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Figure 1. We present an approach for recommending a music track for a given video, and vice versa. We model the long-term temporal
context of both signals, allowing our model to capture the high-level artistic correspondences between them. Our model learns a strong
audiovisual representation that allows us to retrieve videos and music that look and sound natural to humans. On the left we show query
video segments with the corresponding retrieved music segments, and on the right we show the opposite retrieval direction. Our model’s
audiovisual correspondence exploits artistic attributes such as music genre or rhythm.

Abstract
We present an approach for recommending a music track

for a given video, and vice versa, based on both their tempo-
ral alignment and their correspondence at an artistic level.
We propose a self-supervised approach that learns this cor-
respondence directly from data, without any need of human
annotations. In order to capture the high-level concepts
that are required to solve the task, we propose modeling
the long-term temporal context of both the video and the
music signals, using Transformer networks for each modal-
ity. Experiments show that this approach strongly outper-
forms alternatives that do not exploit the temporal context.
The combination of our contributions improve retrieval ac-
curacy up to 10× over prior state of the art. This strong
improvement allows us to introduce a wide range of analy-
ses and applications. For instance, we can condition music
retrieval based on visually defined attributes.

ˇ “( Work partly done during an internship at Adobe Research.

1. Introduction
Music is a crucial component of video creation, for

example soundtracks in feature film, music for advertise-
ments, background music in video blogs, or creative uses
of music in social media. However, choosing the right mu-
sic for a video is difficult—the video creator needs to de-
termine what kind of music to use for different moments
in the video and then search for this music. Each of these
tasks presents difficulties: choosing the right music to set
the mood of a video can be hard for non-professionals and,
even when you know what type of music you want, it can be
hard to search for it using conventional text-based methods.
It is very hard to describe the “feel” of a song in words and
metadata-based search engines are not well suited for this
task. An automated tool to suggest relevant music given
video footage as input could be of great value to a range
of creators, from beginners and amateurs in need of a sim-
ple solution, through to communicators and professionals
in search of inspiration. The inverse problem, matching
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video footage to a given song, similarly presents notable
challenges, and a solution has the potential to unlock new
creative applications. As such, an automated tool to per-
form retrieval in both directions, from video to music and
vice versa, is of great interest.

While other audio-visual tasks aim to establish physi-
cal correspondences for discrete events between the two
modalities (e.g., the sound of a person clapping with the
visual motion of the person performing the clapping ac-
tion) [5–7], such correspondences are predominantly not the
deciding factor for pairing music with video. The determin-
ing factors for the pairing task are instead often “artistic”
and non-physical, and may comprise the overall visual style
or aesthetics of the video, and the genre, mood or “feel” of
the music. Additionally, a system may pair musical gen-
res with visual attributes (e.g., depicted scene type or mu-
sical instrument played) or populations presenting a partic-
ular gender or race. Studying the interplay of these factors
is important for understanding and exposing how a system
makes its decisions and mitigating potential bias [26].

To address these tasks, we seek to train an audio-visual
model to determine how well a paired video and music au-
dio clip “go together”, or correspond, where we learn this
correspondence directly from video data without requiring
any manual labeling. Once trained, the model can be used
to retrieve music that would pair well with a given input
video, and to retrieve video clips that would pair well with
a given input music track (see Fig. 1 for some examples).
Moreover, we seek to understand how a trained model as-
sociates the aforementioned musical genres and visual at-
tributes. As it is difficult to manually collect annotated data
at large scale describing the mood of video and musical
audio, we leverage self-supervision, i.e., learning from the
structure inherent to the data. Since we have access to large
video collections where music and video have already been
paired together by human creators, we leverage these data
to learn what makes for a good pairing. The model is pre-
sented with both the large collection paired by human cre-
ators and randomly paired audio/video tracks, and is trained
to distinguish between the two collections.

Previous approaches for this task typically rely on cor-
responding short video and music segments or aggregat-
ing features over multiple segments [51]. However, as the
correspondence between video and music is often an artis-
tic one, it often depends on long-range temporal context,
which is hard to capture in a short segment or by aggregat-
ing multiple segment features. For example, a given scene
in a movie conditions the “mood” of the music in the next
scene, and the proximity of the climax of a song conditions
how the video clip is edited [33,42,52]. Furthermore, these
prior approaches optimize metric losses that do not weight
hard examples during training [15], and leverage modality-
specific visual base features trained on a fixed-vocabulary

classification task [21] or audio base features that are not
specific for music [17]. Finally, while these approaches
evaluate retrieval accuracy, they do not study how a model
associates musical genre and visual attributes.

To address these challenges, we make the following con-
tributions. First, we show for the first time that temporal
context is important for this artistic correspondence learn-
ing task. We do so by leveraging a Transformer architec-
ture [63] to model long-range temporal context and em-
ploying other best practices for video-music retrieval (e.g.,
optimize a contrastive loss during training, build on strong
base features for each modality), leading to a dramatic 10×
improvement in retrieval accuracy. Second, we conduct a
detailed analysis of our model, shedding light onto what
visual attributes present in the video, such as scene type
and musical instruments, are used by the model to establish
artistic correspondence with different musical genres. This
analysis includes “attributes” whose over-simplistic defini-
tion or representation such as gender and race can lead to
potentially concerning biases. Third, we demonstrate the
usefulness of the learned audiovisual representation through
several applications, including novel ones such as combin-
ing a music query with visual attributes to retrieve music
of the same genre where the visual attributes are musically
represented in the audio signal. Finally, we study and dis-
cuss potential issues with our model related to bias. Since
our task is concerned with learning artistic correspondence
based on video-music pairings made by humans, rather
than audio-visual correspondence grounded in physics, it
presents new and important challenges and considerations
concerning bias, cultural awareness and appropriation.

2. Related Work
Music from video. Several frameworks have been pro-

posed to recommend music for a given video. However,
most of them have limitations that we address in this paper.
Heuristics-based approaches [38,57] only consider the gen-
eral mood of the music video and the user listening history.
The mood categories are annotated independently for the
two modalities, require manual annotations for every video
and audio segment, and are restricted to a limited number
of pre-defined discrete categories.

Cross-modal ranking losses for music and video [33, 42,
71] and learned audio features [51] have been used to obtain
state-of-the-art (SoA) results. We build on top of them with
three key contributions that lead to a tenfold improvement
in retrieval accuracy: we 1) propose a framework that mod-
els temporal context, 2) use a noise-contrastive loss [47],
which has been shown to be better suited to self-supervised
settings, and 3) use SoA feature extraction models.

Music synthesis, a task that is hard on its own, can also
be conditioned on a given input video. Approaches like gen-
erating MIDI files by looking at fingers playing [29,58], and
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directly generating sound (foley) using spectrograms [31]
have been proposed, but they can only exploit low-level sig-
nals that do not capture any artistic aspect of the video. Us-
ing pre-trained music generation models, conditioning them
on video [19], limits the audiovisual correspondence to a
few pre-determined parameters (e.g., energy, direction, and
slope), which cannot be learned in a self-supervised fashion.

Recent previous work [52] studied the relationship be-
tween some music traits (e.g., beats) and video editing op-
erations (e.g., cuts) by interviewing professional editors and
computing statistics on existing video data. They observe
that some of the correspondences require contextual infor-
mation; for example, some editors increase cutting video to
the beat close to a climax moment in the video, or choose
the video content to emphasize a musical climax. Such a
finding suggests that there could be value in modeling tem-
poral context for correspondence learning. Our paper shows
that context is important quantitatively, while also showing
how to best achieve this technically.

Long-form video has been modeled in the literature by
first computing representations at different temporal loca-
tions, and then combining them, either through averaging
or by learning a more complex combination of temporal
features [66–68]. We propose to model the long-term tem-
poral context in both the music and video modalities us-
ing Transformers [63], which use attention to model long
sequences, and have become the SoA method for many
NLP tasks in the past few years. Recently, they have been
adapted to other domains such as images [14,16,22,23,43],
videos [4,8,9,11,46,65,69], audio [32,64], multi-modality
inputs [28], and even modality-agnostic Transformers have
been proposed [4, 35], all with significant success. Video
Transformers take as inputs either pixels directly, or fea-
tures from pre-trained networks (e.g., [46]). We build on
top of the latter approach, and experiment with both con-
volutional [24,41,53] and Transformer-based [11] base fea-
tures, both for the visual and music modalities.

Audiovisual self-supervised learning has been studied
in a number of papers [3,5–7,48,60,70] that deal with phys-
ical events and sounds, such as the sound of dogs, cars, or
musical instruments, or the location of the sound sources.
However, these papers do not deal with the higher-level
artistic music-video correspondence.

Music-conditioned video editing has mostly focused
on synchronizing music with dancing videos. Approaches
range from video resampling to fit the music [20] to directly
generating pixels of people dancing, conditioned on static
images and a music track (e.g. [27,40,54]). The focus on the
dancing, while musically oriented, relies on low-level cor-
respondence between music beats and human movement.
This paper focuses on higher level correspondence, where
emotions, story, and context are key factors, and are not
considered in dancing videos.

Visual Transformer

t t

Music Transformer

...

Base visual 
features 
extractor

Base music
features 
extractor

...

Figure 2. Method. We split music videos into visual and musical
segments, pre-compute strong modality-specific base features, and
process them separately using contextual Transformers. We self-
supervise the model using an InfoNCE loss.

3. Music Video Pretraining over time (MVPt)
In the following sections we describe our proposed

method, Music Video Pretraining over time, or MVPt.
Inputs and outputs. During training, the inputs to the

framework are a collection of video and music pairs V (mu-
sic videos), where the music and video have been artisti-
cally paired by human creators. Each raw music video is
processed to obtain base representations for the visual track
xv and a music track xm. Additionally, each music video
is divided into L segments, of duration t. Correspondingly,
these segments consist of a visual segment and a music seg-
ment. The division into segments allows us to 1) process the
music video as a sequence, and thus exploit temporal con-
text, and 2) make separate predictions for every segment, at
a more fine-grained temporal resolution.

Our model takes xv and xm as inputs, and it outputs rep-
resentations yv = fv(x

v) and ym = fm(xm), respectively,
where f(.; θ) represent the functions whose parameters θ
are optimized. See Fig. 2 for an overview of the framework.

Cross-modal self-supervision. The music and visual
tracks in videos have a strong correspondence. The mu-
sic that plays on top of the video is artistically related to the
content of the video. We exploit this alignment as supervi-
sion: given a representation of a visual segment, our model
is trained to predict the representation of the corresponding
music segment, and vice versa.

The energy function we optimize computes a similarity
between the representations of video and music segments,
and encourages positive (corresponding) pairs to have a
high similarity value, and negative (non-corresponding)
pairs to have a low similarity value. In practice, this is im-
plemented using the InfoNCE contrastive loss [47]:

Lv→m = −
V∑
i

L∑
l

log exp
[
s(yv

i,l, y
m
i,l)/τ

]∑V
j

∑L
l exp

[
s(yv

i,l, y
m
j,l)/τ

]
 , (1)

where s(yv, ym) is the similarity function, which follow-
ing common practice we implement as the cosine similarity
s(yv, ym) = yvT ym

||yv||·||ym|| . τ is a hyperparameter that we set
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Table 1. Segment-level retrieval results for MusicVid-YT8M. Each one of our contributions improves the accuracy of the model.

Median Rank ↓ Recall ↑
V→M M→V V→M M→V Average

R@1 R@5 R@10 R@1 R@5 R@10 R@10

1 Baseline 349 277 0.55 2.16 3.83 0.74 2.79 4.83 4.33
2 + CLIP and DeepSim features 176 107 3.06 6.31 9.69 4.71 8.14 12.14 10.91
3 + Transformers (music time) 27 26 16.53 27.04 37.14 16.50 26.86 37.17 37.15
4 + Transformers (visual time) 24 24 17.23 27.54 38.64 17.07 26.85 38.43 38.54
5 + InfoNCE (MVPt, ours) 19 12 17.33 29.12 39.33 19.98 34.81 45.41 42.37
6 MVPt + X3D features 28 27 8.47 19.66 28.87 8.83 19.88 29.20 29.03
7 MVPt + TimeSformer features 40 36 6.81 16.87 25.83 7.36 17.51 26.34 26.09

8 MVPt + t = 4.5s 52 52 11.70 17.18 24.79 10.62 16.60 24.55 24.67
9 MVPt + t = 11s 7 6 28.97 47.71 65.82 29.37 47.52 65.32 65.57

Chance 1000 1000 0.05 0.25 0.50 0.05 0.25 0.50 0.50

Table 2. Track-level retrieval results for MusicVid-YT8M. Each one of our contributions improves the accuracy of the model.

Median Rank ↓ Recall ↑
V→M M→V V→M M→V Average

R@1 R@5 R@10 R@1 R@5 R@10 R@10

1 Baseline 234 98 0.76 3.42 5.90 2.57 8.61 13.81 9.86
2 + DeepSim audio features 142 94 1.41 5.23 9.01 2.29 8.55 13.80 11.41
3 + CLIP visual features 64 45 3.00 11.13 18.56 5.03 15.70 24.09 21.33
4 + Transformers w/o position 24 21 5.09 19.58 32.40 5.86 21.81 35.70 34.05
5 + Temporal embeddings 18 17 5.99 23.20 38.33 6.22 24.43 40.68 39.50
6 + InfoNCE (MVPt, ours) 13 13 6.09 24.91 41.89 6.36 25.73 42.65 42.27

Chance 1000 1000 0.05 0.25 0.50 0.05 0.25 0.50 0.50

to τ = 0.3, following [15]. Lm→v is defined symmetrically,
and the final loss is L = Lv→m + Lm→v , which is used to
train the model using stochastic gradient descent.

Contextual models fv and fm. Music and video are
not only signals with a strong temporal component, they are
also synchronized: changes in one modality are temporally
aligned with changes in the other modality. Therefore, tem-
poral context heavily impacts audiovisual correspondence,
and needs to be modeled accordingly. To do so, we use
a Transformer network [63], whose attention mechanism
computes how much each element of the sequence has to
attend to every other element in the sequence. We append a
[CLS] token to the input, to represent the full video.

Base features. In our experiments, we use deep pre-
computed base features that are obtained from the visual
and music raw signals. This allows us to 1) build upon state-
of-the-art models and leverage large-scale pretraining, and
2) lift the representation demands from the Transformer net-
works, allowing them to focus their representation power on
modeling the temporal context and the cross-modal align-
ment. Specifically, we use CLIP [53] for visual features and
disentangled music tagging embeddings (DeepSim) [41] for
music features. We temporally average the base features ex-
tracted for every segment of duration t.

Inference. At inference time, the model takes a video

as input, splits it into segments, and computes contextual-
ized features for all segments. For each visual segment, it
recommends a music segment that matches both the content
of the visual segment, as well as the contextual information
around it. The music segments are selected from a pool con-
taining all the available music segments in the (test) dataset,
according to the similarity metric used during training. The
music to video retrieval is done equivalently. See Appx. B
for implementation details.

4. Retrieval Experiments

We show retrieval experiments in two different settings.
In the first setting (“track level”), we retrieve an entire full-
length music audio track given a full-length query video
(and vice versa). This setting allows evaluating the quality
of the retrievals at the level of an entire (untrimmed) video.
In the second setting (“segment level”), we aim to evaluate
a finer-grained alignment between the two modalities where
we retrieve a short music segment given a short video seg-
ment. In both the segment- and track-level settings, the in-
puts to our model are the L = 30 segments comprising the
complete music video.

Given a query visual track (or music track), we compute
the feature distance to each music track (or video track) in a
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Table 3. Segment-level results for MovieClips. Our contributions are also useful in movies, and are not specific to music video clips.

Median Rank ↓ Recall ↑
V→M M→V V→M M→V Average

R@1 R@5 R@10 R@1 R@5 R@10 R@10

1 Baseline + DeepSim + CLIP 189 128 2.1 5.8 9.36 2.94 8.48 13.34 11.35
2 Baseline + DeepSim + CLIP + InfoNCE 74 58 2.53 7.95 14.99 4.05 12.93 23.85 19.42
3 MVPt (ours) 21 21 15.08 25.55 36.25 14.99 25.94 36.87 36.56
4 MVPt + X3D features 28 28 8.58 19.08 28.52 8.90 19.74 29.69 29.11

Chance 1000 1000 0.05 0.25 0.50 0.05 0.25 0.50 0.50
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Figure 3. Temporal context. The accuracy of the transformer de-
creases as we remove temporal context, indicating its importance.

pool of N target candidates not seen during model training,
where we set N = 2000 in all of the experiments following
the setup in Prétet et al. [51]. Only one of the candidates is
the correct pair (ground truth). We then sort the candidates
according to this distance value and use two different crite-
ria to evaluate the success of the retrieval. Recall@K (the
higher the better): we look at the K closest candidates and
consider the retrieval successful if the ground truth pair is
among those, and we report the percentage of successful re-
trievals in the test set. Median Rank (the lower the better):
we return the position of the ground truth pair in the sorted
list of candidates; we then report the median of the position
values across the test set.

Our approach is general and adaptable to any video data
that contains music. We evaluate our method on two dif-
ferent datasets. YT8M-MusicVideo: we leverage a set
of 100k videos from the YouTube8M dataset [2] that are
tagged as “music video”, with an average track duration
of 4 minutes. We use segments of duration t = 6.7s for
this dataset. MovieClips: we collect all videos from the
MovieClips YouTube channel [45]. From these videos, we
select the parts that contain music consecutively for at least
20s. We did so by training a PANN model [37] on Au-
dioSet [30] and used it to detect regions with music in
the data. The final number of selected video tracks in the
dataset is 20k and their average duration is 42 seconds, and
we use t = 3.3s. See Appx. A for more information about
the datasets’ statistics and creation process.

Baseline. We build our contributions on top of the prior

SoA method of Prétet et al. [51]. They propose a similar
framework, but train with a triplet loss instead of an In-
foNCE loss, use an MLP model instead of a Transformer,
and use ImageNet base features for video and OpenL3 [17]
base features for music. We refer to this model as “Base-
line”. The input to the baseline model is the average across
time of all the base features for the track level setting, and
the average of the base features over a single segment for
the segment-level setting. Our re-implementation of the
baseline yields a retrieval accuracy (9.86% track level Re-
call@10) on our test set, that is close to the results reported
by Prétet et al. (12.10%) for the MVD dataset [56], which
we did not have access to. MVD is a manually curated sub-
sample of the YT8M-MusicVideo dataset, so similar (same
parent dataset) but slightly better (curated for clean audio-
visual correspondences) results are to be expected.

Ablations. In our results, we show how modifying each
of the model components contributes to an increase in re-
trieval accuracy. Note that 1) the MLP baseline has access
to the same set of base features for each modality, but the
features are aggregated via an average-pool operation be-
fore being passed as input to the MLP, and 2) in our Trans-
former model we match the number of model parameters
(5.5M) to the baseline MLP, so the model capacity is not an
advantage of our method. When using Transformers, a tem-
poral encoding is added to each segment input. This setup
allows the Transformer to exploit temporal information on
top of the contextual one. In the segment-level setting, us-
ing temporal encodings for both modalities can result in a
learning shortcut, where the model learns to associate visual
segments to music segments based on their position in the
sequence. Therefore, in the segment-level experiments, we
disable the temporal embeddings for one of either the visual
or the music modality. We report results for both options,
indicating which modality keeps the temporal encoding as
“music time” or “visual time”. Note that the Transformer is
still capable of using contextual information.

Results. We show segment-level results for YT8M-
MusicVideo and MovieClips in Tab. 1 and 3, respectively,
and track-level results for the YT8m-MusicVideo dataset in
Tab. 2. The results show how each one of our contribu-
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Figure 4. Gender and race vs music genre. For a given music
segment with a genre annotation (not used during training), we re-
trieve the closest face image from the FairFace [36] dataset. We
plot the gender and race of the retrieved image, normalized for
every genre (each column adds up to 100). See Section 6 for dis-
cussion about biases.

tions improves the performance of the model. Specifically,
the modeling of temporal context via a Transformer proves
critical (rows 2 and 3 in Tab. 1 and row 4 in Tab. 2). Addi-
tionally, the results show that representing temporal infor-
mation (on top of context) in the visual track (“visual time”
in Tab. 1, row 4) is just slightly more beneficial than mod-
eling time in the music track (“music time”, row 3).

Also, as shown in both Tab. 1 (rows 6 and 7) and 3
(row 4), using video-trained base features like X3D [25] or
TimeSformer [10] base features, while being better than the
baseline ones, result in worse performance than using CLIP
base features (which are trained on images). We argue that
the reason for this result is that CLIP has been trained to
align images with natural language sentences with a large
vocabulary on a larger and more generic corpus of data
than the ImageNet, X3D and TimeSformer models, that
have been trained on fixed-vocabulary classification tasks.
Finally, using longer segments improves the segment-level
retrieval, at the expense of having a less fine-grained tem-
poral representation (row 9 in Tab. 1).

To study the importance of temporal context, we evalu-
ate our model when the input sequences are shorter, given
the same segment length t. As seen in Figure 3, the model’s
accuracy decreases as the sequence length decreases, which
demonstrates the importance of temporal context. In com-
parison, the MLP version is not even capable of exploiting
long temporal contexts in the first place.

Finally, to show that our approach captures correspon-
dence from an artistic level, we perform human experi-
ments: given a query video (or music) segment, we ask
humans to choose between a music (or video) segment re-
trieved by our model, and another one retrieved by the base-
line. 71.4% of responses prefer our method over the base-
line, validating our claim (p-value < 0.01) that our model
is preferable from an artistic viewpoint. More details are
provided in Appx. C.2.

Attention
weights

Attention 
weights

time

Figure 5. Visualization of attention. We show the aggregation
of the attention weights for every input segment, in two different
examples (that we show partially). In every case, we highlight
in red the segments that contain people singing or playing instru-
ments. We notice that these correspond to the segments with high
attention values, which implies the model prefers to use this infor-
mation over less music-related moments.

5. Analysis and Applications
In this section, we probe what our music-video model

has learned, showing that it learns to use a wide range of
signals, from relatively low-level ones (like music tempo) to
high-level ones (like music genre). Additionally, we qual-
itatively evaluate the retrieval soundness of our model and
show that both retrieval directions return samples that match
the query at a remarkable level, to the point that, ignoring
lip-syncing, usually look and sound correct to the human
eye (and ear). Finally, we show how we can condition the
retrieval results to return samples that contain specific at-
tributes, and visualize the attention in our model.

5.1. Quantitative Analysis

We consider eight audio, visual, or audiovisual at-
tributes: color brightness and hue, tempo, background
scene, musical instruments, age, race, and gender. We in-
clude the latter two, in particular, to allow us to study ques-
tions related to bias. We adopt the definitions for race
and gender from work targeting fairness in machine learn-
ing [36]. We study how each one of them influences our
model’s predictions. We perform all the analyses on the
YT8M-MusicVideo dataset. See Appx. C for more details.

Color brightness and hue. For every frame in the
test set, we modify its brightness by a factor of r. Then,
we perform retrieval as explained in Section 4 and com-
pute the average Recall@10 for different values of r. Sur-
prisingly, the Recall@10 accuracy only decreases 1 point
(42.37%→41.24%) for a brightness variation of up to 30%
(r ∈ {0.7, 1.3}), so brightness does not play an important
role in our model’s accuracy, suggesting it may be using
higher-level visual clues, which we analyze next. Likewise,
we analyze the importance of hue: while more significant
than brightness, hue is not crucial to model performance.

Tempo. We time-stretch the query music signal by a
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factor of r to modify its tempo (i.e., make it slower or
faster). We then evaluate retrieval and compute the aver-
age Recall@10 for different values of r. When modifying
the tempo at a rate of 30% (r ∈ {0.7, 1.3}), Recall@10 ac-
curacy drops more than 5 points (42.37%→36.96%). We
show the curves of Recall@10 as a function of r for both
brightness, hue, and tempo in Appx. C.3.

The subsequent attributes are all evaluated in the same
way. We select an image dataset that contains annota-
tions about that attribute and is balanced across the attribute
classes. We compute representations for all the images in
the dataset using the visual branch of our model and use
them as target candidates. Note that our base CLIP features
operate at the image level; we pass in a single base CLIP
feature for the image to our Transformer model. Then, we
use the music segments in our test set as queries and return
the top-1 retrieved image from the balanced dataset. Finally,
we plot a matrix of (music genre)-(visual attribute), normal-
ized for every music genre. The music genre annotations,
collected using musicnn [50], are only used for analysis,
not during training. Note that because the target retrieval
(image) dataset is balanced, the preference for each one of
the attribute values is fully determined by the model.

Gender. We use the FairFace dataset [36], which con-
tains images of faces, categorized by genre, race, and age.
We show results in Figure 4 and discuss potential bias in
Section 6. It is worth noting that a bias exists, and it is
coherent with what we would expect in the real world—
like female images being associated with the genre “female
vocalists”—and with the bias in the training data—like male
images being associated with “hip-hop”, “hard rock”, or
“heavy metal”. Less than half of the genres show a strong
preference for one of the genders, meaning that the model
often does not rely on this attribute to reason about genre.

Race. Using the FairFace dataset, we repeat the previous
analysis and show results in Figure 4. As expected, given
the observed bias in our training data (Appx. A.1), “hip-
hop” is mostly associated with black people, while “coun-
try” is mostly associated with white people. We attribute
some unexpected associations to the lack of representation
of certain races in our training dataset.

Age. We found age is not as important for the model as
other attributes, so we moved the analysis to Appx. C.3.

Visual Scene. We use the Places dataset [72], which
contains images of 205 scene categories. We observe that
the scene attribute is also correlated with music genre, albeit
less than the previous attributes. For reference, we list the
most and least commonly retrieved scenes1 and show the
genre→scene table in Appx. C.3.

1Most commonly retrieved: track outdoor, runway, stage indoor,
music-studio, boxing ring, baseball field, stadium baseball, martial arts
gym, shoe shop, ballroom; Least commonly retrieved: canyon, residen-
tial neighborhood, snowfield, arch, attic, desert vegetation, crevasse, fire
escape, mausoleum, water tower

Query Video Retrieved Music

Mellow rock music

Audio of kids singing a lively song 
with harmonicas and banjos

Heavy metal music, with a strong 
component of drums and guitars

Indie music

Figure 6. We test the YT8M-MusicVideo model on a set of ca-
sually captured videos outside of the dataset, and show how our
model generalizes to scenes that do not naturally contain music.

Query Retrieved

Suspenful music, very 
low volume

Very soft and slow piano 
music in a major tone, 
happy/romantic mood

Figure 7. Retrieval in the MovieClips dataset. We show video-
to-music retrieval examples, and show how our model exploits
emotion to make the correspondence.

Visual Objects (Musical Instruments). We use instru-
ment images from the Open Images Dataset [39], and pro-
ceed as in the previous attribute studies. As exemplified by
the attribute conditioning (description below) in Figure 8a)
and 8d), the model learns a strong and useful representation
for some instruments (e.g., guitar, drums) in both the vi-
sual and musical modalities. The genre→instrument table,
shown in Appx. C.3, shows a clear preference from most
music genres to retrieve guitar images, especially for hard
rock, heavy metal, metal, and punk genres. This is to be ex-
pected because 1) guitars are the most common instrument
in these genres and 2) the video clips associated with these
genres consist mainly of people playing the song, as op-
posed to other genres where the content is more cinematic.

5.2. Qualitative Analysis and Applications

Retrieval examples. The best way to show the quality of
our model is to put it to the test on real examples. We eval-
uate the model on visual and music segments obtained from
YT8M-MusicVideo, shown in Figure 1, and MovieClips,
in Figure 7. In Figure 6, we test the YT8M-MusicVideo-
trained model on a set of casually captured videos outside
of the YT8M-MusicVideo dataset and show how our model
can generalize to scenes that do not naturally contain music.
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Input Music

Heavy metal music, with a 
strong component of 

electrical guitar playing at a 
fast tempo, and male 

singer growling

z

+ Heavy metal music, with a 
strong component of 

electrical guitar playing at a 
fast tempo, and female 

singer growling

Output MusicMale Images Female ImagesInput Music

Female vocalist 
singing on top of a 

piano base

Images of guitars

Female vocalist 
singing on top of a 

guitar base

a)

d)b)

Images of drums Musics of guitars Output Video

c)
Output Music

+

+
Input Music Non-English Music Output Music

Rap music in 
English

Rap music in 
German

Output Music

+ Pop-rock music, with 
guitars and drums 
playing. On top of 
them, a man sings

Figure 8. Attribute conditioning. Given data representing an attribute, like a set of guitar images to represent the “instrument” attribute,
we can condition the retrieval of our model. Our model has not been trained with any attribute annotation. This conditioning is cross-modal,
meaning that visual attributes can condition music outputs, and vice versa. Note that this figure is not a diagram of the procedure; we are
showing actual examples. These operations can be consistently replicated in other examples, across musical genres. The inputs, output,
and any of the conditioning attributes can be defined in any of the modalities.

Attribute conditioning. Knowing that our model cap-
tures a range of audiovisual attributes, we propose using
their representations to condition the retrieval process. In
order to find a representation ya of a specific attribute (e.g.,
guitar), we use an auxiliary dataset with labeled images
and/or audios representing that attribute (e.g., images of
guitars), compute their representations, and average them
to obtain the representation of the attribute. We implement
the conditioning by adding the representation y of the query
segment to the attribute one: yconditioned = y + ya. If we
instead want to remove the attribute, we use a subtraction:
yconditioned = y − ya. We can apply these operations mul-
tiple times, for attributes defined using either of the modal-
ities. To deal with the potential out-of-distribution prob-
lem when conditioning on data from a different domain, we
found that better results are obtained when instead of ya we
use y′a = ya −

∑
b∈D yb, where D is the dataset the condi-

tioning images or music tracks were obtained from (e.g., a
dataset with images of instruments).

Overall, this procedure gives rise to a variety of appli-
cations, ranging from video editing—where we want spe-
cific attributes to be present—to music or video search. We
showcase this variety of approaches with some examples in
Figure 8. For instance, given an input music track not con-
taining an instrument, we can retrieve a similar music track
that contains that instrument. This instrument can be de-
fined through data visually, as in example a), or via music,
as in d). We can also condition on language. Specifically,
in example b) we list a set of music tracks with non-English
vocals, and we use them to retrieve music that is similar in
style to a query input, but in a non-English language. Inter-
estingly, the model creates a good representation of English
(and as a consequence, non-English), but it is less consis-
tent when representing other languages, probably due to the
high proportion of English music tracks in the dataset.

Attention. We visualize attention results from the visual
Transformer fv in Figure 5. For every example, we plot the
attention weights at every video segment (represented by an
image frame), computed using attention rollout [1]. These
visualizations show that the model pays more attention to
visual segments that contain people explicitly playing in-
struments or singing, over more cinematic content.

6. Discussion and Limitations
The correspondence between music and video is an artis-

tic one. Art, and as an extension culture, is intrinsically
tied to concepts such as language, nationality, gender, and
race. Computer vision unfortunately still does not have the
tools to deal with them in a satisfactory way. The result is
a framework that resorts to bias and all the known negative
effects bias can have in real-world applications [34, 44, 59].

Unlike other recognition applications [18], however, in
the context of artistic correspondence a framework that is
invariant to these factors could lead to the erasure of cul-
tural traits or to cultural appropriation. On the other hand,
explicitly magnifying the ties between music and culture—
as often done by the music industry [55]—can exacerbate
certain biases or associations.

In this paper, we adopt a descriptive approach and
present the correspondences the model is learning. We con-
sider this paper an invitation for further study and discus-
sion of the interplay between culture and bias in the con-
text of artistic correspondence learning and the challenges
it presents. These advances will require collaboration be-
tween computer science and sociology. The complex ques-
tion of how to appropriately design such a system for real-
world applications remains an open question.

Finally, an explicit definition and precise evaluation of
such concepts is lacking in our field and in this paper, and
is an interesting avenue for future work.

10571



References
[1] Samira Abnar and Willem Zuidema. Quantifying attention

flow in transformers. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics,
pages 4190–4197, Online, July 2020. Association for Com-
putational Linguistics. 8

[2] Sami Abu-El-Haija, Nisarg Kothari, Joonseok Lee, Paul
Natsev, George Toderici, Balakrishnan Varadarajan, and
Sudheendra Vijayanarasimhan. Youtube-8m: A large-
scale video classification benchmark. arXiv preprint
arXiv:1609.08675, 2016. 5

[3] Triantafyllos Afouras, Andrew Owens, Joon Son Chung, and
Andrew Zisserman. Self-supervised learning of audio-visual
objects from video. In European Conference on Computer
Vision, 2020. 3

[4] Hassan Akbari, Linagzhe Yuan, Rui Qian, Wei-Hong
Chuang, Shih-Fu Chang, Yin Cui, and Boqing Gong.
VATT: Transformers for Multimodal Self-Supervised Learn-
ing from Raw Video, Audio and Text. arXiv:2104.11178 [cs,
eess], Apr. 2021. arXiv: 2104.11178. 3

[5] Jean-Baptiste Alayrac, Adrià Recasens, Rosalia Schneider,
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[52] Laure Prétet, Gaël Richard, and Geoffroy Peeters. “Is there
a language of music-video clips”? A qualitative and quanti-
tative study. In ISMIR (International Society for Music In-
formation Retrieval), 2021. 2, 3

[53] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning Transferable Visual
Models From Natural Language Supervision (CLIP). Tech-
nical report, OpenAI, 2020. 3, 4

[54] Xuanchi Ren, Haoran Li, Zijian Huang, and Qifeng Chen.
Self-supervised dance video synthesis conditioned on music.
In ACM MM, 2020. 3

[55] William G. Roy. “race records” and “hillbilly music”: insti-
tutional origins of racial categories in the american commer-
cial recording industry. Poetics, 32(3):265–279, 2004. Music
in Society: The Sociological Agenda. 8

[56] Alexander Schindler and Andreas Rauber. An audio-visual
approach to music genre classification through affective
color features. In Proceedings of the 37th European Con-
ference on Information Retrieval (ECIR’15), March 2015. 5

[57] Rajiv Ratn Shah, Yi Yu, and Roger Zimmermann. Advi-
sor: Personalized video soundtrack recommendation by late
fusion with heuristic rankings. In Proceedings of the 22nd
ACM international conference on Multimedia, pages 607–
616, 2014. 2

[58] Kun Su, Xiulong Liu, and Eli Shlizerman. Audeo: Audio
Generation for a Silent Performance Video. Neural Informa-
tion Processing Systems (NeurIPS), June 2020. 2

[59] Harini Suresh and John V Guttag. A framework for un-
derstanding unintended consequences of machine learning.
arXiv preprint arXiv:1901.10002, 2, 2019. 8

[60] Dı́dac Surı́s, Amanda Duarte, Amaia Salvador, Jordi Torres,
and Xavier Giró i Nieto. Cross-modal embeddings for video
and audio retrieval. In European Conference on Computer
Vision (ECCV) Workshops, pages 711–716, 2018. 3

[61] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Herve Jegou. Training
data-efficient image transformers & distillation through at-
tention. In International Conference on Machine Learning,
volume 139, pages 10347–10357, July 2021. 2

[62] Laurens Van der Maaten and Geoffrey Hinton. Visualiz-
ing data using t-sne. Journal of machine learning research,
9(11), 2008. 3, 5

[63] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Neural Information
Processing Systems (NeurIPS), 2017. 2, 3, 4, 1

[64] Prateek Verma and Jonathan Berger. Audio Transformers:
Transformer Architectures For Large Scale Audio Under-
standing. Adieu Convolutions. In IEEE Workshop on Appli-
cations of Signal Processing to Audio and Acoustic, October
17-20 2021. 3

[65] Jue Wang, Gedas Bertasius, Du Tran, and Lorenzo Torre-
sani. Long-Short Temporal Contrastive Learning of Video
Transformers. arXiv:2106.09212 [cs], June 2021. arXiv:
2106.09212. 3

[66] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua
Lin, Xiaoou Tang, and Luc Val Gool. Temporal segment
networks: Towards good practices for deep action recogni-
tion. In European Conference on Computer Vision (ECCV),
2016. 3

[67] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-
ing He. Non-local neural networks. IEEE/CVF Computer
Vision and Pattern Recognition (CVPR), 2018. 3

[68] Chao-Yuan Wu, Christoph Feichtenhofer, Haoqi Fan, Kaim-
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