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Abstract

Quantitative evaluation has increased dramatically

among recent video inpainting work, but the video and mask

content used to gauge performance has received relatively

little attention. Although attributes such as camera and

background scene motion inherently change the difficulty

of the task and affect methods differently, existing evalu-

ation schemes fail to control for them, thereby providing

minimal insight into inpainting failure modes. To address

this gap, we propose the Diagnostic Evaluation of Video

Inpainting on Landscapes (DEVIL) benchmark, which con-

sists of two contributions: (i) a novel dataset of videos and

masks labeled according to several key inpainting failure

modes, and (ii) an evaluation scheme that samples slices

of the dataset characterized by a fixed content attribute,

and scores performance on each slice according to recon-

struction, realism, and temporal consistency quality. By re-

vealing systematic changes in performance induced by par-

ticular characteristics of the input content, our challeng-

ing benchmark enables more insightful analysis into video

inpainting methods and serves as an invaluable diagnos-

tic tool for the field. Our code and data are available at

github.com/MichiganCOG/devil.

1. Introduction

Video inpainting, i.e., the task of filling in missing pix-

els in a video with plausible values, pushes the boundaries

of modern video editing techniques and enables remarkable

applications for film and social media such as watermark

and foreground object removal [1, 29]. Compared to image

inpainting, video inpainting is more challenging due to the

additional temporal dimension, which not only increases the

complexity of the solution space, but also places additional

constraints on what constitutes a high-quality prediction—

in particular, predictions must be coherent in terms of both

spatial structure and motion. Despite the difficulty of the

task, modern results have become quite compelling thanks

to the increasing amount of attention that the problem has

received as of late [4, 9, 16, 20, 25, 28, 30, 31].

Quantitative evaluation has increased dramatically

among recent video inpainting work; however, existing

evaluation schemes underemphasize the importance of the

contents of the videos and masks used to gauge perfor-

mance. Typically, video inpainting is evaluated as a recon-

struction problem: performance is quantified by masking

out arbitrary regions from the video (i.e., “corrupting” it)

and scoring the model’s ability to recover the masked-out

values [4, 18, 28]. However, the difficulty of reconstruction

depends on the mask’s shape and motion, as well as the con-

tent present in the “uncorrupted” video. For example, given

a static mask, it is harder to inpaint a video captured by a

fixed camera than one captured by a moving camera. In the

former case, the region beneath the mask is never visible, so

the model effectively needs to “hallucinate” its appearance;

in the latter case, the model could transfer appearance infor-

mation from other frames, a strategy that lies at the heart of

many video inpainting approaches [14, 18, 20, 26].

The difficulty of video inpainting is inherently tied to the

content of the videos and masks being inpainted; with this

principle in mind, we push for more emphasis on content-

informed diagnostic evaluation, which can help identify the

strengths and weaknesses of modern inpainting methods

and improve ablative analysis. To date, the videos used for

evaluation have been underappreciated in this regard, hav-

ing been sourced from datasets for other tasks (e.g., facial

analysis [22, 23] and object localization [21, 27]) rather than

selected to represent important inpainting scenarios. In par-

ticular, they contain biases that are essential for the original

task, but hinder fine-grained analysis for video inpainting.

For example, object localization videos consistently include

prominent, moving foreground objects; as a result, stan-

dard inpainting evaluation schemes inevitably underrepre-

sent performance on foreground-free videos. Furthermore,

other types of motion, e.g., camera and background scene

motion, noticeably impact video inpainting performance,

but are not controlled for in standard datasets.

In this work, we propose the Diagnostic Evaluation of

Video Inpainting on Landscapes (DEVIL) benchmark. It
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Figure 1: A visual overview of our DEVIL dataset. (a) The content attributes that characterize our dataset and are used

to create dataset slices for evaluation (i.e., sets of video-mask pairs with a fixed attribute). We label low/high background

scene motion or camera motion for videos exhibiting these attribute settings beyond a certain threshold (Section 4.2). For

occlusion masks, we construct sampling parameters that capture the desired attribute settings and use them to render masks

(Section 4.3). (b) Videos, masks, and annotations from our dataset. A given video or mask may have multiple attribute labels

or none; labels for the same attribute are mutually exclusive (e.g., a mask cannot have both low and high FG displacement).

is composed of two parts—the DEVIL dataset and the

DEVIL evaluation scheme—which combine to enable a

finer-grained analysis than has been possible in prior work.

Such granularity is achieved through content attributes, i.e.,

properties of source videos or masks that characterize key

failure modes by affecting how easily video inpainting mod-

els can borrow appearance information from nearby frames.

Specifically, the DEVIL dataset contains source videos la-

beled with low/high camera and background scene motion

attributes, and occlusion masks labeled with low/high fore-

ground displacement, pose motion, and size attributes (Fig-

ure 1). Meanwhile, the DEVIL evaluation scheme con-

structs several slices of the DEVIL dataset—sets of video-

mask pairs in which exactly one content attribute is kept

fixed—and summarizes inpainting quality through metrics

that capture reconstruction performance, realism, and tem-

poral consistency (Section 5.2). By controlling for con-

tent attributes and summarizing inpainting quality per at-

tribute across several metrics, our DEVIL benchmark pro-

vides valuable insight into the failure modes of a given in-

painting model and how mistakes manifest in the output.

We use our novel benchmark to analyze the strengths

and weaknesses of seven state-of-the-art video inpainting

methods. By quantifying their inpainting quality on ten

DEVIL dataset slices under five evaluation metrics, we pro-

vide the most comprehensive and fine-grained evaluation of

modern video inpainting methods to our knowledge. Our

head-to-head, multi-faceted comparisons allow us to draw

several important conclusions. For example, we show that

video inpainting methods in which time and optical flow

are carefully modeled consistently achieve the best perfor-

mance across several types of input data. We also show that

the relative rankings between methods are highly sensitive

to metrics as well as source video and mask content, high-

lighting the need for comprehensive evaluation. Finally, we

show that controlling for source video and mask attributes

reveals insightful failure modes which can be traced back to

the design of the inpainting method in question.

Our comprehensive diagnostic benchmark enables in-

sightful analysis and serves as an invaluable tool for video

inpainting research. To summarize, we provide the follow-

ing contributions:

• We present the first diagnostic dataset specifically de-

signed for video inpainting to our knowledge, which in-

cludes annotations for content-based attributes that rep-

resent numerous inpainting failure modes;

• We introduce a novel and comprehensive evaluation

scheme that spans ten dataset slices and five evaluation

metrics of video inpainting quality;

• We analyze seven state-of-the-art algorithms on our

benchmark, providing the most comprehensive quantita-

tive evaluation of video inpainting methods to date; and

• We identify systematic errors among video inpainting

methods and highlight directions for future work.

Our benchmark is available at https://github.com/

MichiganCOG/devil.

2. Related Work

2.1. Methods

Most video inpainting algorithms borrow visual appear-

ance information from known parts of the video to fill in

unknown parts. For example, alignment-based methods

compute local or global alignments between neighboring

frames, and then propagate pixels across aligned locations
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(alignments are found either through classical feature cor-

respondences [7, 10] or deep neural networks [18, 20, 30]).

Patch-borrowing methods view videos as spatiotemporal

tensors and iteratively paste cuboids or voxels from the

known region into the unknown region to maximize global

coherence [11, 19, 26]. Flow-guided methods propagate vi-

sual information along the optical flows estimated between

consecutive frames, where the flow for unknown regions is

computed iteratively or hierarchically based on known re-

gions to improve performance [9, 14, 16, 28].

Although explicit appearance-borrowing is not leveraged

for some methods, e.g., autoencoder-based methods [4, 5,

25, 31], we use its prevalence to guide our experimental

design. Specifically, we control for content-based attributes

that affect the difficulty of borrowing relevant appearance

information from other frames, which is possible through

our varied data and comprehensive annotations.

2.2. Datasets

The source video datasets used in early video inpaint-

ing work were small and oriented around qualitative anal-

ysis [11, 19, 26]; as a result, it was difficult to compare

the performance of early methods across a wide variety of

scenarios. Recent video inpainting methods have instead

used large-scale datasets—ranging in structure from aligned

face videos [22] and driving videos [6] to unconstrained

videos from the Internet [21, 27]—to enable more com-

prehensive analysis. The foreground object segmentation

datasets DAVIS [21] and YouTube-VOS [27] have been par-

ticularly popular since their annotations can be used to re-

move the object from the video. Unlike most prior work,

we collect novel videos specifically for the inpainting task,

emphasizing attributes that affect how well video inpainting

models can transfer appearance information across frames.

We also use videos of background scenes instead of videos

with foreground objects, which enables us to isolate failure

modes that are unrelated to foreground motion.

In terms of occlusion masks, static rectangles [25, 28]

or foreground masks from other videos [16, 18, 20, 31] are

commonly used. Procedural mask generation has also been

explored; for instance, Chang et al. [4, 5] render several

strokes on a canvas, where each stroke has several con-

trol points that randomly move with a certain probability.

We extend their work by adding physical constraints for

finer control over mask size and motion. Furthermore, we

choose our mask sampling parameters based on attributes

that directly influence how easily video inpainting models

can transfer appearance information across frames.

3. Overview of the DEVIL Benchmark

Before introducing the DEVIL benchmark for video

inpainting, we first define the task itself. Let V ∈
{0, . . . , 255}H×W×3×T be an input RGB video with T

frames and a resolution of W × H . V contains a place-

holder value for missing voxels (e.g., 0) whose locations are

indicated by an input occlusion mask M ∈ {0, 1}H×W×T .

Video inpainting aims to produce an inpainted version of V ,

denoted V ∗, with the following characteristics:

• Reconstruction performance: V ∗ is a faithful recon-

struction of V gt in the scenario where V is a “cor-

rupted” video derived from some uncorrupted ground

truth source video V gt.

• Realism: V ∗ is indistinguishable from a real video.

• Temporal consistency: V ∗ exhibits minimal temporal

flickering artifacts.

These criteria are defined more rigorously in Section 5.2.

Our DEVIL benchmark is a collection of tools designed

to provide a detailed understanding of video inpainting

methods and their behavior across a variety of input data.

There are two major components of our benchmark: (i) the

DEVIL dataset, which contains source videos and occlusion

masks that have been specially curated, rendered, and anno-

tated to identify specific failure modes in video inpainting;

and (ii) the DEVIL evaluation scheme, which reports a set

of quality-based metrics on several “slices” of the DEVIL

dataset, each of which represents a particular failure mode.

The DEVIL dataset captures content complexity along

five video-level content attributes, i.e., properties that af-

fect the difficulty of inpainting a given video-mask pair

by influencing the relevance and availability of appearance

information from nearby frames. Specifically, it contains

source videos with low and high camera and background

(BG) scene motion, and occlusion masks with low and high

foreground (FG) displacement, pose motion, and size (Fig-

ure 1a).1 Furthermore, videos and masks are annotated with

these attributes and their settings (low or high) to enable tar-

geted evaluation that controls for their presence. Section 4

rigorously defines these attributes and describes our process

for collecting videos, masks, and attribute annotations.

Meanwhile, our DEVIL evaluation scheme gauges in-

painting quality under multiple slices of our dataset, i.e.,

sets of video-mask pairs characterized by a certain attribute

setting. Within each slice, exactly one dataset attribute

is kept fixed while the others change freely. By measur-

ing inpainting quality across several slices and metrics, our

benchmark provides valuable information on when and how

models fail. In Section 5, we describe our DEVIL dataset

slices and evaluation metrics in further detail.

4. The DEVIL Dataset

4.1. Collecting Source Videos for the DEVIL

In the context of quantitative evaluation, video inpainting

is generally posed as a reconstruction problem [4, 18, 28];

1The term “foreground” (FG) comes from FG object removal applications.
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thus, it is useful to evaluate on videos of background scenes

without foreground objects, where the complete ground-

truth background appearance is known (and foreground be-

havior can be controlled explicitly via occlusion masks).

Data from other video understanding tasks do not satisfy

this criterion, since they generally feature foreground ob-

jects which ground the original task. This is especially true

for the two most popular datasets used in video inpaint-

ing work, DAVIS [21] and YouTube-VOS [27], which were

originally collected for foreground object segmentation.

For this reason, we collect our own videos of

background-only scenes, similar to Zhang et al. [31]. In

particular, we target scenic landscape videos in which peo-

ple have filmed natural outdoor locations from both casual

and cinematic viewpoints. Because the primary subject of

these videos is the background, they are substantially less

likely to contain prominent foreground objects, and are thus

good targets for curating our source video collection.

To collect scenic landscape videos, we first search

Flickr [15] using the query term “scenic”, and retain videos

from a fixed set of users who have primarily uploaded high-

quality, non-post-processed content between 2017-2019.

Then, we apply a combination of automated and manual

filtering to remove videos with foreground objects or shot

transitions. Finally, we split the filtered videos into clips

containing between 45-90 frames, constituting a total of

1,250 clips (examples are shown in Figure 1). Additional

details are provided in the supplementary materials.

4.2. Annotating DEVIL Source Video Attributes

For our DEVIL source videos, we annotate two types

of content attributes: camera motion and BG scene motion

(Figure 1a). Camera motion encompasses frame-to-frame

differences that are induced by changes in the camera’s pose

relative to the scene (i.e., camera extrinsics); BG scene mo-

tion refers to frame-to-frame differences that result from

changes in the scene itself, such as running bodies of water

or trees that sway due to strong winds (i.e., motion among

“stuff” classes in the object detection sense [8]).

We select these attributes for two reasons. First, they

represent two sources of complex motion with different

low-level characteristics that video inpainting models must

replicate well to produce convincing predictions. Second,

they impact video inpainting models by influencing the

similarity and relevance of appearance information across

frames. For instance, high camera motion can reveal or ob-

scure parts of the scene, or otherwise change the scene’s

appearance due to perspective; high BG scene motion con-

tinuously changes the frame-wise appearance of textures.

These attributes are difficult to quantify concretely based

on RGB video frames alone; however, it is possible to dis-

tinguish extreme examples of low and high motion by visual

inspection and proxy estimates. Thus, for a given attribute,

we label videos as containing either low or high motion, but

only for a small percentage of videos lying at the extreme

ends (videos not labeled for the given attribute may still ap-

pear in slices that do not control for it). Not only does this

reduce label ambiguity, it also magnifies any performance

differences caused by changing a given attribute between

low and high settings, thereby highlighting failure modes.

To annotate camera motion, we use classical affine align-

ment techniques and measure the amount of invalid pixels

introduced via warping as a proxy for camera motion; we

then threshold the result on either side to produce low and

high motion labels. As for BG scene motion, we manually

assign low and high labels based on the percentage of the

field of view that contains large running bodies of water.

Further details are provided in the supplementary materials.

4.3. DEVIL Masks and Attributes

For occlusion masks, we consider three attributes that

influence the availability of relevant appearance information

in nearby frames (Figure 1a):

• FG displacement: How much the mask’s centroid

moves over time with respect to the field of view;

• FG pose motion: How much the shape of the mask

changes over time with respect to the field of view (inde-

pendent of the displacement of its centroid); and

• FG size: The average number of pixels that are occupied

by the mask per frame.

Masks with high FG displacement or pose motion reveal

complementary parts of the scene over time, whereas FG

size explicitly determines how much appearance informa-

tion can be relied on as ground truth.

To generate masks with low and high settings for these

attributes, we adapt the procedural blob generation strategy

by Chang et al. [4]. In particular, we adjust their stroke

width, velocity, and stochasticity parameters to correspond

to low or high FG displacement, pose motion, and size. For

more details on the mask generation process, including our

extensions to enable finer control over individual blobs, re-

fer to the supplementary materials.

5. The DEVIL Evaluation

5.1. Slices of the DEVIL Dataset

The naı̈ve way to evaluate on the DEVIL dataset would

be to randomly sample a test set of paired source videos

and occlusion masks without accounting for their attributes;

however, this provides little insight into the failure modes

that cause prediction errors for a given method. Instead, we

control for one attribute at a time to isolate its impact on

the prediction. Specifically, for each attribute setting, we

construct slices of the DEVIL dataset, i.e., pre-determined

sets of video-mask pairs where the given attribute is fixed

as low or high and the others are uncontrolled. By reporting
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(a) Ground truth (b) VINet (c) CPNet

Figure 2: High temporal consistency may indicate overly

blurry predictions if reconstruction or realism performance

is low (as shown in the results of VINet and CPNet). The

area to be inpainted is outlined in yellow in (a).

performance on each slice separately, our benchmark can

highlight failure modes with finer granularity.

We construct the DEVIL dataset slices as follows. Given

the desired attribute setting (e.g., low camera motion), we

randomly sample either 150 source videos or masks with

that setting (recall that an attribute applies exclusively to ei-

ther the source video or the mask modality). Then, within

the other modality, we sample 150 instances from all avail-

able DEVIL instances (e.g., for the low camera motion

slice, we sample all rendered DEVIL masks). Finally, we

pair together the selected source videos and masks.

5.2. Evaluation Metrics

We evaluate on composited inpainting results (i.e., the

known region is composited over the inpainting predic-

tion). Inputs are resized to 832×480 resolution; for meth-

ods that cannot consume this resolution, we apply mirror

padding to both the source video and the mask, run the

method, and crop out padded regions from the result for

fairness. We quantify performance along three axes of

inpainting quality—reconstruction, realism, and temporal

consistency—as described in the remainder of this section.

Reconstruction captures the extent to which a video in-

painting method predicts the original content in a given ref-

erence video (i.e., the version of the video without the oc-

clusion mask). We report two reconstruction metrics: the

Learned Perceptual Image Patch Similarity (LPIPS) met-

ric [32] with a pre-trained AlexNet backbone [17], and

our own video-based variant called the Perceptual Video

Clip Similarity (PVCS) metric with a pre-trained I3D back-

bone [3]. These metrics measure the distance between cor-

responding features of a deep neural network. LPIPS is

computed between corresponding frames of the reference

and inpainted video, whereas PVCS is computed between

corresponding 10-frame clips in a sliding window.

Realism indicates how well the inpainting result resem-

bles the appearance and motion observed in a reference set

of real videos, independent of the original video from which

the input is derived. Unlike reconstruction, realism enforces

a smaller penalty for deviating from the original content

as long as the prediction exhibits sensible appearance and

motion. For our image-based realism metric, we use the

Fréchet Inception Distance [13] (FID), which fits multivari-

ate normal distributions over the feature activations of two

sets of images and measures their distance; in our case, the

two sets correspond to all predicted frames and all reference

frames. We also report the video-based equivalent Video

FID [16] (VFID), which corresponds to the sets of all in-

painted videos and all reference videos (the features are ex-

tracted from a pre-trained I3D backbone [3]).

Temporal consistency measures the proliferation of flick-

ering artifacts, i.e., how much colors at corresponding

points of the scene change between consecutive frames. We

adapt the patch consistency metric, denoted PCons, from

Gupta et al. [12]: for each frame, we extract the 50×50

patch at the centroid of the occlusion mask, compute the

maximum Peak Signal-to-Noise Ratio (PSNR) between this

patch and neighboring patches in the next frame, and aver-

age the result across all frames. Note that stronger tempo-

ral consistency is not always ideal: low-quality predictions,

such as constant-color or blurry inpainting results, can pro-

duce high temporal consistency scores (see Figure 2).

6. Experiments

To demonstrate the utility of our DEVIL benchmark,

we analyze the performance of seven representative state-

of-the-art video inpainting methods, using the publicly-

available code, model weights, and default runtime argu-

ments provided by the original authors:

• Joint optimization of flow and color (JointOpt) [14]:

Alternates between optimizing an optical flow estimate

and finding suitable patches along the flow. Among our

methods, this is the only non-deep learning one.

• VINet [16]: Recurrently predicts the next frame by

warping intermediate features spatially via optical flow.

• Deep Flow Completion Network (DFCNet) [28]: Pre-

dicts the optical flow of the video, then inpaints the miss-

ing region by propagating known values along the flow.

• Copy-Paste Network (CPNet) [18]: Estimates affine

transformations between frames with a task-driven deep

neural network, and then copies features across aligned

frames via attention.

• Onion Peel Network (OPN) [20]: Iteratively inpaints

the exterior of the current missing region by attending to

relevant locations in the known region.

• Spatio-Temporal Transformer Network (STTN) [30]:

Decodes the missing region with a Transformer [24] that

consumes multi-scale patches from the entire video.

• Flow-Edge Guided Video Completion (FGVC) [9]:
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Low FG displacement High

LPIPS ▼ PVCS ▼ FID ▼ VFID ▼ PCons ▲ Method LPIPS ▼ PVCS ▼ FID ▼ VFID ▼ PCons ▲
0.00504 0.1910 7.73 0.0513 36.96 JointOpt 0.00206 0.0995 1.71 0.0197 36.07

0.00643 0.3053 21.68 0.1064 47.92 VINet 0.00370 0.2258 8.29 0.0648 44.39

0.00479 0.1822 7.29 0.0507 55.81 DFCNet 0.00190 0.1028 2.08 0.0241 56.35

0.00419 0.2254 12.72 0.0740 42.36 CPNet 0.00236 0.1462 4.85 0.0367 40.33

0.00379 0.1887 7.29 0.0466 35.14 OPN 0.00253 0.1474 3.46 0.0305 34.60

0.00411 0.2265 8.18 0.0660 39.90 STTN 0.00293 0.1602 3.68 0.0390 38.39

0.00465 0.1914 9.17 0.0495 37.02 FGVC 0.00200 0.0986 1.89 0.0182 38.15

0.00471 0.2158 10.58 0.0635 42.16 Mean 0.00250 0.1401 3.71 0.0333 41.18

Low FG pose motion High

LPIPS ▼ PVCS ▼ FID ▼ VFID ▼ PCons ▲ Method LPIPS ▼ PVCS ▼ FID ▼ VFID ▼ PCons ▲
0.00401 0.1643 5.79 0.0419 36.84 JointOpt 0.00296 0.1266 3.85 0.0282 36.56

0.00618 0.2869 17.00 0.0956 46.40 VINet 0.00435 0.2456 10.51 0.0730 46.03

0.00354 0.1604 5.06 0.0430 54.07 DFCNet 0.00294 0.1237 3.38 0.0305 55.17

0.00383 0.2060 10.34 0.0655 41.60 CPNet 0.00323 0.1681 6.33 0.0481 41.16

0.00319 0.1794 6.01 0.0433 35.18 OPN 0.00289 0.1606 3.68 0.0367 34.54

0.00395 0.2101 6.96 0.0575 39.80 STTN 0.00328 0.1809 4.77 0.0481 39.14

0.00391 0.1634 6.03 0.0392 37.58 FGVC 0.00290 0.1261 4.39 0.0259 37.75

0.00409 0.1958 8.17 0.0551 41.64 Mean 0.00322 0.1617 5.27 0.0415 41.48

Low FG size High

LPIPS ▼ PVCS ▼ FID ▼ VFID ▼ PCons ▲ Method LPIPS ▼ PVCS ▼ FID ▼ VFID ▼ PCons ▲
0.00078 0.0495 1.99 0.0102 36.18 JointOpt 0.00591 0.2324 7.30 0.0530 37.19

0.00118 0.1094 6.31 0.0288 43.81 VINet 0.00839 0.4312 23.63 0.1488 50.07

0.00069 0.0519 0.93 0.0119 53.80 DFCNet 0.00556 0.2240 7.71 0.0627 57.80

0.00073 0.0680 2.35 0.0155 39.17 CPNet 0.00679 0.3048 13.21 0.0969 43.91

0.00084 0.0563 0.95 0.0119 34.30 OPN 0.00571 0.2874 8.71 0.0708 35.09

0.00113 0.0786 2.02 0.0194 38.24 STTN 0.00645 0.3149 10.89 0.0911 41.12

0.00087 0.0528 1.66 0.0119 37.89 FGVC 0.00543 0.2322 9.76 0.0564 38.26

0.00089 0.0666 2.32 0.0157 40.48 Mean 0.00632 0.2896 11.60 0.0828 43.35

Low BG scene motion High

LPIPS ▼ PVCS ▼ FID ▼ VFID ▼ PCons ▲ Method LPIPS ▼ PVCS ▼ FID ▼ VFID ▼ PCons ▲
0.00247 0.1199 3.70 0.0257 39.36 JointOpt 0.00512 0.1680 3.89 0.0333 34.91

0.00434 0.2549 13.01 0.0791 47.87 VINet 0.00543 0.2793 14.39 0.0796 47.02

0.00275 0.1381 5.97 0.0387 54.00 DFCNet 0.00362 0.1620 3.40 0.0398 40.00

0.00279 0.1691 6.57 0.0499 43.38 CPNet 0.00398 0.2070 5.24 0.0591 41.48

0.00254 0.1587 4.90 0.0397 36.67 OPN 0.00367 0.1819 4.27 0.0349 33.55

0.00299 0.1873 6.60 0.0569 40.82 STTN 0.00447 0.2030 4.15 0.0438 38.78

0.00314 0.1347 7.70 0.0370 39.16 FGVC 0.00376 0.1697 4.57 0.0356 36.50

0.00300 0.1661 6.92 0.0467 43.04 Mean 0.00429 0.1958 5.70 0.0466 38.89

Low Camera motion High

LPIPS ▼ PVCS ▼ FID ▼ VFID ▼ PCons ▲ Method LPIPS ▼ PVCS ▼ FID ▼ VFID ▼ PCons ▲
0.00269 0.1311 3.03 0.0253 39.39 JointOpt 0.00275 0.1319 2.36 0.0220 33.84

0.00610 0.2909 17.87 0.0863 48.39 VINet 0.00467 0.2417 10.44 0.0613 44.00

0.00254 0.1169 3.58 0.0224 55.22 DFCNet 0.00352 0.1353 3.34 0.0293 45.13

0.00344 0.1585 5.25 0.0339 44.04 CPNet 0.00496 0.2227 7.21 0.0697 39.56

0.00357 0.1749 3.64 0.0340 34.81 OPN 0.00327 0.1679 4.60 0.0332 32.35

0.00349 0.1521 4.34 0.0280 41.95 STTN 0.00529 0.2410 8.95 0.0783 36.38

0.00284 0.1378 6.28 0.0258 42.65 FGVC 0.00312 0.1239 3.05 0.0206 34.61

0.00352 0.1660 6.28 0.0365 43.78 Mean 0.00394 0.1806 5.71 0.0449 37.98

Table 1: The performance of each inpainting method on each DEVIL slice and evaluation metric.

Bold indicates the best method; ▼ and ▲ indicate that lower or higher is better, respectively.

Figure 3: Mean performance of

each method across all DEVIL

slices. Error bars show standard

error across the ten slices.

Extends DFCNet [28] by leveraging flow between non-

adjacent frames and using edge information to solve for

piecewise-smooth flow predictions.

6.1. Aggregate Analysis

In Table 1, we report the performance of all evaluated

methods on each DEVIL slice; in Figure 3, we compare

their performance averaged across all slices. We observe

that JointOpt, DFCNet, and FGVC consistently outrank or

perform within one standard error of the other methods in

terms of the reconstruction metrics LPIPS/PVCS and the

realism metrics FID/VFID. They all explicitly solve for the

optical flow of the inpainted video during inference, sug-

gesting that computing task-driven flow is an essential in-

gredient in producing the highest-quality video inpainting

results. Additionally, JointOpt remains competitive among

recent deep learning-based solutions, suggesting that im-

provements may arise by adapting traditional subroutines,

e.g., PatchMatch [2], to deep learning.

The three mid-tier methods—OPN, STTN, and CPNet—

borrow intermediate features across distant time steps, but

do not use time as an ordered structure. Meanwhile, VINet

models time through a recurrent unit, but has the shortest

temporal receptive field among the evaluated methods and

cannot propagate information from future time steps back

through the entire video. These results indicate that mod-

eling time as a proper ordered structure with long-range

dependencies greatly improves inpainting quality.

In terms of temporal consistency, DFCNet achieves the

highest PCons since it propagates pixel values directly

along the predicted flow maps of adjacent frames. Interest-

ingly, JointOpt and FGVC achieve lower PCons despite also

propagating values along the flow, likely due to their abil-

ity to transfer candidate values from non-adjacent frames.
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Figure 4: Comparison of DEVIL slice difficulty based on

average model performance (lower is better; error bars show

standard error across the seven models). The type of con-

tent given at test time, especially the mask content, greatly

affects the difficulty of the task.

Low High Low High

OPN DFCNet DFCNet JointOpt

STTN FGVC JointOpt FGVC

CPNet JointOpt FGVC OPN

FGVC CPNet CPNet DFCNet

DFCNet OPN STTN VINet

JointOpt STTN OPN CPNet

VINet VINet VINet STTN

Low High Low High

OPN FGVC DFCNet FGVC

FGVC JointOpt JointOpt JointOpt

DFCNet DFCNet FGVC DFCNet

JointOpt OPN STTN OPN

STTN CPNet CPNet VINet

CPNet STTN OPN CPNet

VINet VINet VINet STTN

LPIPS

VFID

Camera motionFG displacement

Table 2: Methods sorted by performance from best to worst

based on three variables: the metric (LPIPS/VFID), the

attribute (FG displacement/camera motion), and the setting

of said attribute (low/high). The strongest method (high-

lighted in bold) depends on all three variables, showing that

no one method dominates our challenging benchmark.

VINet and CPNet achieve high temporal consistency at the

cost of low-quality predictions lacking appropriate texture

or motion (Figure 2); the behaviors of these two models in-

dicate that temporal consistency is most meaningful when

reconstruction and realism performance is also high.

DEVIL Attribute Difficulty We now analyze how DEVIL

attributes impact overall inpainting difficulty to highlight

their utility in video inpainting evaluation. In Figure 4, we

compare the difficulty of each DEVIL attribute setting by

computing the average PVCS over all methods on the cor-

responding test slice. The mask attributes substantially im-

pact the difficulty of video inpainting; in particular, higher

FG displacement and pose motion, as well as smaller FG

size, lead to better performance. These trends make sense—

more relevant appearance information is available in other

frames when the occlusion mask is smaller and moves more

over time. In contrast, the overall impact of camera and BG

scene motion is small due to the differing sensitivities of

each method to these attributes (Section 6.2). We observe

similar trends under the other reconstruction and realism

metrics (refer to the supplementary materials for details).

LPIPS VFIDPVCS FID

Figure 5: Relative improvement of each method under

reconstruction and realism metrics when camera motion

changes from low to high.

(a) Low camera motion (b) High camera motion

Figure 6: VINet prediction examples. VINet improves with

high camera motion since content “moves into” the missing

region (arrows show the direction of camera motion).

6.2. Model Sensitivity to DEVIL Attributes

Next, we compare the performance of each method on

individual DEVIL slices to demonstrate the impact of video

and mask content, as well as the metric, on their rank-

ings. Table 2 lists the methods sorted by performance and

grouped by three variables: (i) the metric, (ii) the DEVIL

attribute, and (iii) the particular setting of the attribute (i.e.,

low or high). Note that the two attributes shown, FG dis-

placement and camera motion, span the two modalities of

the DEVIL dataset (masks and videos, respectively); also

note that these three variables span the complexity of the

DEVIL evaluation scheme in terms of metrics and dataset

slices. Even among the eight different combinations of vari-

ables shown out of the possible 50, four methods achieve the

best performance for at least one combination; this demon-

strates that our DEVIL benchmark is a substantial challenge

for video inpainting methods.

Finally, we analyze the sensitivity of the methods to

each DEVIL attribute by changing the label and plotting

the relative difference in performance. Specifically, for a

given attribute, we compute the relative improvement as

(scorehi − scorelo)/scorelo (or the negation of this value if a

lower score is better), where scorehi and scorelo correspond

to model performance on the high and low slices of the at-

tribute, respectively. As evidenced by the following obser-
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LPIPS VFIDPVCS FID

Figure 7: Relative improvement of each method under re-

construction and realism metrics when BG scene motion

changes from low to high.

(a) GT (b) DFCNet (c) FGVC

Figure 8: Example inpainting predictions from the high BG

scene motion slice. For DFCNet and FGVC, the predictions

diverge from the original content, but still exhibit semanti-

cally sensible appearance.

vations, our DEVIL attributes enable a fine-grained compar-

ison of failure modes among different inpainting models.

In Figure 5, we see divergent behavior among the meth-

ods when camera motion is increased: for example, STTN

and CPNet experience dramatic performance drops under

all reconstruction and realism metrics, whereas VINet expe-

riences substantial gains. From a design standpoint, the be-

haviors of STTN and CPNet make sense because they rely

on aligning patches or entire frames from other time steps to

borrow their features, which can fail catastrophically under

heavy camera motion. On the opposite end, VINet’s be-

havior reflects its tendency to inpaint realistic textures only

after they move into the missing portion of the frame (Fig-

ure 6), which is unlikely to occur without camera motion.

From Figure 7, we see that reconstruction performance

under LPIPS and PVCS consistently worsens when BG

scene motion increases, reflecting the challenge of replicat-

ing complex dynamics precisely. Interestingly, frame re-

alism under FID actually improves dramatically for some

methods such as DFCNet and FGVC because they inpaint

“alternate realities”, i.e., appearance that diverges from the

original content, but still captures the original broad struc-

ture (Figure 8). Among the methods that explicitly infer

and propagate across flow (FGVC, JointOpt, and DFCNet),

(a) FG displacement (b) FG pose motion (c) FG size

Figure 9: Relative improvement of each method under

PVCS when mask attributes change from low to high.

only JointOpt achieves worse frame realism performance,

suggesting that video inpainting quality can be improved by

simply learning flow in a task-driven, end-to-end manner.

Moving on to mask attributes, we show in Figure 9a-b

that all methods perform better with increased FG displace-

ment and pose motion, indicating that they all leverage the

increased availability of background information. The flow

propagation methods generally benefit the most, likely due

to the explicit transmission of more ground-truth appear-

ance information along predicted flows. We observe similar

trends under the other reconstruction and realism metrics

(details are available in the supplementary materials).

In Figure 9c, we observe worse performance when the

mask FG size grows, reflecting the inherently greater dif-

ficulty of inpainting more values. Although this trend is

universal and intuitive, the quantitative difference between

methods still lends insight into their failure modes. For ex-

ample, OPN is most sensitive to the increased mask size

because it must iteratively inpaint more outer layers of the

unknown region based on its own predictions, thereby ac-

cumulating error across more iterations.

7. Conclusion

We have presented the DEVIL benchmark for video in-

painting and used it to analyze seven state-of-the-art meth-

ods, thereby providing the largest fine-grained analysis of

video inpainting to our knowledge. By controlling for five

content attributes of the source videos and masks used at

test time, our analyses have provided novel insight into the

behaviors, strengths, and weaknesses of these methods.
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