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Abstract

Machine translation between many languages at once
is highly challenging, since training with ground truth re-
quires supervision between all language pairs, which is dif-
ficult to obtain. Our key insight is that, while languages
may vary drastically, the underlying visual appearance of
the world remains consistent. We introduce a method that
uses visual observations to bridge the gap between lan-
guages, rather than relying on parallel corpora or topo-
logical properties of the representations. We train a model
that aligns segments of text from different languages if and
only if the images associated with them are similar and
each image in turn is well-aligned with its textual descrip-
tion. We train our model from scratch on a new dataset
of text in over fifty languages with accompanying images.
Experiments show that our method outperforms previous
work on unsupervised word and sentence translation us-
ing retrieval. Code, models and data are available on
globetrotter.cs.columbia.edu

1. Introduction

Researchers have been building machine translation
models for over 60 years [20], converting input sentences in
one language to equivalent ones in another. In recent years,
sequence-to-sequence deep learning models have overtaken
statistical methods as the state-of-the-art in this field, with
widespread practical applications. However, these models
require large supervised corpora of parallel text for all lan-
guage pairs, which are expensive to collect and often im-
practical for uncommon pairs.

Rather than attempting to manually gather this ground
truth, we use a source of supervision natural to the world: its
consistent visual appearance. While language can take on
many shapes and forms, visual observations are universal,
as depicted in Fig. 1. This property can be freely leveraged
to learn correspondences between the different languages of
the world without any cross-lingual supervision.

Since we can learn how similar two images are to each
other [12], and how compatible an image is with a textual
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Figure 1. While each language represents a bicycle with a differ-
ent word, the underlying visual representation remains consistent.
A bicycle has similar appearance in the UK, France, Japan and
India. We leverage this natural property to learn aligned multilin-
gual representations for machine translation without paired train-
ing corpora.

description [36], we can introduce a transitive relation to
estimate how similar two sentences are to each other: if
(and only if) each sentence matches its image, and the two
images match, then the two sentences should also match.
We propose a multimodal contrastive approach to solve this
problem, using vision to bridge between otherwise unre-
lated languages.

In our experiments and visualizations, we show that the
transitive relations through vision provide excellent self-
supervision for learning machine translation. Although we
train our approach without paired language data, our ap-
proach is able to translate between 52 different languages
better than several baselines. While vision is necessary for
our approach during learning, there is no dependence on vi-
sion during inference. After learning language representa-
tions, our approach can translate both individual words and
full sentences using retrieval.

Our contribution is threefold. First, we propose a method
that leverages cross-modal alignment between language and
vision to train a multilingual translation system without any
parallel corpora. Second, we show that our method outper-
forms previous work by a significant margin on both sen-
tence and word translation, where we use retrieval to test
translation. Finally, to evaluate and analyze our approach,
we release a federated multimodal dataset spanning 52 dif-
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ferent languages. Overall, our work shows that ground-
ing language in vision yields models that are significantly
more robust across languages, even in cases where ground
truth parallel corpora are not available. Code, data, and pre-
trained models will be released.

2. Related work

Our unsupervised joint visual and multilingual model
builds on recent progress in both the natural language pro-
cessing and computer vision communities. We briefly sum-
marize the prior work.

Unsupervised language translation has been studied
as a word representation alignment problem in [34], where
the distribution of word embeddings for two unpaired lan-
guages is aligned to minimize a statistical distance between
them. [1, 32, 33, 35] build on top of this idea, and train an
encoder-decoder structure to enforce cycle-consistency be-
tween language translations. This method achieves strong
unsupervised word translation results, but does not scale be-
yond two languages. It also does not leverage visual infor-
mation in learning, limiting performance.

Multi-language models are general language models
that develop language-independent architectures that work
equally well for any language [26]. [2, 15, 18, 32, 39, 42]
share the same token embeddings across different lan-
guages, showing that this improves language modeling both
for general downstream single-language NLP tasks and also
for supervised language translation across multiple lan-
guages. [2, 15, 32] use a shared Byte Pair Encoding (BPE),
which we use in our work. We loosely follow the architec-
ture of [ 15] in that we train a transformer-based [50] masked
language model with BPE.

Vision as multimodal bridge implies using vision as an
interlingua between all languages. Using a third language
as a pivot to translate between pairs of languages without
source-target paired corpora has been studied extensively
[e.g. 23, 24, 29]. [3, 27] use vision for the same purpose,
operating directly on speech waveforms instead of text. [13]
use images to help translate between languages in the text
modality. Their model involves both generation and rein-
forcement learning, which makes optimization difficult, and
they do not generalize to more than two languages. Sig-
urdsson et al. [46] also use vision as a pivot for unsuper-
vised word translation. However, unlike their approach, our
model is not limited by a reliance on extensive visual super-
vision for pre-training or inexpressive topological methods
to relate concepts across languages. Further, our approach
scales very naturally to multiple languages at once (instead
of just two), models misalignment between vision and lan-
guage, and crucially learns to translate at the sentence level
rather than just words. Our experiments quantitatively com-
pare the two approaches, showing that our approach per-
forms better both in word and sentence translation.

Other work views the input image as extra information
for translation [e.g. 10, 48], and we refer readers to [47]
for an extensive overview on this topic. Instead of using
images as a bridge, paired data between languages is used.
There has also been research on training multilingual lan-
guage representations for downstream vision tasks, lever-
aging visual-linguistic correspondence, but without transla-
tion as a goal. Unlike this paper, they make use of ground
truth language pairs [9, 25, 30, 52].

Translation by retrieval. We evaluate the representa-
tions using retrieval-based machine translation [5, 38], often
used in the context of example-based machine translation
[e.g. 6,7, 8, 16, 21], analogy-based translation [e.g. 31, 41],
or translation memories [e.g. 4, 11, 19, 51].

State-of-the-art cross-lingual retrieval approaches rely
on supervised language pairs, and range from training the
models in a standard contrastive learning setting [14] to
more complex combinations of the language pairs such as
cross-attention [40] or using custom fusion layers [22]. Our
approach does not require supervised language pairs.

3. Approach

We present an approach that learns to map words and
sentences from one language to semantically similar words
and sentences from different languages, for a large number
of languages simultaneously. Our approach does not require
any paired data between languages, and instead only de-
pends on image-language pairs. Fig. 2 provides an overview
of our framework.

3.1. Sentence embedding

Our approach learns an aligned embedding space for sen-
tences across languages. Let 2! € R be the learned em-
bedding of sentence 4 (I stands for language), obtained by
processing the text through a language network ©;. More-
over, let 3;; be the similarity between sentences zf and 2%,
for example through the cosine similarity. Our goal is to
learn the parameters of the embedding z such that sentences
with the same meaning are mapped to similar positions in
the embedding space despite being in different languages.
After learning, we will have a sentence embedding z! that
we can use for a variety of tasks, such as retrieving or gen-
erating sentences in different languages.

We learn the parameters of the embedding space by op-
timizing the contrastive learning problem:

exp(Bi; /)
Ly =— ij L
t XZ: ;a j log Zk# exp (/sz/T) )
with  §;; = sim (zf, zé)

In this framework, we need to define which pairs of exam-
ples should be close in the learned embedding space (the
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positives), and which should not (the negatives). In the
above formulation, the scalar ;; € [0, 1] indicates this as-
signment. However, since we are in an unsupervised trans-
lation setting, we do not have ground truth pairs. Our main
idea, which we introduce in the next section, is that we can
use the visual modality to discover these pairs.

3.2. Transitive relations

Estimating the similarity for sentences of different lan-
guages is challenging without labels. Unsupervised ma-
chine translation approaches typically rely on topologi-
cal properties, such as distributional alignment or back-
translation [32, 34]. However, these constraints provide a
noisy gradient for learning, which makes large-scale opti-
mization difficult.

We propose to take advantage of a transitive relation
through the visual modality in order to estimate the sim-
ilarity in language space «;;. Given a dataset of images
and their corresponding captions, we estimate both a cross-
modal (sentence-image) similarity as well as a cross-image
(image-image) similarity. Let o; be the cross-modal sim-
ilarity, which indicates the alignment between image 7 and
its corresponding caption i. We also let «j; be the cross-
image similarity, indicating the perceptual similarity be-
tween image ¢ and another image j. This provides the tran-
sitive relation as the product of similarities

v 11/3
ajj] )’ )
m)/ (1 —m),

and m is a margin that we set to m = 0.4, which prevents
pairs with low similarity from being used as positives. Note
that o;; = «;. The transitive similarity causes two sen-
tences from different languages to be similar if they appear
in similar visual contexts.

The final similarity is in the range a;; € [0,1]. Only
when there is a strong alignment between an image and its

aij = f( [O‘Z'O‘;}j :

where f(z) = max(0,z —

7,
Text Network @l k_‘ ﬂjj
' z

/ﬂ i Figure 2. Our model learns
an aligned embedding space
for language translation by
leveraging a transitive relation
through vision. Cross-sentence
7, similarity [3;; is estimated by
i the path through an image col-

lection. See Section 3 for de-

v, tails.

i)

caption, and there is also another image with close percep-
tual similarity, will a transitive relation be formed. In realis-
tic scenes, the correspondence for some image and caption
pairs may be difficult to establish in the presence of noise,
which our formulation handles by breaking the transitive
relation. In other words, we only consider paths with high
total similarity as positives for the contrastive objective, and
discard those paths with low total similarity, since their sen-
tences likely do not match.

3.3. Learning

In order to optimize Equation 1, we need to estimate o,
and a;;. We parametrize both with neural networks and
train them to directly estimate the similarity, also using con-
trastive learning [12].

Visual similarity: We jointly learn a visual feature space
to estimate «;. For every image, we perform two ran-
dom augmentations, resulting in two different versions of
the same image. These two transformed images are run
through the image network, along with the other N —1 pairs
(in a batch of IV samples). This results in 2V feature maps.
For every pair (i1,i2) of images with representations 2,
and zfz, we compute a contrastive loss, where all the other
2(N —1) images are the negatives. We use the loss function:

Zl exp ( ’Llig/T)

T X P (a5 T) 3)

= sim(z;, 7).
v

z7 represents the learned features for image ¢, obtained
by processing the images through an image network O,,.
We augment images using random image cropping, random
Gaussian blurring, and random color distortions, as in [12].

Cross-modal similarity: We also need to estimate the
similarity between images and their corresponding captions
o;. The visual representation anchors inter-language align-
ment, and this similarity constrains the sentence embedding

where ;=
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Figure 3. We show two examples of positive matches (top) and two examples of negative matches (bottom). Our model trains its text-to-text
estimate (bottom) using the three scores on the top. At test time, it directly estimates similarity between text in different languages, without

requiring visual input.

for each language to share the same space as the image em-
bedding. We learn this similarity metric through the con-
trastive objective:

/.ZI:—Z log

%

exp(afi/r) |\ _exp(af/7)
> exp (af;/7) >_;exp (af;/7)
with o = sim(zf,zé.).
“)

Token cloze: We finally also train the model with a to-
ken cloze task in order to make the language representation
contextual. We follow the same loss and objective as BERT
[18] over the sentence input. We label this loss L.

Full objective: The final objective we optimize is the
combination of all four losses defined above:

m@in L:t + )\1»671 + )\2£z + )\3£C (5)
where O are the neural network parameters, and \ are scalar
hyper-parameters to the balance the terms. Over the course
of optimization, the model learns a cross-lingual similarity
metric 3 jointly with the transitive similarities c. As learn-
ing progresses, «;; forms soft positive and negative pairs,
which the model uses to learn aligned multi-language rep-
resentations. The quality of the multi-language represen-
tation depends on the quality of transitive alignments o
our model discovers. However, since the contrastive ob-
jective relies on statistical patterns over a large dataset, our
approach is fairly robust to noise, as supported by our ex-
periments.

3.4. Refining word-level alignment

Our approach learns a common embedding space be-
tween vision and sentences in multiple languages, which
our experiments will show provides a robust representation
for unsupervised machine translation. This representation is

trained to be well-aligned at the sentence level. We can fur-
ther refine the representation by aligning them along words
as well.

To obtain word-level alignment, we use the Procrustes
algorithm [43] on the learned word embeddings: we find a
linear transformation from the word embeddings of one lan-
guage to the word embeddings of another language. To esti-
mate the linear transformation, we follow standard practice
and identify the anchor points by finding the £ = 5 mutual
nearest neighbors between the word embeddings across lan-
guages. We then proceed with the Procrustes approach from
[49], which extends the original algorithm to more than two
distributions. To translate words, we then directly retrieve
using the transformed word embeddings.

3.5. Architecture

Our method uses a two-branch architecture, which ex-
tracts text and image features that share the same semantic
embedding space. We briefly describe the network archi-
tecture choices below. We refer readers to the supplemental
material for complete details.

Image network ©,,: To extract visual features, we apply
a convolutional network over the images. We use a ResNet-
18, initialized with ImageNet features [17, 28], and we add
a prediction head after the last hidden layer of the ResNet.

Text network ©;: We use a neural network to embed a
sentence. We use a single encoder with shared word embed-
dings across all languages, which has been shown to scale
well to the multilingual setting [2, 15]. All languages share
the same vocabulary created using Byte Pair Encoding [44],
which improves the alignment of embedding spaces across
languages that share the same alphabet [33]. We then use a
transformer from [50], shared by all the languages.

To produce outputs, we add a prediction head, and nor-
malize the outputs so that ||z||2 = 1.
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Figure 4. We show some examples of our dataset. See the supplementary material for the English translations. See Section 4 for details.

4. The Globetrotter dataset

In order to train and evaluate our approach, we collect a
federated dataset of images and captions that span 52 dif-
ferent languages. The full list of languages is in Supple-
mentary Material. We combine three captioning datasets
and translate them using Amazon Translate from Ama-
zon Web Services. We use captions and images from the
Flickr30k [53], MSCOCO [37], and Conceptual Captions
[45] datasets. The language in the federated dataset is di-
verse, covering both captions from human annotators and
captions harvested from the web. We show some examples
in Fig. 4. The dataset contains a total of 4.1M image-caption
pairs, with an English sentence mean length of 10.4 words.
We will publicly release this dataset.

We split our dataset into train, validation, and testing
sets. We make the partition ensuring that they each contain a
disjoint set of images and sentences. We use 3.15M unique
text-image pairs for training, 787k for validation, and 78.7k
for testing. The training and validation splits contain sam-
ples corresponding to all languages, and each image only
has one language associated with it. The testing set is trans-
lated to all languages (the same samples), to obtain ground
truth alignment for evaluation. We further collect a test set
of 200 English captions translated by fluent speakers to 11
different languages (see Supplementary Material), for a to-
tal of 2200 human-generated translations.

5. Experimental evaluation

Our experiments analyze the language translation capa-
bilities of our model, and quantify the impact of vision on
the learning process. We call our model Globetrotter.

5.1. Baselines

Sigurdsson ef al. [46]: The closest approach to ours is
[46], which is a state-of-the-art approach for unsupervised
word translation using cross-modal information. Their orig-

inal model is trained to translate between just two lan-
guages, and our experiments work with more than fifty lan-
guages. We therefore extended their method to multiple lan-
guages by creating a different word embedding and adapt-
ing layer for each language, which we use as the baseline.
We use the same vocabulary as in our method, but train sep-
arate word embeddings for different languages.

Conneau & Lample [32]: We also compare to the state-
of-the-art unsupervised translation approach that does not
use visual information. We experimented with several base-
lines, and chose the one that performs the best. This base-
line uses a cycle-consistency (or back-translation) loss be-
tween pairs of languages. We train their method on our
dataset, for all M languages simultaneously. We originally
experimented with adding cycle-consistency constraints for
all M? language pairs, but this resulted in poor perfor-
mance. We randomly select a total of 50 pairs, where each
language appears five times as the source and five times as
the target. We also experimented with [34], but this per-
formed worse than [32].

Text-only model: To quantify the impact of vision, we
also train a version of our model where all images and
image-related losses are removed, as in [18]. This model
is capable of learning some basic cross-lingual concepts by
having different languages using the same tokens.

Fully supervised: To understand the gap between unsu-
pervised and supervised approaches, we train our method
with paired language corpora. We use our same framework,
except we set the values of « to 1 for paired sentences, and
0 for unpaired sentences.

Common evaluation setup: Throughout our experi-
ments, we adopt a common evaluation setup to evaluate all
models. We train all models for 200 epochs and select the
best model on the held-out validation set. In all cases, vision
is not used during testing.
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Source: Spanish Target: Russian

Target: Hebrew

Una vista aérea durante su remodelacién
An aerial view during its redevelopment

Bup mna ropos, ¢ 6apa Ha Kpbliie
View of the city from rooftop bar

2 noenn Au
View from a roof terrace

Actor asiste al estreno de los angeles celebrado
Actor attends the los angeles premiere held

AKTep mocenaer npeMbepy Ce30Ha
Actor attends the season premiere

71925 van oR
Person arrives at the premiere

Tlustracién de la nifia de dibujos animados en color
negro sobre el fondo blanco

Lllustration of cartoon girl in black color on the white
background

HapucoBanublif 9CKHU3 € MATKEM KJIACCUYECKUM
JMBAHOM U MOAYIIKaMH Ha 6ejoM done

Hand drawn sketch with soft classic couch and pillows on
the white background

mwn Sy amap Sw amepTp

Cartoon of a group of teenage girls

Table 1. We show some examples of sentence-level translations obtained by our approach. English is only shown for visualization purposes.

Supervised 92.5%
Chance |[0.5%
Text Only  |8.9%
Lample & Conneau (2019) |15.6%
Sigurdsson et al. (2019) 56.7%
without Lx  |[9.0%
without Lv  [9.5%

Globetrotter
(ours) without Lt 63.3%
without Lc 68.4%
Full Model 72.3%

0%  20%  40%  60%  80% 100%
Percentage of Retrieved Positives
Figure 5. We evaluate our translations at the sentence-level. Our
approach outperforms several unsupervised translation baselines.
While unsupervised approaches are still no match for fully super-
vised methods, our approach uses significantly less supervision.

5.2. Sentence-level translation

We evaluate sentence translation using held-out data
that contains a set of sentences translated to all languages.
We produce translations by retrieving the nearest examples
given a query. From the test set, we randomly select 200
captions, for all M languages, with a total of 200M sen-
tences. Each one of these sentences is used as a query
during test, and it has M — 1 positives (same sentence in
different languages). The metric we report is the percent-
age of positives the model ranks in the top M — 1, among
all the 200M — 1 possible options. In order to rank tar-
get sentences, we compute the similarity between them and
the query sentence, and rank them according to this value.
We show results in Fig. 5. Our method outperforms all
baselines by a significant margin, underscoring the utility
of transitive relations across modalities.

Fig. 5 also reports ablations of our framework when not
training with each one of the four losses in Eq. 5. Training
without losses £, (Eq. 3) or £, (Eq. 4) implies breaking
the transitive closure represented in Fig. 2, which results in
a drastic decrease in performance. £; (Eq. 1) is the loss that
makes the cross-lingual alignment explicit, but importantly
it is not required to close the transitive relation through the
visual modality. Training without it represents a consider-

Chance

Text Only

Lample & Conneau (2019)
Sigurdsson et al. (2019)
Globetrotter (Ours)
Sentence-level Supervision

0% 20% 40% 60% 80% 100%

M Human-generated test set Percentage of Retrieved Positives

Machine-generated test set
Figure 6. We evaluate our translations at the sentence-level with a
human-generated test set. Fluent speakers for 11 of the languages
manually annotated translations in the test set. Our approach out-
performs several unsupervised translation baselines on this test set
as well.

able drop in accuracy, but the results are still better than
baselines. Finally, £, also contributes to the final perfor-
mance, consistently with prior work [32, 39].

We show some examples of our sentence translations in
Table 1. Our approach works on all language pairs and we
simply select a few for visualization purposes. These exam-
ples show how our method aligns languages following their
visual semantics.

Despite training on machine-generated translations, our
method generalizes with minimal degradation to natural hu-
man language. To demonstrate this, we evaluate all methods
on the human-translated subset of the Globetrotter dataset.
We report results in Fig. 6, where we show the accuracy val-
ues both for human-translated and machine-translated texts.
We use the same metric as before, now for M = 11. While
all methods experience a minimal decrease in performance,
our approach also outperforms the unsupervised baselines
on the human-generated test.

5.3. Word-level translation

Following the evaluation in [46], we also evaluate word-
level translation. Since dictionaries are not readily available
for most language pairs, we obtain ground truth for evalu-
ation by automatically matching words across languages.
For every language pair, we find which words co-occur fre-
quently in a sentence between the two languages. See sup-
plementary materials. Then we test each pair of languages
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Source: Spanish (English trans.)

Target: Russian (English trans.)

Target: Hebrew (English trans.)

chica (girl)

tenis (tennis)

personas (people)

aire (air)

campo (field)

béisbol (baseball)
espect (prefix for show)
motocic (prefix for motorcycle)
camion (truck)
sombrero (hat)

hombre (man)

mientras (while)

par (two, or prefix for couple)
calle (street)

camino (path)

nesyuika (girl) R (wife)

Tennu (prefix for tennis) o (tennis)
srozeit (people) oWk (people)
BO3/1yX (air) vp1  (background)
noute (field) 7w (in the field)
Geiic6ou (baseball) 51m0ma  (baseball)
oy (show) MR (event)
MOTOLMK (MOTOIUK is motorcycle) W (VDI is motorcycle)
aBToOyC (bus) 211172 (in the street)
KOCTIOM (Suit) 35 (15 s shirt)
KunHa (My>K9uHa is man) DR (man)

Korza (when) RS (after the)
napa (couple) i (the second)
yauna (the outside) 21192 (in the street)
wisizke (beach) 77 (path)

Table 2. We show examples of Spanish-Russian and Spanish-Hebrew word-level translations.

All Vocabulary

Disjoint Vocabulary

Chance

Text Only

Lample & Conneau (2019)
Sigurdsson et al. (2019)
Globetrotter (Ours)
Sentence-level Supervision

+1.98

+2.84

+6.87
+8.71

0% 1% 22% 33%

Average Recall@10

Il Before Procrustes
After Procrustes

44%

55% 8% 16% 24%

Average Recall@10

32% 40%

Figure 7. We also evaluate word-level translation. Although our approach is trained on sentence-level similarity, the word embeddings also
learn to provide strong word-level translation. The results can be further refined with Procrustes.

Cross-modal retrieval accuracy

Sigurdsson - 56.61 Ea)
et al. (2019) 44.75 Tl

Globetrotter 67.56 I-T

(Ours) 66.19 T-I
0% 25% 50% 75% 100%
B Recall@1 Recall@5 I Recall@10
Figure 8. Cross-modal retrieval results. We show Recall at

[1,5,10] for text-to-image (T—I) and image-to-text (I—T). We
compare all the models that use images to perform the translation.

separately. For every translation, we evaluate retrieval in
both directions. Fig. 7 reports the average Recall@10 for
all pairs of translations and all pairs of languages. In the
right column, we exclude from the list of pairs those where
the token is the same in the two languages. Even the model
trained with text only — which performs poorly on sentence-
level translation — obtains strong results, highlighting the
importance of using a shared vocabulary. We show some
examples of word translation in Table 2.

5.4. Cross-modal retrieval

Alignment between image and text representations is
crucial for our model to perform properly. We analyze this
cross-modal alignment by performing retrieval from one
modality to the other. Fig. 8 shows recall both for our model
and for Sigurdsson et al. [46]. For each language, we select
1,000 text-image pairs and compute Recall@ K results for
each one of the pairs, using the other pairs as negatives. We
compute these values both from image to text and from text
to image, and use K = 1,5, 10. We report the average for
all languages. Our model performs significantly better than
the baselines, showing our approach learns a strong multi-
lingual and multimodal representation.

5.5. Analysis

Visualizing transitive matches: Fig. 3 shows exam-
ples of estimated transitive similarity values. We show pre-
dicted o” (inter-image similarity), o (cross-modal similar-
ity), and [ (inter-sentence similarity). Fig. 3a and 3b show
examples where both the similarity between images and the
cross-modal similarity are high, resulting in a large o. If
these pairs were to be used for training, they would be pos-
itives. The model correctly predicts a high 8 value between
the two texts. Fig. 3¢ demonstrates the importance of using
«” in addition to o to create language pairs. In this case,
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Source: Spanish

Target: Russian

Target: Hebrew

Si escuchas, el silencio de una persona te ayu-
dard a entender de maneras que las palabras
simplemente no pueden

If you listen, a person’s silence will help you to
understand in ways that words simply can not

IIpasnuuk, HanucaHHBIN Ha JcTe Oymard,
Ha JiepeBsHHOM (hoHE

Holiday written on piece of paper, on a wood
background

o™1pon R "5 55w DR a1 MR TI0NR OX

If I cut you off it’s because you gave me the
scissors

Un vistazo a un nuevo concepto

A glimpse at new concept

Saanee n306pazKkeHne MOIEIH aBTOMOOIIISE
B IIAJIBTO
Rear image of automobile model in coat

wonS nranbuswn and a7 AW DNon nw9)

Purchasing a new car? here are some tech-
nologies to look out for

Un tabby gris manchado se encuentra entre
plantas verdes.
A spotted gray tabby sits among green plants

Kpomuk xmer na mepegHeMm ItaHe I
OOBITHON TTPOBEPKU

A rabbit waits in the foreground for a routine
check

Twa or Svw

Red fox in a field

Table 3. We illustrate some failure cases. See the end of Section 5.5 for discussion.

the visual content between the two images corresponds, and
the model detects that correctly with a high o value. How-
ever, because web data is not always clean, the caption on
the left does not correspond to the visual content. This is
correctly captured in the small o” value. If we were us-
ing this pair for training, it would be considered a negative
example despite significant visual similarity. Thus, the mis-
alignment noise is not propagated to the cross-lingual loss.
Finally, Fig. 3d shows an example where both sentences ac-
curately describe their corresponding image, but the images
do not match. As expected, this results in a negative pair.

Translation difficulty by language: We itemize the
performance of sentence-level translation by language in
Fig. 9. Languages from the same family are often easier
to translate between. The most difficult language is Tamil,
the only Dravidian language in our dataset.

Limitations: We show three representative failure cases
in Table 3. In the first, the caption is not related to any visual
concept, causing our model to translate it incorrectly. The
second example shows some words incorrectly translated
due to spurious correlations in the training set. In this spe-
cific case, the phrase “new concept” is strongly associated
to cars, since it appears in training in the context of “con-
cept cars”, i.e. vehicles from car companies to explore new
designs. Therefore, the model retrieves sentences referring
to cars, even though they do not have any relation to the
phrase “new concept”. Finally, the third failure case shows
a sentence with a new word (“tabby”), where the model is
overly reliant on context to translate instead.

6. Conclusions

Leveraging a transitive relation between language and
vision, our experiments show our framework learns a strong
representation for both sentence-level and word-level ma-
chine translation without parallel corpora. We believe vi-
sion will continue to be valuable for learning robust lan-
guage models.

Hungarian
innish

Query language

Target language

Figure 9. We show sentence-level translation accuracy by query-
target language pair. In the figure, the languages are sorted by fam-
ily (Romance, Baltic, etc.). The block-diagonal structure shows
that languages from the same family are easier to translate be-
tween. We also find that language isolates in our dataset perform
worse overall (e.g. Tamil, the only Dravidian language). Green
implies high accuracy, blue implies low accuracy.

Societal impact: traditional NMT approaches focus on
languages with large amounts of parallel corpora, naturally
biasing progress toward languages with many speakers and
a robust online presence. By leveraging vision, our model
provides a promising avenue for transferring NLP models
to lower-resource languages. As with all deep learning sys-
tems, our model may inherit biases present in the image-text
datasets used to train it.
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