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Abstract

Conditional image repainting (CIR) is an advanced im-
age editing task, which requires the model to generate vi-
sual content in user-specified regions conditioned on mul-
tiple cross-modality constraints, and composite the visual
content with the provided background seamlessly. Existing
methods based on two-phase architecture design assume
dependency between phases and cause color-image incon-
gruity. To solve these problems, we propose a novel Unified
Conditional image Repainting Network (UniCoRN). We
break the two-phase assumption in the CIR task by con-
structing the interaction and dependency relationship be-
tween background and other conditions. We further intro-
duce the hierarchical structure into cross-modality similar-
ity model to capture feature patterns at different levels and
bridge the gap between visual content and color condition.
A new LANDSCAPE-CIR dataset is collected and annotated
to expand the application scenarios of the CIR task. Exper-
iments show that UniCoRN achieves higher synthetic qual-
ity, better condition consistency, and more realistic com-
positing effect.

1. Introduction
Advanced image editing is desired in various applica-

tions such as colorizing old photos [8, 19, 42, 43], repair-

ing damaged regions [23, 35, 37, 38], blending multiple im-

ages [25, 34, 41], and so on. With rapid progress in improv-

ing generative networks, skill barriers of using image edit-

ing tools have been lowered. For example, users can trans-

form any photo into the style of a “famous painter” simply

by providing one of his own works [14].

To “free” the users from requiring professional skills

while maintaining the “freedom” to realize their ideas

for editing an image, conditional image repainting (CIR)
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Figure 1. Illustration of the CIR task. Given an original image and

input conditions, the model needs to repaint the user-specified re-

gions (geometry) to synthesize a new appearance, and composite

it with the input background regions seamlessly. The bottom row

visualizes the pipeline of a representative two-phase CIR method

called “MISC” [33], where (a), (b), and (c) are the output of the

generation phase, visualization of meaningless background with

purple mask, and the input of the compositing model, respectively.

Compared with the two-phase CIR repainted result (highlighted in

pink), our unified CIR repainted result (highlighted in blue) im-

proves the appearance of the repainted image in synthetic quality,

condition consistency, and compositing effect.

[32, 33] has been proposed. For the CIR task, “repaint-

ing” means some regions of an existing image are repainted

with new visual content, and “conditional” means such new

visual content is generated from cross-modality input con-

ditions which consist of texture (random noise), color (at-

tribute or language), geometry (segmentation mask), and

background (RGB image). An example of the CIR task is

shown in the top row of Fig. 1.

Existing CIR methods [32,33] are implemented in a two-
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phase manner, as shown in the bottom row of Fig. 1. In

the first generation phase, the model generates the visual

content under the guidance of input conditions (Fig. 1(a)).

In the second compositing phase, it discards the meaning-

less background regions generated before (the purple area

in Fig. 1(b)), and replaces them with the given background

to be the input of the compositing model (Fig. 1(c)). After

that, the compositing model adjusts the color tone of re-

painted regions to make the whole image harmonious, and

finally synthesizes the repainted image.

Despite that existing two-phase methods could produce

reasonable results, there are still several problems. (i) De-
pendency of two phases: By explicitly dividing the task

into two phases, the compositing model can only adjust

the color tone of repainted regions after the first generation

phase, which limits its “play space” and leads to color tone

gaps between regions. Beyond that, along with the discard

of meaningless background (the purple area in Fig. 1(b)),

the gradient of this area is truncated, causing the gradi-

ent backpropagation unstable and further bringing obvious

artifacts. (ii) Incongruity between image and color: The

cross-modality similarity model (CMSM) [36] has been in-

troduced into two-phase CIR methods to bridge the gap be-

tween synthetic images and color conditions. However, it

remains to be addressed that the global encoders in CMSM

are difficult to provide adequate information, leading to the

incongruity between repainted images and input color con-

ditions (MISC synthesizes purple skirt in Fig. 1, while the

input color condition is yellow).

In this paper, we propose a Unified Conditional image

Repainting Network, denoted as UniCoRN, to solve the

above issues in the two-phase CIR methods. Specifically,

we redesign the condition fusion and injection modules for

the CIR task. By constructing the interaction and depen-

dency relationship between background and other condi-

tions that describe the visual content, we relax the depen-

dency between the generation and compositing phase. Be-

sides, we propose a hierarchical cross-modality similarity

model (HCMSM) to extract features at different seman-

tic levels – low-level features are local and coarse-grained

while high-level ones are global and fine-grained – to better

constrain color consistency in a continuous feature space.

The contributions of this work are two-fold:

• We break the two-phase dependency assumption in

the CIR task with a newly designed unified frame-

work, which facilitates conditional image repainting

with higher synthetic quality, better condition consis-

tency, and more realistic compositing effect (top right

in Fig. 1).

• We collect a high-resolution LANDSCAPE-CIR data-

set, including 28K training images, 3K test images,

and other necessary inputs obtained by automatic an-

notations, to expand the application scenarios of the

CIR task.

2. Related Works
Conditional generative adversarial networks. Condi-

tional generative adversarial networks (cGANs) are a type

of GANs [10], which take special conditions as inputs to

constrain the generated results, e.g., using single tags as

the class conditions to specify the categories of the gen-

erated images [2, 20, 21, 39], using language descriptions

to guide image generation [26, 27, 36, 40], using reference

images, sketches, or scene graphs for higher control flexi-

bility [13, 17, 18], and converting image-like data to photo-

realistic images according to user-given rules [11, 15, 31].

Condition injection. The adaptive instance normaliza-

tion (AdaIN) [14] is widely used in vector injection

and famous for image style transfer. SPatially-Adaptive

(DE)normalization (SPADE) [22] is mainly used in image-

like data such as segmentation mask, which can better

preserve semantic information in uniform or flat regions.

The semantic region-adaptive normalization (SEAN) [46]

is a simple yet effective module, which constructs a style

map under the guidance of segmentation mask and learns

element-wise normalization values to control the style of

each semantic region individually. Semantic-style block

[24] derives attribute or language into 64D representation

and concatenates it with class embedding pixel-wise for

better controlling the objects in images. Geometry-guided

adaptive instance normalization (GAIN) [33] modulates the

activations using the texture while constraining the steep-

ness of image gradients through a geometry-guided gate.

This module can adaptively control the texture uniformity in

different body parts for better person generating under the

guidance of parsing mask. SEmantic-BridegE (SEBE) [32]

is a delicate and plug-n-play attention mechanism, which

bridges the semantic chasm between word features and im-

age features by using semantic segmentation mask.

Image composition. The first end-to-end learning-based

image harmonization approach is proposed by Tsai et al.
[29], which effectively captures context as well as seman-

tic knowledge and greatly improves the quality of image

composition. GP-GAN [34] leverages the strengths of the

classical gradient-based approaches and GAN-based ap-

proaches to solve high-resolution image composition prob-

lems. GCC-GANs [5] adjusts the geometric and color con-

sistency of the composited image firstly, and then polishes

the boundary. In this way, objects of different shapes can be

automatically combined with the background effortlessly.

DoveNet [7] introduces the concept of domain verification

into image composition and improves the compositing ef-
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fect. The composition model in MISC [33] enables the

bounding mechanism and the spatial adaptability to reduce

the risk of the gradient vanishing pitfall. The novel piece-

wise value function [32] aims to break through the latent

ceiling of fidelity in content compositing.

Conditional image repainting. The CIR task is first for-

mulated by Weng et al. [32] as an advanced image editing

technique: the model is trained to repaint the visual content

in a specified image conditioned on user inputs. Specifi-

cally, the user inputs should cover at least three aspects, e.g.,
geometry, color, and texture. The color condition can be ex-

pressed by attribute or language, corresponding to different

application scenarios. The conditional person image syn-

thesis [33] is also a kind of CIR task, where the repainted

visual content is limited to the person with clear region di-

vision, thus they choose attribute as color condition for sim-

plicity and efficiency.

3. Methodology
To make this paper self-contained, we first review the

repainting task. In previous works [32,33], it can be formu-

lated in a two-phase manner: generating repainted regions

under several conditional constraints and then compositing

them with a provided background image seamlessly.

In the generation phase, given texture z, color descrip-

tion xc, and geometry condition xg, the generator FG syn-

thesizes a raw repainted image ŷr, as shown in Eq. (1):

ŷr = FG(z, xc, xg). (1)

In the compositing phase, the compositing model FC es-

timates color tone parameters (ρ, τ) based on ŷr and a de-

sirable background yb. Then the color tone of ŷr can be

adjusted towards yb through an affine transformation with

(ρ, τ). The adjusted repainted image is denoted as yr. As

shown in Eq. (2) and Eq. (3):

(ρ, τ) = FC(ŷr, yb), (2)

yr = tanh(ρ� ŷr ⊕ τ), (3)

where � and ⊕ are element-wise multiplication and addi-

tion respectively. Finally, the model combines the adjusted

repainted image with the input background under the mask

M to synthesize the complete image y, which can be formu-

lated in Eq. (4). Here the mask value is 0 for background

pixels and 1 for elsewhere.

y = M � yr + (1−M)� yb. (4)

However, existing methods assume dependency between

phases and cause color-image incongruity. To take a step

toward better synthesis, we design UniCoRN as a unified

framework (Sec. 3.1). Furthermore, two core components

are proposed: (i) Condition injection (Sec. 3.2), which is

composed of cross-modality condition fusion module (CM-

CFM) and feature adaptive batch normalization (FABN).

CMCFM is utilized for fusing background with other input

conditions to control the repainted content generation, and

then the fused feature modulates the normalized activations

in FABN. (ii) Condition constraint (Sec. 3.3), named hier-

archical cross-modality similarity model (HCMSM), which

captures feature patterns at different levels and bridge the

gap between the synthetic image and the color condition.

3.1. Framework

We propose a unified framework to relax the dependency

of two phases in the CIR task. The one-step process of Uni-

CoRN can be formulated as Eq. (5):

yr = FG(z, xc, xg, yb). (5)

The input conditions to FG are exactly the same as the

existing method [33], including: (i) z ∼ N (0, 1) denotes

Gaussian noise vector for synthesizing diverse results. (ii)
xc ∈ L

Nc×Nv is the multi-hot attribute, where L ∈ {0, 1},

Nc denotes the number of attributes (e.g., coat color), and

Nv denotes the number of values (e.g., blue). (iii) xg ∈
L
Ng×H×W is the segmentation mask, where L ∈ {0, 1},

and Ng, H , and W denote the number of parts in repainted

regions, image height, and width, respectively. (iv) yb ∈
R

3×H×W represents the provided background image.

We build our generator FG based on GauGAN [22],

which contains a series of FABN modules and convolu-

tional layers. See Fig. 2 for an overview.

As shown in Fig. 2, the user-given conditions are in-

jected into UniCoRN at the beginning of the network and in

the middle of FABN. We broadcast the embedded color at-

tribute under the guidance of geometry xg to make the color

condition spatially-specific, denoted as egc. In this way, the

hidden feature h contains both semantic and spatial infor-

mation as the initial input to the generator. After a series

of FABN and convolutional layers, h is updated to enrich

image details under the guidance of texture z, geometry xg,

and background yb. Specifically, h is refined in FABN and

input conditions are fused in CMCFM.

As the condition constraint module, HCMSM is adopted

in two ways: (i) The multi-grained attentive similarity loss

proposed in HCMSM provides the supervision signals for

whether the synthesized image is aligned with the input

color condition. (ii) The label encoder in Fig. 2 is pretrained

in HCMSM (similar to CMSM [36]) to guarantee the mean-

ingfulness of the attribute embeddings.

There are three discriminators used in our model: (i)
a joint-conditional-unconditional patch discriminator [16]

to judge condition consistency and indicate the realness of

each patch, (ii) a three-layer convolutional neural network
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Figure 2. Overview of the proposed generator FG. The color condition is first embedded and broadcast under the guidance of xg, denoted

as egc. Then we convolve it and obtain the hidden feature h as the initial input to FG. Other input conditions are fed into FABN in the

middle of FG. The generator is composed of several FABN and convolutional layers. In FABN, conditions xg, yb, and h are fused in

CMCFM and then convolved to produce appearance parameters βa and γa, along with pattern parameters βp and γp from texture z. The

produced parameters are used to modulate h after batch normalization. In CMCFM, geometry xg is convolved as a gate to fuse the hidden

feature h and the background feature.

to supervise the color tone harmonious degree between re-

painted regions and the background, and (iii) a multi-scale

discriminator [31] for calculating feature matching loss to

distinguish real images and synthetic images at different

feature levels.

3.2. Condition Injection

It is not feasible to design an individual injection module

for each condition, because the interaction and dependency

between conditions should be taken into account, e.g., ge-

ometry condition guides the spatial distribution of color

condition and separates repainted regions from the back-

ground. Simply stacking all conditions together is not fea-

sible, either, because conditions belong to different modal-

ities and they are represented in different formats, e.g., ge-

ometry condition is segmentation mask while color condi-

tion is a set of vectors.

CMCFM and FABN are designed to solve the problems

discussed above. CMCFM maps the provided background

yb into a common high-dimensional feature space first, and

then takes geometry xg as the gate to fuse the repainted fea-

ture and background feature spatially, as shown in Fig. 2.

Once the conditions are fused into a spatially-specific

feature, they are injected into the FABN to produce appear-

ance parameters βa and γa, along with pattern parameters

βp and γp from the texture condition. After summing sepa-

rately, the produced spatially-adaptive parameters are multi-

plied and added to the normalized activation element-wise.

See Fig. 2 for details. FABN is modified from GAIN [33]

by removing the sigmoid function and modifying the multi-

plication to addition. This is because the fused feature after

CMCFM is more complex and abstract instead of the pure

geometry feature in GAIN, which makes it no longer suit-

able as the gate of texture pattern.

(b)

Association matrix 

(a)

la
ye

rs

Figure 3. Two pyramid-shaped encoders in HCMSM. (a)

The image encoder is an n-Group convolutional network

(G0, G1, . . . , Gn−1), and extracts m features from m intermedi-

ate layers as outputs. (b) The label encoder consists of m encoder

units Encc and represents attributes in different semantic levels.

With element-wise addition, units are connected to form a hierar-

chical structure.

Note that the texture condition z is only fed into FABN

instead of fusing with other conditions in CMCFM. That is

because the texture condition is Gaussian noise and needs

to be highlighted to make generated results more diverse.

3.3. Condition Constraint

HCMSM consists of two pyramid-shaped encoders and

a hierarchical attentive similarity model. Comparing to pre-

vious CMSM [36], the hierarchical structure can better con-

strain the color-image incongruity benefiting from its con-

tinuous feature space.

Image encoder. As shown in Fig. 3(a), we first di-

vide the synthetic image into n class regions, denoted

as (y′0, y
′
1, . . . , y

′
n−1) under the guidance of geometry xg.

Then we feed them into the n-Group convolutional network
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(G0, G1, . . . , Gn−1), where each group convolution corre-

sponds to a class region. We extract m intermediate layer

features for excavating multi-grained semantic information,

represented as y′i,j ∈ R
Q×H×W , where Q is the feature

dimension, i ∈ {0, . . . ,m− 1} and j ∈ {0, . . . , n− 1}.

Label encoder. As shown in Fig. 3(b), we introduce the

attribute encoder in MISC [33] as our encoder unit Encc,

and we connect m units to form a pyramid-like structure

as our label encoder to extract semantic features at differ-

ent levels, inspired by pyramid methods [1, 3]. In detail,

given color attribute xc, each unit encodes it separately first,

written as êci = Encci (x
c), where êci ∈ R

Q×Nc , Q is

the embedding dimension, and i ∈ {0, . . . ,m− 1}. Then,

specifying the association matrix between attributes and im-

age class regions as A ∈ L
Nc×Ng s.t. ∀ i, j A[i, j] ≥ 0,

∀ j
∑

i A[i, j] = 1, we remap the embedded attribute into

image class regions ec
i = êc

iA, where eci ∈ R
Q×Ng , Nc and

Ng denote the number of attributes and parts in repainted

regions respectively. Finally, we get the (i+1)-th level fea-

ture eci+1 by vector addition as eci+1 = eci + Encci+1(x
c)A

and the first level feature as ec0 = Encc0(x
c)A.

Attentive similarity model. To take advantage of the hi-

erarchical structure of encoders, we improve the similar-

ity module based on AttnGAN [36]. Specifically, given

the color condition E and the synthetic image Y , we de-

note the color-image pair {Ei,t, Yi,t} as the t-th sample in

a batch at the i-th feature level. Then we calculate the pos-

terior probability of color Ei,t being matching with image

Yi,t following AttnGAN [36], as P (Ei,t|Yi,t). Finally, our

multi-grained attentive similarity loss can be computed as:

Lm = −
m∑
i

T∑
t

log
(
P (Ei,t|Yi,t)P (Yi,t|Ei,t)

)
. (6)

3.4. Learning

To define the generative loss Lg, we introduce the dis-

criminator first. We denote DI as the largest one of the joint-

conditional-unconditional patch discriminators proposed by

Obj-GAN [16], which contains two parts: unconditional

patch discriminator DI
u and conditional patch discrimina-

tor DI
c. The process of discriminator prediction is written

as pu[ȳ] = DI
u(ȳ) and pc[ȳ, egc] = DI

c(ȳ, e
gc), where ȳ is

the concatenation of y and yr, egc is the spatially-specific at-

tribute after broadcasting, and p = {p1, . . . , pi, . . . , pNpat}
means a series of probabilities of patch realness, where

Npat is the number of patches in discriminators. We de-

fine the generative loss Lg as:

Lg(F
G, DI) = −

Npat∑
i=1

(λu log pui [ȳ] + log pci [ȳ, e
gc]). (7)

Considering that the visual content should be seamlessly

composited with background regions, we take a three-layer

convolutional neural network DC to separate repainted re-

gions from the synthetic image following GCC-GAN [5],

formulated as pr = DC(y). pr = {pr1, . . . , pri, . . . , prNr
pix

}
indicates the probability that pixels are recognized as the

repainted ones, and N r
pix denotes the number of repainted

pixels. We define the compositing loss as:

Lc(F
G, DC) =

1

N r
pix

Nr
pix∑

i=1

log(1− pri). (8)

An L1 loss is used in background regions to ensure the

meaningfulness of background features:

Lb(F
G) =

1

Nb
pix

Nb
pix∑

i=1

∥∥yri − ybi
∥∥
1
, (9)

where Nb
pix is the number of background pixels.

The feature matching loss and perceptual loss are widely

used to improve the synthetic quality of images. In our con-

text, the feature matching loss [31] calculates the mean L1

distance of feature pairs extracted by discriminator DFM,

defined as:

LFM(FG, DFM) =

TFM∑
i=1

∥∥Di(y)−Di(y
b)
∥∥
1
, (10)

and the perceptual loss [9] takes a well-pretrained base net-

work φ as an encoder to reduce the gap between image fea-

tures, written as:

Lp(F
G) =

Tp∑
i

1

CiHiWi

∥∥φ(y)− φ(yb)
∥∥2
2
, (11)

where TFM and Tp are the number of layers in DFM and φ,

respectively.

Finally, we train our model with the full objective loss

as:

min
FG

max
DI,DC,DFM

Lg(D
I,FG)+λcLc(D

C,FG)+λbLb(FG)+

λFMLFM(FG,DFM)+λpLp(F
G)+λmLm(F

G),
(12)

where Lm is the multi-grained attentive similarity loss to

bridge the semantic gap between color conditions and syn-

thetic images, formulated in Eq. (6).

Based on experiments using a held-out validation set, we

set the hyperparameters as λc = 0.03, λb = 1.0, λFM =
10.0, λp = 10.0, and λm = 2.0.
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Figure 4. Qualitative comparison with state-of-the-art methods on

PERSON-CIR. (a) Input conditions: color (left), geometry (top

right), and background (bottom right); texture is omitted here.

(b) MISC [33]. (c) Weng et al. [32]. (d) Pavllo et al. [24]. (e)

SEAN [46]. (f) Our results. (g) Original images. Note that we re-

paint the top sample with the original conditions (the same as the

original image), and the bottom sample with the edited conditions.

Please zoom in for details.

4. Datasets
Existing CIR methods are mainly evaluated on synthetic

persons [45], birds [30], and stuff [4]. To further expand the

application scenarios of the CIR task, we create a dataset

which concentrates on landscape generation. First of all,

we download 31K high-resolution images from Flickr1 in-

cluding 28K training images and 3K test images, then we

resize them into 256× 256 and 512× 512 resolutions. Sec-

ondly, in order to avoid expensive manual annotation, we

use the pretrained segmentation network DeepLabV2 [6] to

compute the scene parsing mask for each image. After that,

we pick out 7 major categories of objects for repainting, that

is, cloud, flower, grass, hill, mountain, sky, and tree. Finally

we divide the HSV color space into 10 intervals and count

the proportion of pixels falling into each interval for every

repainted object, and then all the interval proportions are

concatenated into a vector as a color attribute. Therefore,

at most 70 attributes are annotated in one image. We name

this dataset LANDSCAPE-CIR.

For a fair comparison with previous methods, we also

conduct experiments on VIP person parsing dataset [45].

This dataset provides RGB images and parsing masks, and

we process them in the same way as MISC [33], which

crops the images to keep one major person in each image

and resizes them into 512 × 256 resolution. There are 42K

training images and 6K test images in this dataset and we

name it PERSON-CIR.

5. Experiments
Quantitative evaluation metrics. Following the previous

works [32, 33], we use Fréchet inception distance (FID),

1License: CC-BY 4.0. URL: https://www.flickr.com.

R-precision, and M-score for performance evaluation. FID

[12] is commonly used to measure the synthetic quality of

images. R-precision [36] is used to evaluate whether gen-

erated images are well conditioned on the given color in-

puts. We mix 5 randomly sampled images with the syn-

thetic image to calculate the accuracy of the color-image

retrieval, using the same configuration as MISC [33]. The

M-score [28] is used to measure the authenticity of images

based on the detection model [44]. We randomly feed 100

synthetic images into the detection model to score every im-

age. The lower the M-score, the more realistic the image is.

5.1. Comparison with State-of-the-Art Methods

We quantitatively and qualitatively compare our Uni-

CoRN with MISC [33], Weng et al. [32], Pavllo et al. [24],

and SEAN [46] on PERSON-CIR and LANDSCAPE-CIR

datasets. Note that except for MISC, other methods for

comparison cannot be directly applied to the CIR task due

to different input conditions. Thus we make some modifi-

cations and adapt them to the CIR task. We show synthetic

images in Fig. 4 and Fig. 5, and evaluation scores in Tab. 1

to demonstrate that UniCoRN achieves better performance

in synthetic quality, condition consistency, and compositing

effect than other state-of-the-art methods.

MISC [33] is a conventional two-phase CIR model,

which uses an additional compositing model to adjust the

color tone of the repainted foreground for high robustness

and training stability. However, due to the unstable gradient

backpropagation caused by two-phase design, the synthetic

quality is unsatisfactory with artifacts, e.g., the top sample

in Fig. 4(b) appears silver spots artifacts in the red clothes.

Weng et al.’s method [32] tackles the CIR task by repre-

senting color condition in the language form instead of at-

tribute. To unify the form of color condition, we replace its

injection module (SEBE) with the attribute injection mod-

ule (GAIN) proposed by MISC [33]. Similar to MISC [33],

this two-phase CIR method also produces obvious artifacts,

e.g., the black hole in the tree of the top sample in Fig. 5(c).

Pavllo et al.’s method [24] makes progress in synthesiz-

ing complex scenes with user-given attributes and masks.

Considering that the background is user-specified, we sim-

ply utilize their foreground generator. However, due to the

lack of color adjustment, the boundary between repainted

foreground and background is obvious, e.g., the person out-

line of the top and bottom samples in Fig. 4(d).

SEAN [46] proposes a novel normalization block for

GANs conditioned on style matrices extracted from input

images and segmentation masks. Note that we cannot di-

rectly evaluate it on CIR task due to the different inputs. As

a comparison, we replace FABN with the efficient SEAN

block to fit it into our unified framework. Compared with

FABN, the SEAN block takes more parameters and causes

color-image mismatching, e.g., the grey clouds in the bot-
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Figure 5. Qualitative comparison with state-of-the-art methods on LANDSCAPE-CIR. (a) Input conditions: color (left), geometry (top

right), and background (bottom right); texture is omitted here. (b) MISC [33]. (c) Weng et al. [32]. (d) Pavllo et al. [24]. (e) SEAN [46].

(f) Our results. (g) Original images. Note that we repaint the top sample with the original conditions (the same as the original image), and

the bottom sample with the edited conditions. Please zoom in for details.

Table 1. Quantitative experiments include comparison and ablation. ↑ (↓) indicates larger (smaller) values are better. The best performances

are highlighted in bold.

Category Methods
PERSON-CIR LANDSCPAE-CIR (256 × 256) LANDSCPAE-CIR (512 × 512)

FID ↓ R-prcn (%) ↑ M-score ↓ FID ↓ R-prcn (%) ↑ M-score ↓ FID ↓ R-prcn (%) ↑ M-score ↓

Comparison

MISC [33] 16.09 93.59 3.86 18.12 95.17 7.45 26.97 94.15 54.96
Weng et al. [32] 15.59 93.02 3.89 18.10 96.51 7.27 25.17 93.33 54.64
Pavllo et al. [24] 18.82 85.38 19.20 17.70 87.71 50.49 21.47 84.59 73.65

SEAN [46] 13.74 96.11 4.62 14.71 96.73 3.18 20.00 96.96 15.66

Ablation

CMSM 15.03 93.02 6.01 13.35 92.78 3.24 20.13 92.11 22.35
SINGLE 12.40 96.87 3.72 13.30 93.88 3.75 19.61 94.15 16.38

W/o assist 12.21 97.23 5.76 12.71 97.01 3.23 21.42 94.37 15.11
Two-phase 16.03 96.98 4.78 18.94 97.41 5.87 22.64 97.04 20.32

Ours UniCoRN 11.45 97.42 3.56 9.96 97.74 3.14 18.63 97.33 14.42

tom sample of Fig. 5(e) is inconsistent with the input “blue”

condition. Thanks to our unified framework, it is slightly

worse than UniCoRN quantitatively, as shown in Tab. 1.

5.2. User Study

We further conduct user study experiments on three

datasets to evaluate whether our results are favored by hu-

man observers. We provide input conditions, original im-

ages, and candidates generated from five different methods:

MISC [33], Weng et al. [32], Pavllo et al. [24], SEAN [46],

and our UniCoRN. Participants are asked to choose the most

visually pleasing result according to input conditions and

the original image. The experiment on each dataset includes

100 sets of synthetic images randomly selected. We publish

the experiments on Amazon Mechanical Turk (AMT), and

each experiment is completed by 25 participants. As shown

in Fig. 6, our UniCoRN performs better than other compar-

ison methods, confirming its subjective advantages.

5.3. Ablation Study

The ablation study focuses on the effectiveness of

pyramid-shaped encoders in HCMSM and the benefit of the

(a) PERSON-CIR

59.7%

8.9%

12.7%

5.7%

13.0% 7.6%

(b) LANDSCAPE-CIR
(256 256)

50.1%

26.1%

9.0%
7

7.2%

(c) LANDSCAPE-CIR 
(512 512)

%

52.0%

18.2%

11.4%
11.0%

7.4%

MISC

Pavllo et al.

Weng et al.

SEAN
Ours

Figure 6. User study results on (a) PERSON-CIR, (b)

LANDSCAPE-CIR (256×256), and (c) LANDSCAPE-CIR (512×
512) datasets. Our UniCoRN achieves obviously higher scores on

three datasets than other comparison methods.

unified network. The evaluation scores and synthetic im-

ages of the ablation study are shown in Tab. 1 and Fig. 7.

CMSM denotes we replace our HCMSM with the orig-

inal CMSM proposed in AttnGAN [36], where the image

encoder and label encoder only care about the global and

high-level semantic information, thus more likely to cause
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Figure 7. Ablation study with different variants of the proposed method on two datasets. (a) Input conditions: color (left), geometry (top

right), and background (bottom right); texture is omitted here. (b) CMSM. (c) SINGLE. (d) W/o assist. (e) Two-phase. (f) Our results. (g)

Original images. Note that we repaint all samples with the original conditions (the same as the original images). Please zoom in for details.

color-image incongruity, e.g., grey stripe artifacts in the

white clothes presented in the top left sample in Fig. 7(b).

SINGLE reduces the number of layers from m to 1 to

measure the necessity of pyramid-shaped encoders, which

provide semantic information at different levels. As the

number of layers decreases, the semantic information be-

comes inadequate, which brings uncertainty and lowers the

synthetic quality. This ablation version fails in boundary

harmonization, e.g., the bottom sample in Fig. 7(c).

W/o assist removes connections between encoder units

in the label encoder and flattens the encoder structure. Los-

ing the hierarchy, all the features are extracted in the same

semantic level, which makes the color tone look artificial,

e.g., the top right sample in Fig. 7(d).

Two-phase injects the background condition into an ad-

ditional compositing model instead of CMCFM, similar to

two-phase methods in previous works [32, 33]. Limited by

the two-phase dependency, Two-phase can not reach high

synthetic quality, e.g., the bottom sample in Fig. 7(e).

5.4. Controllability Study

We demonstrate the robustness of UniCoRN in synthe-

sizing images by modified input conditions, e.g., color in-

terpolation and geometry manipulation, shown in Fig. 8.

6. Conclusion
We propose a unified framework to solve the CIR task.

Compared with the existing two-phase CIR methods, Uni-

CoRN relaxes the two-phase dependency and introduces hi-

erarchical structure into condition constraint, which reaches

higher synthetic quality, better condition consistency, and

more realistic compositing effect.

Limitation. Considering the necessity of constructing the

interaction and dependency relationship between different

cross-modality inputs, our model includes a large number
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Figure 8. Controllability study results of UniCoRN with interpo-

lated color and manipulated geometry. Please zoom in for details.

of learnable parameters (103.1M). In future work, we will

simplify our network into a lightweight structure with fewer

parameters and deploy it on mobile devices.
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