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Figure 1. Motion magnification results for subtle string vibrations when a tennis racket hits a ball. The top panels show enlarged image
frames in the green dot square in the input video at impact (the ball suddenly stops). The bottom panels show spatiotemporal slices along
the red line in the input video. Our proposed BVMF magnified subtle string vibrations with a target frequency of 4 Hz (see the bottom
panel) while maintaining the ball shape at impact (see the top panel). In contrast, existing methods, LoGF [30] and LoGF with JAF [22],
mis-magnified non-target higher frequency string vibrations and collapsed the ball shape. See supplementary material for the video results.

Abstract
Eulerian video magnification (EVM) has progressed to

magnify subtle motions with a target frequency even under
the presence of large motions of objects. However, exist-
ing EVM methods often fail to produce desirable results in
real videos due to (1) mis-extracting subtle motions with a
non-target frequency and (2) collapsing results when large
de/acceleration motions occur (e.g., objects suddenly start,
stop, or change direction). To enhance EVM performance
on real videos, this paper proposes a bilateral video magni-
fication filter (BVMF) that offers simple yet robust temporal
filtering. BVMF has two kernels; (I) one kernel performs
temporal bandpass filtering via a Laplacian of Gaussian
whose passband peaks at the target frequency with unity
gain and (II) the other kernel excludes large motions out-
side the magnitude of interest by Gaussian filtering on the
intensity of the input signal via the Fourier shift theorem.
Thus, BVMF extracts only subtle motions with the target
frequency while excluding large motions outside the magni-
tude of interest, regardless of motion dynamics. In addition,
BVMF runs the two kernels in the temporal and intensity
domains simultaneously like the bilateral filter does in the
spatial and intensity domains. This simplifies implementa-
tion and, as a secondary effect, keeps the memory usage
low. Experiments conducted on synthetic and real videos
show that BVMF outperforms state-of-the-art methods.

1. Introduction

We humans often fail to visually perceive subtle motions
in our world: subtle head motions with blood circulation,
slight deformation of materials absorbing external forces,
or subtle autonomous fluctuations of a flying drone. Such
variations are quite useful for helping us deeply understand
scene context [1,3,4,25,28] or anomalous behavior [2,10],
but they are difficult to see with the naked eye.

To magnify such subtle yet important motions in a video,
Eulerian video magnification (EVM) methods have been
widely researched [6,10,13,17,21,22,25,26,28,30]. EVM
methods generally measure local motions in a video as a
phase signal within each spatial subband along each ori-
entation at each pixel position [7, 25]. They then perform
temporal filtering on the oriented-subband phase signal to
extract only subtle motions with a target frequency (e.g.,
respiratory cycle). However, since subtle motions are easily
overwhelmed by large motions of objects, the standard tem-
poral filtering in the early EVM methods [25, 26, 28] often
fail to extract subtle motions when objects move largely.

To overcome this issue, temporal filtering in EVM has
been continually improved [22, 30]. Specifically, Zhang et
al. designed the Laplacian of Gaussian filter (LoGF) to per-
form temporal bandpass filtering while excluding slow large
motions, which approximate linearly at short time scales,
via its Laplacian property [30]. Furthermore, to exclude
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Table 1. Comparisons of temporal filtering results of an EVM with the existing temporal filters [22, 30] and BVMF

Method Frequency response
Large motions exclusion

Memory usage
slow ← de/acceleration → quick

LoGF [30] shifted ✓ ✗ ✗ low
LoGF w/ JAF [22] shifted ✓ ✗ ✓ high
BVMF (ours) non-shifted ✓ ✓ ✓ low

quick large motions, a combination of LoGF with the jerk-
aware filter (JAF) was proposed [22]; JAF excludes only
them effectively by assessing jerk-based motion steepness,
which represents quick large motions. Thus, this combina-
tion extracts subtle motions with a target frequency while
excluding slow and quick large motions.

However, LoGF with JAF [22] often fails to produce de-
sirable results in real videos due to the following problems:
(1) The passband of LoGF is shifted against the target fre-
quency (see Fig. 2). Thus, LoGF mis-extracts subtle mo-
tions with a non-target frequency, or it extracts ones with
the target frequency but their magnitude is lower than the
original (i.e., the passband gain of LoGF is not unity at the
target frequency). (2) LoGF or JAF is specifically designed
for excluding only slow or quick large motions, but besides
those, there often exist large deceleration or acceleration
motions that need to reach the slow or quick large motions
in real videos (e.g., objects suddenly start, stop, or change
direction). Thus, LoGF with JAF mis-extracts such large
de/acceleration motions and collapses results (see Fig. 1).
Due to the above problems, EVM in real videos remains a
challenging task.

In this paper, we propose a bilateral video magnifica-
tion filter (BVMF), it is simple yet robust temporal filter-
ing that enhances EVM performance on real videos. Ta-
ble 1 summarizes comparisons of the existing temporal fil-
ters [22, 30] and BVMF. Inspired by the bilateral filter in
which two kernels achieve the simple yet robust spatial
smoothing process [18, 23], we designed BVMF with two
kernels: (I) one kernel performs temporal bandpass filter-
ing via a LoG whose passband peaks at the target frequency
with unity gain thanks to new formulations and (II) the other
kernel excludes large motions outside the magnitude of in-
terest by Gaussian filtering on the intensity of the phase sig-
nal via the Fourier shift theorem (this theorem enables us
to measure the magnitude of motions precisely as the inten-
sity of the phase signal). Thus, BVMF extracts only subtle
motions with the target frequency while excluding various
large motions outside the magnitude of interest regardless of
motion dynamics, namely slow, quick, or de/acceleration.
In addition, BVMF runs the two kernels in the temporal and
intensity domains of the input phase signal simultaneously
like the bilateral filter does in the spatial and intensity do-
mains of an image [18, 23]. This simplifies implementation
compared to LoGF with JAF that requires multiple input

unity gain

Figure 2. Bandpass frequency response of LoGF [30] (Paper,
GitHub)1 and our BVMF. In this comparison, the target frequency
ft = 10 Hz with a sampling rate fs = 120 Hz. The standard devi-
ation σft of LoGF (Paper) is set such that its filter width matches
the wavelength of ft with fs, referring to the scale selection in
blob detection [11, 16]. This is not specifically designed for tem-
poral filtering and thus shifts the passband of LoGF against ft (see
the blue plot). In contrast, BVMF has its passband peak at ft with
unity gain, namely 1.0, thanks to new formulations of Eqs. (5) and
(7) (see the yellow plot).

phase signals across spatial subbands to exclude large mo-
tions effectively [22]. As a secondary effect, this simple and
bilateral implementation keeps the memory usage as low as
using just LoGF [30] alone.

The contributions of this paper are as follows. (i) We link
the LoG parameters to the passband characteristics by new
formulations that strictly set the peak gain of the passband
to unity at the target frequency. (ii) We exclude large mo-
tions outside the magnitude of interest by Gaussian filtering
on the intensity of the phase signal via the Fourier shift theo-
rem. This is simpler than existing approaches [22,30] while
being more robust because it makes no assumptions as to
motion dynamics (namely, slow, quick, or de/acceleration).
(iii) We, for the first time, introduce the bilateral princi-
ple into temporal filtering in EVM, which leads to simpler
implementation and, as a secondary effect, lower memory
usage than LoGF with JAF [22]. (iv) We conduct exten-
sive experiments and show that our method outperforms the
baseline methods, including color magnification results.

1The implementation of LoGF differs between the original paper and
the official GitHub [30]. The standard deviation σft of LoGF is set as
σft = fs/(4

√
2ft) (Paper) and σft = fs/8ft (GitHub). The filter

normalization coefficient, Z, is set so that the sum of the absolute value of
LoGF coefficients is 1.0, referring to the official GitHub version [30].
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2. Related Works

Pioneered by the first Lagrange-based video magnifica-
tion method [12], many video magnification methods have
been researched. Among them, Eulerian video magnifica-
tion (EVM) methods are the current mainstream [6, 10, 13,
17, 21, 22, 25, 26, 28, 30]. EVM has four stages: (1) con-
structing a signal representation from each image frame to
measure temporal variations in a video, (2) temporal filter-
ing on the signal to extract only subtle variations with a tar-
get frequency, (3) magnifying the filtered signal, and (4)
collapsing the magnified signal representation to output a
magnified image frame. This section summarizes the main
research subjects (and also our main focus) in EVM: (1)
signal representation and (2) temporal filtering.

2.1. Signal Representation

In motion magnification, several signal representations
have been proposed to measure motion variations in a
video [10, 15, 17, 25, 26, 28]. For example, the learned rep-
resentations in a deep convolutional neural network trained
by the synthetic motion magnification dataset has attracted
much attention [17]. This representation learns a motion-
related signal from the synthetic dataset and shows better
noise-less results than the existing hand-crafted representa-
tions [25, 28]. However, this learned representation often
corrupts results due to its strong dataset dependency [21],
and how the learned motion-related signal is strictly related
to motions in a video is unknown. Therefore, the earlier
proposal, the complex steerable pyramid, remains the de
facto standard [21, 22, 25, 30]. The complex steerable pyra-
mid consists of a set of oriented-subband analytic signals
that enable the phase signal within each spatial subband to
be calculated along each orientation at each pixel position.
The characteristic of the complex steerable pyramid is that
the oriented-subband phase signal is strictly related to local
motions within the spatial subband along the orientation via
the Fourier shift theorem [7, 19, 25].

Our work uses the complex steerable pyramid for motion
magnification because it has a strict relationship between
the phase signal and local motions. This enables us to mea-
sure the magnitude of motions precisely as the intensity of
the phase signal, and thus leads to our robust kernel that ex-
cludes large motions effectively (for details, see Section 4).

Note that, in color magnification, most existing
works [21, 22, 28, 30] construct the Gaussian pyramid of a
color signal as a signal representation to measure color vari-
ations in a video. Our work follows this approach and uses
the Gaussian pyramid for color magnification.

2.2. Temporal Filtering

The early temporal filtering for EVM used the standard
bandpass filters such as the ideal bandpass filter [25,28] and

the differential of Butterworth filter [26]. These filters can
produce EVM results when the objects in a video remain
static but not when they move largely because they cannot
extract only subtle color/motion variations overwhelmed by
large motions of objects. To overcome this issue, tempo-
ral filtering with image segmentation [6] and depth infor-
mation [10] have been proposed; both can separate a target
image region from large motions. However, this approach
requires extra human manipulations [6] or a depth cam-
era [10] to decide the target image region. Thus, Zhang et
al. [30] and Takeda et al. [22] addressed this issue directly
by proposing new temporal filters, LoGF and JAF, respec-
tively, as explained in Section 1.

Our work also addresses this issue directly by proposing
a new temporal filter called BVMF. Compared to the above
temporal filtering [22, 25, 26, 28, 30], BVMF is a simpler
yet more robust filtering that enhances EVM performance
on real videos in terms of (I) improving frequency selec-
tivity and (II) excluding large motions regardless of motion
dynamics (namely, slow, quick, or de/acceleration).

3. Eulerian Video Magnification
Before introducing our proposed BVMF, we explain the

general procedure of EVM. We start by defining notations
that will be used throughout this paper.

Given image frames {I(x, t) | t = 0, . . . , T − 1} where
x = [x, y]⊤ is a pixel position and t is a time frame,
a signal representation is constructed from each I(x, t).
As the signal representation, most existing EVM meth-
ods [6, 10, 21, 22, 25, 26, 28, 30] and our method construct
the Gaussian pyramid of a color signal as {In(x, t) | n =
0, . . . , N − 1} for color magnification, where In(x, t) is
the color signal at a pyramid level n. For motion magni-
fication, the complex steerable pyramid is constructed as
{Aωn,θ(x, t)e

iϕωn,θ(x,t) | n = 0, . . . , N − 1, θ ∈ Θ} where
Aωn,θ(x, t)e

iϕωn,θ(x,t) is an oriented-subband analytic sig-
nal. This analytic signal consists of an amplitude signal
Aωn,θ(x, t) and a phase signal ϕωn,θ(x, t) within a spatial
subband angular frequency ωn along an orientation θ. Here,
we define a generalized signal notation Sνn,θ(x, t); we have
the color signal In(x, t) where S = I , νn = n, and θ = ∅,
or the phase signal ϕωn,θ(x, t) where S = ϕ and νn = ωn.

After constructing a signal representation, temporal fil-
tering on Sνn,θ(x, t) is performed to extract only subtle
color/motion variations with a target frequency ft. For this
temporal filtering, LoGF [30] h(t; ft) is used to perform
temporal bandpass filtering at ft while excluding slow large
motions, and JAF [22] Wνn,θ(x, t) is used to exclude quick
large motions. Thus, we obtain a signal Cνn,θ,ft(x, t) re-
lated to subtle color/motion variations with ft as

Cνn,θ,ft(x, t) = Wνn,θ(x, t) (h(t; ft) ∗ Sνn,θ(x, t)) , (1)

where ∗ indicates convolution over finite range t ∈ T .
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Next, Cνn,θ,ft(x, t) is amplified with an amplification
factor α and added back to the original signal Sνn,θ(x, t)

to obtain a magnified signal Ŝνn,θ,ft(x, t) as

Ŝνn,θ,ft(x, t) = Sνn,θ(x, t) + αCνn,θ,ft(x, t). (2)

Finally, the magnified Gaussian or complex steerable pyra-
mid {Ŝνn,θ,ft(x, t) | n = 0, . . . , N − 1, θ ∈ Θ} is col-
lapsed to output a magnified image frame Î(x, t); the subtle
color/motion variations with ft in a video are magnified.

However, in fact, the current state-of-the-art temporal fil-
tering of Eq. (1) by LoGF with JAF [22] fails in real videos.
Specifically, (1) the passband of LoGF is shifted against ft
due to its design based on blob detection (see Fig. 2), and
(2) LoGF with JAF misses large de/acceleration motions
that occur between slow and quick large motions because
each filter is specifically designed for excluding only slow
or quick large motions. In addition, Eq. (1) cannot be im-
plemented simply because JAF Wνn,θ(x, t) requires multi-
ple input signals across spatial subbands to exclude quick
large motions effectively based on the coarse-to-fine strat-
egy [9, 14] as Wνn,θ(x, t) := J ({Sνn,θ(x, t) | n ∈ N}, β)
where J(·, ·) is a multivariable function to get Wνn,θ(x, t);
N is the across range and β is a hyper-parameter to ad-
just JAF strength. In the next section, we propose BVMF
instead of Eq. (1) to overcome the above issues and thus
expand the applicability of EVM in real videos.

4. Proposed Method
To overcome the difficulty of applying EVM to real

videos, we propose BVMF instead of Eq. (1). As explained
in Section 1, BVMF Γ(s(t), t) performs temporal bandpass
filtering while excluding large motions outside the magni-
tude of interest by two kernels running in the temporal and
intensity domains of Sνn,θ(x, t) as follows:

Cνn,θ,ft(x, t) = Γ(s(t), t) ∗ Sνn,θ(x, t),

Γ(s(t), t) := G(s(t);σε)LoG(t;σft),
(3)

where LoG(t;σft) is a LoG kernel that performs tempo-
ral bandpass filtering at ft, and G(s(t);σε) is a Gaus-
sian kernel that excludes large motions outside the magni-
tude of interest ε by taking a local signal intensity change
s(t) = Sνn,θ(x, t)−

∑
t∈T Sνn,θ(x, t)/|T | within the finite

range t ∈ T of BVMF as input. We explain the details of
each kernel in the following subsections.

4.1. LoG Kernel for Temporal Bandpass Filtering

Like LoGF [30], to perform temporal bandpass filtering,
we defined LoG(t;σft) in Eq. (3) as

LoG(t;σft) := −
t2 − σ2

ft

Zσ4
ft

exp

(
− t2

2σ2
ft

)
, (4)

where σft is the standard deviation and Z is the normal-
ization coefficient. To extract subtle variations with ft,
LoGF [30] designs σft so that its filter width matches the
wavelength of ft with fs referring to the scale selection in
blob detection [11, 16]. However, its passband is shifted
higher than ft (see Fig. 2), so LoGF cannot work well in
terms of temporal bandpass filtering.

We first considered that σft should be designed so as
to maximize the passband of LoG(t;σft) at ft. Thus, we
newly formulated an optimization problem for σft in the
Fourier domain of LoG(t;σft) as

ft = argmax
f,σft>0

F [LoG(t;σft)](f), (5)

where F [·](f) is the 1D Fourier spectrum, namely the band-
pass frequency response, of the input at a frequency f . Con-
sidering F [LoG(t;σft)](f) has a single maximum peak at
which the gradient ∇fF [LoG(t;σft)](f) is 0 if f, σft > 0,
we analytically solved Eq. (5) as

∇fF [LoG(t;σft)](ft) = 0 ⇔ σft =

√
2

2πft
. (6)

For details of this derivation, see the supplementary mate-
rial. This σft ensures that the passband peak of LoG(t;σft)
is set strictly at ft.

Moreover, to keep the original magnitude of subtle vari-
ations with ft after applying BVMF, we newly formulated
and solved an equation for Z so that the peak gain of the
passband of LoG(t;σft) is unity, namely 1.0, at ft as fol-
lows:

|F [LoG(t;σft)](ft)| = 1

⇔ Z =

∣∣∣∣∣F
[
−
t2 − σ2

ft

σ4
ft

exp

(
− t2

2σ2
ft

)]
(ft)

∣∣∣∣∣ , (7)

For details of this derivation, see the supplementary mate-
rial. From Eqs. (6, 7), BVMF (thanks to this LoG kernel)
has its passband peak at ft with unity gain (see the yellow
plot in Fig. 2).

Note that we set the length of the finite range t ∈ T of
BVMF to |T | = 2fs/ft, where fs is a sampling rate of an
input video. For details, see the supplementary material.

4.2. Gaussian Kernel for Excluding Large Motions

To exclude large motions, LoGF [30] and JAF [22] ex-
ploit features of motion linearity and jerk-based motion
steepness, respectively. However, each higher-level motion
feature specializes in excluding only slow or quick large
motions, and thus misses large de/acceleration motions that
occur between slow large motions and quick ones.

We considered that we should exploit the lowest-level
motion feature, the magnitude of motions, to exclude large
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Figure 3. Signal-level comparisons of LoGF [30], LoGF with JAF [22], and our BVMF when magnifying subtle fluctuations of a flying
drone. The left panels show drone behaviors along the yellow dot arrows. Given an input phase signal (black) in the purple dot squares in
the left panels, each filter extracts a subtle phase signal with the target frequency (blue) that is related to the subtle fluctuations of the drone.
The magnified phase signal (green) is the addition of the magnified subtle phase signal to the input. LoGF [30] and LoGF with JAF [22]
mis-extract the subtle phase signal with a non-target higher frequency and cannot exclude phase signals related to large (acceleration)
motions. In contrast, BVMF extracts and magnifies only the subtle phase signal with the target frequency.

motions regardless of motion dynamics (namely, slow,
quick, or de/acceleration). Thus, we defined the Gaussian
kernel G(s(t);σε) in Eq. (3) that excludes large motions
outside the magnitude of interest ε by Gaussian filtering on
the local phase signal intensity change s(t) as follows:

G(s(t);σε) := exp

(
−s(t)2

2σ2
ε

)
, σε =

νnε√
2 ln 2

. (8)

Specifically, this Gaussian kernel is designed to suppress
the output of the LoG kernel of Eq. (4) to be less than half
when s(t) exceeds the intensity of the phase signal νnε (the
numerator of σε) because νnε represents the motion magni-
tude ε via the Fourier shift theorem that holds for the com-
plex steerable pyramid [22, 25, 30] as

F [I(x− ε)](νn) = F [I(x)](νn)e
−iνnε.

Therefore, BVMF performs temporal bandpass filtering by
the LoG kernel while excluding large motions (or suppress-
ing them to be less than half) outside the magnitude of inter-
est ε regardless of motion dynamics by the Gaussian kernel
that assesses ε as νnε on the intensity domain of the phase
signal. In color magnification, we set σε = ε/

√
2 ln 2 be-

cause color variations ε in a video are represented as the
color signal intensity changes ε in the Gaussian pyramid.

Note that some slow large motions that approximate lin-
early are excluded by the LoG kernel thanks to its Laplacian
property. Such linearity is often small and may be missed

by the Gaussian kernel. Thus, the LoG kernel is essential in
excluding large motions precisely.

Figure 3 shows signal-level comparisons of the existing
temporal filters [22,30] and BVMF when magnifying subtle
fluctuations of a flying drone. This figure shows that BVMF
extracts and magnifies only the subtle phase signal with the
target frequency (for details, see Fig. 3).

Comparing Eq. (3) with Eq. (1), BVMF is simpler to
implement than LoGF with JAF [22] because BVMF re-
quires only Sνn,θ(x, t) while JAF, Wνn,θ(x, t), requires
{Sνn,θ(x, t) | n ∈ N} as input. Thus, as a secondary ef-
fect, BVMF keeps the memory usage as low as using just
LoGF [30] alone which also requires only Sνn,θ(x, t).
Generalization. As explained before, BVMF needs the
LoG kernel to exclude large motions precisely. Meanwhile,
other filters (e.g., a very narrow bandpass filter) may be
good alternatives to the LoG kernel depending on the situa-
tion. As formulated in Eq. (3), LoGF kernel can be replaced
with any FIR filter. Thus, we can design the generalized
BVMF with an FIR filter (instead of the LoG kernel) that
can be applied to different specific situations. For details,
see the supplementary material.

5. Experimental Results
Experimental Setup. To evaluate the effectiveness of
BVMF, we conducted experiments on real videos and syn-
thetic ones with ground-truth magnification. We assessed
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Video [source] ft fs α ε β [22]

Synthesis 1 [–] 2–18 60 10 10 –
Synthesis 2 [–] 5 60 10 1.2 0.5
Tennis [20] 4 30 40 0.4 0.2
Light bulb [20] 5 30 15 0.035 4
Drone [22] 5 60 15 0.5 0.5
Gun [30] 4 24 15 0.9 0.2

Table 2. Experimental parameters: target frequency ft, sampling
rate fs, amplification factor α, magnitude of interest ε for exclud-
ing large motions (see Section 4.2), and hyper-parameter β used
in JAF [22] (see Section 3).

the effectiveness for the synthetic videos quantitatively and
that for the real videos qualitatively. Table 2 shows all pa-
rameters used in these experiments. We carefully set ε and
β used in JAF [22] to exclude large motions. All the video
results are shown in the supplementary materials.

For color magnification, we constructed a Gaussian pyra-
mid of the Y color signal from each image frame and am-
plified only the Y color signal on the third pyramid level.
This approach is similar to existing works [22, 28, 30].

For motion magnification, we constructed a half-octave
complex steerable pyramid with eight orientations in the Y
color channel from each image frame. We performed the
phase unwrapping process in advance of temporal filtering.
This approach is similar to existing works [22, 25, 30].

5.1. Synthetic Videos for Quantitative Evaluation

We first quantitatively evaluated the effectiveness of our
proposed BVMF in synthetic videos as follows.
Frequency Selectivity (Synthesis 1). In this experiment,
we evaluated BVMF in terms of frequency selectivity as
to whether only subtle motions with ft can be magnified
in the presence of motions with a different frequency. We
compared BVMF with the state-of-the-art temporal band-
pass filter, namely LoGF (Paper, GitHub)1 [22, 30]. We ap-
plied each temporal filter to a synthetic video where two
balls subtly fluctuate along the horizontal axis with d1 (left
ball) and d2 (right ball). These subtle fluctuations were
defined as di = 0.5 sin (2π(fi/fs)j) , i = 1, 2, where
f1,2 ∈ [2, 14] Hz (f1 ̸= f2), fs = 60 Hz, and j is the time
frame index. We also created a ground-truth where only
the subtle fluctuations of the left ball d1 were magnified as
10·d1. In this case, we set f1 = ft and α = 10 for each tem-
poral filter for magnifying only d1 as in the ground-truth; we
thus excluded the evaluations where d1 = d2 (f1 = f2).

Figure 4 shows mean squared error (MSE) over time for
each frequency combination of f1 = ft and f2 against the
ground-truth. LoGF (Paper) had high MSEs when f1 = ft
was lower than f2 due to shifting its passband higher than
ft (see the blue plot in Fig. 2). On the other hand, LoGF
(GitHub) had lower MSEs than LoGF (Paper), but its MSEs
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Figure 4. Frequency selectivity of each temporal filter. Mean
squared error over time at each frequency combination of f1 = ft
and f2 (f1 ̸= f2) against the ground-truth.

were still high when f1 = ft was lower than f2 because its
passband was shifted against ft and the gain at ft was lower
than unity (see the orange plot in Fig. 2). In contrast, BVMF
had lower MSEs across almost all frequency combinations
than the others. These results suggest that BVMF is supe-
rior in terms of frequency selectivity and thus realizes better
EVM in real videos.

Note that, to prevent underestimation of LoGF [30] and
to perform fair comparisons, we used LoGF (GitHub) as
LoGF [30] in the following experiments.
Robustness against Large Motions (Synthesis 2). In this
experiment, we evaluated BVMF in terms of robustness
against large motions of objects. Specifically, we evaluated
whether only subtle motions with ft can be magnified in
the presence of large motions. We compared LoGF [30],
LoGF with JAF [22], and BVMF. Moreover, for an ablation
study, we additionally compared the LoG kernel of Eq. (4),
LoGF with the Gaussian kernel of Eq. (8), and the LoG ker-
nel with JAF. We applied each temporal filter to a synthetic
video (Fig. 5 top-left) where top two balls fluctuated subtly
with d1 (left) and d2 (right) but a bottom ball moved largely
with amplitude d3. The motions of the three balls were de-
fined by di = Ai sin (2π(5/fs)j) , i = 1, 2, 3 along the hor-
izontal axis, where A1 = 0.5, A2 = 1.0, A3 = 30 pixels,
fs = 60 Hz, and j is the frame index. Due to the larger
amplitude A3 than A1,2 with sin function, the bottom ball
produces large de/acceleration motions (namely, the bottom
ball suddenly changes direction) at the crest or trough of its
large sin motions d3. We also created a ground-truth where
only the subtle fluctuations of the top two balls d1,2 were
amplified as d̂1,2 = 10 ·d1,2. In this case, we set ft = 5 and
α = 10 for each temporal filter for magnifying only d1,2
and not d3 as in the ground-truth.

Figure 5 shows the magnification results of applying
each temporal filter to the synthetic video. Comparing (a)
LoGF and (b) the LoG kernel, the latter can magnify subtle
fluctuations of the top balls d1,2 close to the ground-truth
(see the red and green middle panels) because of its strict
passband. However, they collapsed the shape of the bottom
ball (see the cyan middle and bottom panels). (e) The LoG
kernel with JAF [22] mitigates this collapse (see the cyan
middle panels) but fails to exclude large de/acceleration
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Figure 5. Top-left: a synthetic video where three balls move at
different amplitudes along the horizontal red, green, or cyan line.
Middle panels: spatiotemporal slices along the above horizontal
lines. Bottom panels: enlarged image frames in the yellow dot
square on the input video at the suddenly changing motion direc-
tion of the bottom ball. Top-Right: MSE against the ground-truth
(GT) at each frame. BVMF magnified only subtle fluctuations of
the top two balls and shows the lowest MSEs over time.

motions in d3 at the suddenly changing motion direction
(see the purple arrows and the bottom panels). Other tem-
poral filters (c,d) also have either the problem that large
de/acceleration motions cannot be excluded (c) or that sub-
tle fluctuations are magnified incorrectly (d). In contrast, (f)
BVMF magnifies only d1,2 close to the ground-truth while
excluding large de/acceleration motions of d3, which main-
tains the shape of the bottom ball. As a result, BVMF
yields the lowest MSEs over time. Note that we further
evaluated BVMF efficacy with different amplitude values,
A3 ∈ [5, 100], in the supplementary material.

5.2. Real Videos for Qualitative Evaluation

We next qualitatively evaluated the effectiveness of
BVMF in real videos. We compared BVMF with two
state-of-the-art temporal filters: LoGF [30] and LoGF with
JAF [22].

Color Magnification Comparison. Figure 6 shows color
magnification results for a blinking filament lamp with a
specific frequency. The lamp is suddenly broken by a bul-
let shot at 2.7 sec. LoGF [30] and LoGF with JAF [22]
magnified the subtle blinking but produced luminance sat-
uration (see the purple arrows) and black holes (see the
green dot squares) due to the suddenly broken lamp frag-
ments. In contrast, BVMF magnified the subtle blinking

2 3

Time (s)

Input video

2 3

Time (s)

LoGF

2 3

Time (s)

LoGF w/ JAF

2 3

Time (s)

BVMF (ours)Input Video LoGF LoGF w/ JAF BVMF (Ours)

Time (sec)Time (sec) Time (sec) Time (sec)
2 32 3 2 32 3

Figure 6. Color magnification results for a blinking filament lamp
with a specific frequency. The bottom panels show spatiotemporal
slices along the red line in the input video. BVMF clearly mag-
nified the subtle blinking without luminance saturation (see the
purple arrows) or black holes (see the green dot squares) due to
the suddenly broken lamp fragments by a bullet shot at 2.7 sec.

more strongly than that by the other filters thanks to its strict
passband at ft with unity gain, and did not produce any no-
ticeable color artifacts.

Motion Magnification Comparison. Figure 1 shows mo-
tion magnification results for subtle string vibrations when a
tennis racket hits a ball. LoGF [30] and LoGF with JAF [22]
mis-magnified non-target higher frequency string vibrations
(see the jagged string vibrations in the bottom panels) and
collapsed the ball shape due to the suddenly stopping ball
by hitting (see the top panels). In contrast, BVMF magni-
fied subtle string vibrations with the target frequency while
maintaining the ball shape.

Figure 7 shows motion magnification results for a fly-
ing drone that moves slowly or soars quickly while sta-
bilizing itself with subtle fluctuations as shown in Fig. 3.
LoGF [30] and LoGF with JAF [22] produced blur on the
drone body (see the top panels and the yellow arrows) due to
the quick soaring, and also mis-magnified non-target higher
frequency fluctuations (see the bottom panels). In contrast,
BVMF magnified the subtle fluctuations with the target fre-
quency while maintaining the shape of drone body.

Figure 8 shows the motion magnification results for a
gun-shooting video to visualize the impact spread through-
out an arm. LoGF [30] and LoGF with JAF [22] collapsed
the gun shape (see the top panels) due to the sudden re-
coil motions, and also mis-magnified subtle vibrations with
a non-target higher frequency through the arm (their vi-
brations are sharper, see the bottom panels). In contrast,
BVMF magnified the subtle arm vibrations with the target
frequency while maintaining the gun shape.

Memory Usage Comparison. Table 3 shows memory us-
age comparisons for the drone video with 640× 360 pixels
and 300 time frames in a naive implementation. LoGF [30]
uses the memory to perform only temporal bandpass fil-
tering. LoGF with JAF [22] uses extra memory because
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Figure 7. Motion magnification results of Fig. 3. The top panels show enlarged image frames in the purple dot square in Fig. 3 at the
quickly soaring. The bottom panels show spatiotemporal slices along the red line in the input video. BVMF magnified subtle fluctuations
of the drone with the target frequency (see the bottom panels) while maintaining the drone body (see the top panels).
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Figure 8. Gun-shooting video: visualizing the impact spread
throughout an arm. Top panels show enlarged images in the pur-
ple dot square in the input video when a gun fires. The bottom
panels show spatiotemporal slices along the green line in the arm.
BVMF magnified subtle vibrations through the arm with the target
frequency while maintaining the gun shape.

JAF requires multiple input signals across spatial subbands.
While BVMF achieves the best EVM result, it keeps the
memory usage as low as that of LoGF thanks to its simple
and bilateral implementation.

6. Discussions and Limitations

Our proposal, BVMF, will greatly expand the applica-
bility of EVM to real videos by improving frequency se-
lectivity and excluding various large motions. For fur-
ther progress in EVM, we discuss the following future is-
sues that remain to be solved: (i) In motion magnification,
BVMF assumes the use of the complex steerable pyramid,
which has a strict relationship between a phase signal and
local motions, to design the Gaussian kernel of Eq. (8). If
we set σε in the Gaussian kernel heuristically, we would ob-
tain desirable results with other signal representations, e.g.,
the learned motion representation [17]. However, we should
design an advanced BVMF that can be applied to any signal
representations in future work. (ii) Similar to JAF [22], the
Gaussian kernel of BVMF strongly responds to quick large

Method Memory usage (GB)

LoGF [30] 1.833
LoGF w/ JAF [22] 2.110
BVMF (ours) 1.834

Table 3. Memory usage comparisons for the drone video

motions and suppresses all of them even if they hide sub-
tle variations. Thus, magnifying subtle variations hidden
in quick large motions still remains a challenging task in
EVM research community. (iii) The computational time of
BVMF is slower than that of the existing methods [22, 30]
due to its bilateral operation. Many fast techniques to the bi-
lateral filter have been proposed [5, 8, 27], and thus we will
seek a way to incorporate those techniques into BVMF. (iv)
As a general issue with EVM, mis-magnification of subtle
noise in a video has been of recent interest and many ap-
proaches have been proposed to solve this issue [21,24,29].
BVMF could be combined with the above approaches be-
cause of its independence from them, but designing a noise-
robust BVMF variant remains an interesting future work.

7. Conclusions
We proposed the bilateral video magnification filter

(BVMF) as a simple yet robust temporal filtering that en-
hances Eulerian video magnification (EVM) performance
on real videos. BVMF is superior to existing temporal filter-
ing in terms of (I) its improved frequency selectivity thanks
to new formulations that strictly set the peak gain of the
passband to unity at the target frequency, (II) its exclusion
of various large motions outside the magnitude of interest.
In addition, its simple and bilateral implementation keeps
the memory usage low. Our experiments on synthetic and
real videos demonstrated that BVMF outperformed exist-
ing temporal filtering quantitatively and qualitatively. As
a result of its effectiveness and simplicity, BVMF will be
widely applicable to understand sports scenes (e.g., tennis
and shooting), analyze mechanical behavior (e.g., drones),
and observe physical phenomena (e.g., blinking lamps).
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Durand. A gentle introduction to bilateral filtering and its
applications. In ACM International Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH) Courses,
page 1–es. Association for Computing Machinery, 2007. 2

[19] Eero P Simoncelli and William T Freeman. The steerable
pyramid: A flexible architecture for multi-scale derivative
computation. In IEEE International Conference on Image
Processing (ICIP), volume 3, pages 444–447, 1995. 3

[20] Storyblocks.com. www.videoblocks.com. 6
[21] Shoichiro Takeda, Yasunori Akagi, Kazuki Okami, Megumi

Isogai, and Hideaki Kimata. Video magnification in the
wild using fractional anisotropy in temporal distribution. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 1614–1622, 2019. 1, 3, 8

[22] Shoichiro Takeda, Kazuki Okami, Dan Mikami, Megumi
Isogai, and Hideaki Kimata. Jerk-aware video acceleration
magnification. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 1769–1777, 2018. 1, 2,
3, 4, 5, 6, 7, 8

[23] Carlo Tomasi and Roberto Manduchi. Bilateral filtering for
gray and color images. In IEEE International Conference on
Computer Vision (ICCV), pages 839–846. IEEE Computer
Society, 1998. 2

[24] Manisha Verma and Shanmuganathan Raman. Edge-aware
spatial filtering-based motion magnification. In International
Conference on Computer Vision & Image Processing, pages
117–128, 2018. 8

[25] Neal Wadhwa, Michael Rubinstein, Frédo Durand, and
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