. We choose 5 samples from the training set
and transfer their labels to the target shape separately. The
final label is the majority voting results. Fig. 5 shows two
examples of labels transferred by NDF.

The ambition of our work is to boost the shape analysis
in medical imaging by helping establish organ shape dataset
having dense topology-preserving point correspondences.
Specifically, as long as our model is trained on one class of
organ shapes and implicit template meshMT = (VT , ET )
is labelled, the organ mesh of the same class could be
aligned as Sec. 3.4 explains. Given such dataset, we can
learn a model to parameterize shapes as SMPL [33].

5.2. Limitations

Our model concentrates on reconstructing and match-
ing a group of shapes sharing common structures, so we
haven’t applied it to the popular 3D shape datasets like

Figure 6. Limitations - Case #1 has different local structure with
learned template. Case #2 is a successful example.

ShapeNet [7]. As can be seen in Fig. 6, our learned tem-
plate has structures (marked by red circle) that don’t exist
in case #1, then our shape reconstruction and registration
results of case #1 shape is negatively affected by the extra
structures. This issue can be partially addressed by intro-
ducing the correction module [15] or considering shapes as
groups of sub-structures [32] that are individually topology-
preserving or non-existent.

To our best knowledge, there is no medical dataset hav-
ing structures as well as dense point correspondences anno-
tated. Thus, we cannot evaluate shape registration results in
terms of point-to-point error. In the future, we will explore
the potentials of our model on some synthetic data like D-
FAUST [5], with which we can do point-to-point analysis.
We will present The inference runtime of our method is in-
deed longer than competing methods such as DiT. The main
bottleneck of our method is the neural ODE (NODE) mod-
ule, which requires repeated functional evaluation to solve
ODEs within a given error tolerance.

6. Conclusions
In this paper, we propose a novel deep implicit function

based on neural diffeomorphic flow (NDF) for topology-
preserving shape representation. Our experimental results
demonstrate that explicitly considering topology preserva-
tion leads to significant improvements on shape represen-
tation and registration, as illustrated on medical images,
where topology preservation is often a necessary require-
ment. We also propose a conditional quasi time-varying ap-
proach to model NDF through an auto-decoder model con-
sisting of multiple neural ODE blocks, allowing us to model
the shape deformation in a progressive manner.
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