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Abstract

Recent advances in contrastive learning have enlight-
ened diverse applications across various semi-supervised
fields. Jointly training supervised learning and unsuper-
vised learning with a shared feature encoder becomes a
common scheme. Though it benefits from taking advantage
of both feature-dependent information from self-supervised
learning and label-dependent information from supervised
learning, this scheme remains suffering from bias of the
classifier. In this work, we systematically explore the re-
lationship between self-supervised learning and supervised
learning, and study how self-supervised learning helps ro-
bust data-efficient deep learning. We propose hyperspher-
ical consistency regularization (HCR), a simple yet effec-
tive plug-and-play method, to regularize the classifier us-
ing feature-dependent information and thus avoid bias from
labels. Specifically, HCR first project logits from the clas-
sifier and feature projections from the projection head on
the respective hypersphere, then it enforces data points on
hyperspheres to have similar structures by minimizing bi-
nary cross entropy of pairwise distances’ similarity met-
rics. Extensive experiments on semi-supervised and weakly-
supervised learning demonstrate the effectiveness of our
method, by showing superior performance with HCR.

1. Introduction

The last decade has witnessed revolutionary advances in
deep learning across various computer vision fields such as
image classification [26,29,38,72], object detection [48,64—

], and semantic segmentation [25,47,67] in the presence
of large-scale labeled datasets. However, massive collec-
tion and accurate annotation of datasets are time-consuming
and expensive. In many practical situations, only small-
scale high-quality labeled datasets are available. For this
reason, semi-supervised learning (SSL) that learning from
few labeled data and a large number of unlabeled data has
received broad attention [4,5,42,62,63,69,71,73,84,85].
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Figure 1. Illustration of contrastive learning on the hypersphere.
Red arrows denote positive pairs tend to attract each other, and the
gray arrow denotes negative pairs tend to repel each other.

With the development of contrastive learning [7, 911,
,24,27,28,45,74,80,90,94], recent SSL algorithms [23,
,43,70,79,81,92] tend to extend self-supervised learn-

ing into supervised learning by adding a branch network as
a projection head that jointly learns from feature-dependent
and label-dependent information. Though the feature en-
coder is supposed to learn better by making agreements
from different views on latent spaces, the classifier which
determines the ultimate predictions still suffers from the
bias of semi-supervision or weak-supervision. Typically,
[33, 93] found that data imbalance is not the key issue in
learning high-quality representations from long-tail data,
while simply adjusting the classifier with balanced sam-
pling can effectively alleviate the imblanced bias. This phe-
nomenon suggests that decent representation may help but
not be enough for robust learning, while regularizing the
classifier is necessary to improve learning performance.
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A vast number of current empirical contrastive learning
methods [9-11,20,24,28,45] project feature embeddings on
a hypersphere through /5 normalization while maximizing
distances between negative pairs and minimizing distances
between positive pairs, as shown in Figure 1. Restricting
the output space to a unit hypersphere can improve training
stability in machine learning where dot products are ubig-
uitous [77, 80, 86]. Besides, well-clustered features on the
hypersphere are linearly separable from the rest of the fea-
ture space. The above desirable traits are considered to be
useful while regularizing the classifier.

linear classifier

Figure 2. Linear classifier learns to separate the hypersphere
through the hyperplane.

In this work, we analyze the relationship between the
projection head and the classifier, and propose hyperspheri-
cal consistency regularization (HCR) to constrain the latent
hyperspherical space. As shown in Figure 2, a decent clas-
sifier is able to find an optimal hyperplane in a hypersphere
manifold, and data points on the classifier’s hyperplane can
be reprojected on a hypersphere. HCR assumes data points
on the projection head’s hypersphere and the classifier’s hy-
persphere have similar geometric structures, and preserves
such structures by making distributions of pairwise dis-
tances consistent. Experiments on semi-supervised learning
and weakly-supervised learning indicate HCR can consid-
erably improve the generalization ability.

2. Related works
2.1. Contrastive learning

Self-supervised learning designs pretext tasks [19, 58,
, 91] to produce supervision signals derived from the
data itself, while contrastive learning is its subset that aims
to group similar samples closer and diverse samples away

from each other [7,9-11,20,24,27,28,45,74,80,83,90,94].
Inspired by the important technique ¢ normalization on
metric learning [52,68,77], [83] takes the class-wise super-

vision to the extreme of instance-wise supervision and tries
to maximally scatter the features of samples over the unit
hypersphere. Most of the subsequent works [7,9—-11,20,24,

,28,45] on contrastive learning employ {5 normalization
as a standard setting, while [80] highlights /> normaliza-
tion helps contrastive learning optimize uniformity of the
induced distribution of the features on the hypersphere to-
gether with the alignment of features from positive pairs.
Representation learning benefits from the desirable traits
of placing features on the unit hypersphere that improving
training stability and separable ability.

Extending contrastive learning to semi-supervised learn-
ing or weakly-supervised learning is straightforward. Sup-
Con [34] proposes class-wise contrastive loss under fully-
supervised setting and inspires researchers to focus on the
power of contrastive learning in supervised scenarios. Self-
Tuning [81] explores group contrastive learning and tackles
confirmation bias and model shift issues in an efficient one-
stage framework towards data-efficient transfer learning
and semi-supervised learning. CoMatch [43] unifies con-
trastive learning, consistency regularization, entropy mini-
mization and graph-based SSL to mitigate confirmation bias
in pseudo-label-based semi-supervised learning. PSC [79]
proposes a hybrid network that jointly performs both self-
supervised learning and prototypical supervised contrastive
learning in a cumulative learning manner. BalFeat [32]
combines strengths of supervised methods and contrastive
methods to learn representations that are both discrimina-
tive and balanced. MoPro [44] simultaneously optimizes
classical supervised loss and prototypical contrastive loss
using momentum prototypes and tries to achieve robust
weakly-supervised learning. Co-learning [71] rethinks that
the co-training-based noisy label learning methods provide
limited information gain since the differences between two
networks of the same architecture mainly come from ran-
dom initialization. Thus, this method explores intrinsic sim-
ilarity and structural similarity to combat noisy labels.

These methods [12,32,43,71,79,81] have similar archi-
tectures that concurrently optimize typical contrastive learn-
ing and supervised learning with certain techniques. We can
see this manner from a different perspective: both label-
dependent supervised learning and feature-dependent con-
trastive learning are pretext tasks that aim to learn proper
representations. Previous works [2, | 7] combine different
pretext tasks to boost self-supervised learning performance
and find there exist relationships between pretext tasks in
which regularization is in need. Thus, our method regu-
larizes the implicit connections between supervised learn-
ing and self-supervised learning in hypersphere space as
shown in Figure 3. HCR builds a bridge between classi-
cal supervised learning and pretext tasks in self-supervised
learning, and the regularization is plug-and-play to apply in
these joint-learning methods.
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Figure 3. Conceptual illustration of different learning paradigms. We suppose supervised learning and self-supervised learning learn
proper representations through different pretext tasks relying on label-dependent and feature-dependent information respectively. HCR
takes supervised learning as the primary task and forces self-supervised learning to assist it from another perspective.

2.2. Learning on the hypersphere

There are quite a number of methods that learn represen-
tations on the hypersphere [8, 15,16,30,46,49-51,53,54,60,

,87] and show that the key semantics in neural networks
is angular information instead of magnitude. MHE [49]
draws inspiration from the Thomson problem to regular-
ize networks with a minimum hyperspherical energy objec-
tive for improving the generalization ability of networks.
CoMHE [46] shows that naively minimizing hyperspher-
ical energy suffers from difficulties due to highly nonlin-
ear and non-optimization, and proposes projecting neurons
to suitable subspaces where hyperspherical energy can get
minimized efficiently. Moreover, Johnson-Lindenstrauss
lemma [14] establishes a guarantee for COMHE’s projec-
tions. SphereGAN [60] remaps Euclidean feature spaces
into the hypersphere by geometric transformation and cal-
culates geometric moments for minimizing the multiple
Wasserstein distances of probability measures on the hyper-
sphere. Our work reprojects the Euclidean feature space of
the classifier into a hypersphere and explores its connection
with the projection head’s hypersphere.

3. Methods
3.1. Preliminaries

HCR focuses on regularizing the manner that is jointly
training supervised learning and self-supervised learning
and tries to find their relationships. Suppose X C R" is
the n-dimensional Euclidean image space, and J) = {0,1}¢
is the ground-truth label space with ¢ classes in an one-
hot manner if the label exists. The usual framework con-
sists of a classifier g : RPs — RPs and a projection
head h : RP# — SPr=1 with their shared feature encoder
f 2 € X — RPs, where Dy, Dy, Dy, denote the di-
mension of output Euclidean spaces from f, g, h respec-
tively. HCR imposes constraints in hyperspherical spaces
so that the classifier g : RPs — SPs~1 outputs a (D, — 1)-
dimensional hypersphere S”s~! by mapping the original
outputs to ¢» normalized feature vectors of dimension D,,.

3.2. Hyperspherical consistency regularization

As the classifier g(-) and the projection head h(-) per-
form different tasks according to the same features from the
feature encoder f(-), HCR assumes there exists a distance-
preserving mapping F : RP» — RPs and its inverse map-
ping F~1 : RPs — RP* that establish the connections of
points on the hyperspheres. We argue that the relationship
of the hyperspheres from different tasks can be character-
ized by the geometric property. Here, we consider the pair-
wise distance as the key geometry property, and force points
on the classifier’s hypersphere to have a similar structure as
the projection head’s, as shown in Figure 4.

projection head’s hypersphere classifier’s hypersphere

Figure 4. Preserve the geometry structure of data points lies on
hyperspheres by their pairwise distances.

We first define the pairwise distances on the respective
hyperspheres as:

dg(zi,x5) = llg o f (i) — g o f(x;)ll,

1
dn(eay) = [ho fa) —ho fay)l, O

where || - || denotes Euclidean distance. While z;,2; € X
and 7 # j, we use dg and dj, to represent the sets of pair-
wise distances on X for notation simplicity. To measure the
pairwise distances on hyperspheres with different dimen-
sions, we define similarity metrics p(d,) and ¢(dy) that are
considered to be normal distributions multiplied by constant
terms (see Sec 4.1):
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where Cj, C}, are constants that forces the similarity metric
tobein [0, 1]. o4, ttg, op, pr can be chosen according to the
situations. For the convenience of optimization, we empir-
ically assumes p(dy), q(d,) ~ N(0, %) in all experiments
except especially mentioned.

As contrastive learning tries to push away samples from
different classes and pull together samples from the same
classes, the respective similarity metrics are supposed to be
approaching either zero or one. Thus, we define the objec-
tive of HCR that minimizing the binary cross entropy (BCE)
between p(d,) and g(dy,):

HCR(p(dy), ¢(dn)) = BCE(p(dy) || q(dn))
= —p(dg)log g(dn) — (1 = p(dy)) log(1 — q(dn)),
Through minimizing Equation 3, the mutual information

I(go f(x),h o f(x)) between logits g o f(x) and feature
projections h o f(z) is implicitly maximized (see Sec 4.2).

3)

3.3. HCR as a regularization for learning

Now that we have introduced the formulation of HCR,
here we propose HCR as a regularization for semi-
supervised or weakly-supervised learning. While HCR im-
poses the consistency between the classifier and the pro-
jection head on the hyperspherical latent spaces, it is suit-
able for the jointly learning manner that performs super-
vised learning and self-supervised learning simultaneously.
In such a setting, the entire objective function can be repre-
sented as:

L= Y Ly + ) Lu)

(2y)EXXY TEX 4
+ HCR(p(dy), q(dn)),

where L denotes the supervised loss for the labeled data,
and £, denotes the contrastive loss (i.e., the commonly-
used InfoNCE [59]) for the unlabeled data. HCR regular-
izes supervised learning and explores its connections with
contrastive learning so that both £ and £,, are needed.

3.4. Relations to supervised contrastive learning

Similar to SupCon [34], HCR leverages contrastive
learning to benefit vanilla supervised learning. While Sup-
Con explicitly pushes apart clusters of samples from differ-
ent classes and pulls together clusters of samples belonging
to the same class in a self-supervised contrastive manner,

HCR implicitly makes agreements on latent hyperspherical
spaces between contrastive learning and supervised learn-
ing. Moreover, SupCon directly imposes contrastive loss to
standard cross entropy, which requires a full exploration of
label information so that it is limited in supervised learning
fashion. HCR forces supervised learning to imitate con-
trastive learning in latent spaces without extra label infor-
mation so that it can conveniently fit into semi-supervised
learning and weakly-supervised learning frameworks.

4. Theoretical Insights

This section is inspired by rigorous theoretical results
from [1,3,6,13,14,18,21,31,35,39,55,75] and provides
theoretical and intuitive perspectives about HCR.

4.1. Distribution of distance on a hypersphere

Theorem 1. (Asymptotic form of the distribution of Eu-
clidean distance in a hypersphere for large dimensions).
Given the D-dimensional hypersphere SP(a) with radius
a, x; and x;(Vi # j) are any two points chosen at random
in S™(a) whose Euclidean distance is denoted by (0 < r <
2a). Then, the asymptotic distribution of v is N (v/2a, %)
as D — oo.

Theorem 1, which has been heavily studied in [1,21,55],
tells us the distribution of Euclidean distance in a hyper-
sphere obeys normal distribution as the dimension of the
hypersphere becomes large. Though HCR only considers
the case that points on the hypersphere surface and ignores
the points inside, it still agrees with this theorem. HCR
models the pairwise distance distribution as normal distri-
bution and tries to utilize pairwise distances as a key prop-
erty for preserving the geometric structure of the projection
head’s outputs. Thus, HCR builds a bridge between feature-
dependent information and label-dependent information.

4.2. Connections between hyperspheres

Theorem 2. (Johnson-Lindenstrauss lemma). Let ¢ €
(0,1). Let N,D, € N such that D, < Ce 2log N, for a
large enough absolute constant C. Let H C RP» be a set of
N points. There exists a linear mapping F : RP» — RPs,
such that for all h;, h; € H:

(L=Olhi=h;|* < ||Fohi—Fohy||* < (1+€)|lhi—hyl|*.

®)
The famous Johnson-Lindenstrauss lemma has found nu-
merous applications that includes searching for graph em-
bedding, manifold learning and dimension reduction. Here,
this lemma guarantees the projection of two points from
high-dimensional space to low-dimensional space preserves
their Euclidean distance with high probability. Though the
dimensions of feature projections ho f () and logits go f (z)
are usually not the same, HCR preserves their relative dis-
tances under this theorem.
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Theorem 3. (Mutual information’s invariance property to
reparametrization of the marginal variables). If H' =
F(H) and G’ = T(G) are homeomorphisms (i.e. smooth
uniquely invertible maps), then the mutual information
I(H,G)=1(H,&).

This theorem [13,35,75] reveals the possible connections
beween go f(x) and ho f(x). We discuss that Equation 3 is
preserving pairwise distances between the projection head’s
and the classifier’s hyperspherical spaces. For those limited
data points, we consider the mapping F from the projection
head h to the classifier g is approaching bijective through
preserving pairwise distances. Since when F is invertible,
the mutual information is:

I(ho f(z),g0 f(x)) = I(ho f(x),Fo(hof(x))) ©)
= I(ho f(x),ho f(x))

so that it is maximized. Thus, HCR preserves the distri-
butions of pairwise distances that implicitly maximizes the
mutual information I(h o f(x),g o f(x)).

5. Experiments

To validate the effectiveness of our proposed HCR,
we conduct experiments on various tasks, such as semi-
supervised learning, fine-grained classification, and noisy
label learning, among which the latter two tasks belong to
weakly-supervised learning.

5.1. Baselines

We take the recent typical works Self-Tuning [81] and
Co-learning [71] as our baselines on account of their jointly
learning manner, that is, both of them build the network ar-
chitecture using a shared feature encoder with a classifier
and a projector head and train two heads simultaneously
though in different ways.

Self-Tuning unifies the exploration of labeled data and
unlabeled data and the transfer of a pretrained model in a
pseudo group contrast (PGC) mechanism. The vanilla con-
trastive learning maximizes the similarity between query ¢
with its corresponding positive key kg (a different view of
the same data sample):

exp(q - ko/T)
exp(q - ko/7T) + ZdD:1 exp(q - kq/T)

where 7 is a hyperparameter for temperature scaling. Self-
Tuning modifies the contrastive mechanism by introducing
a group of positive keys from samples with the same pseudo
label to contrast with other samples as follows:

LCL = - log ) (7)

5 A
1 log P~ k4 /7)

D+1="" exp(q-kJ/™) + Neg

®)

Lpac = —

where Neg = Ziifc}\y Z]D:1 exp(q - k§/7), D is the
number of classes, ¢ denotes the pseudo label. Equation 7
and Equation 8 are corresponding to the unlabeled loss £,

in Equation 4.

Self-Tuning has bridged supervised learning and self-
supervised learning by guiding the contrastive mechanism
of the projection head through pseudo labels produced by
the classifier. However, this scheme can only help the fea-
ture encoder obtain decent representations while the bias of
the classifier remains unavoidable. Thus, we expect the pro-
jection head to benefit the classifier as well through HCR as
shown in Figure 5.

. classifier Cross-entropy loss
‘ Granilsr g > Contrastive loss
f L. —> Pseudo group contrast
projection HCR regularization
x lU - — he;’;xd

Figure 5. The illustration of Self-Tuning with HCR. ¥ denotes
data samples from the labeled dataset, and ¥ denotes data sam-
ples from the unlableed dataset. PGC uses pseudo label informa-
tion from the classifier to guide the projection head, while HCR
reversely uses projections to correct the classifier.

Co-learning is a recent work that challenges the co-
training scheme in noisy label learning. It provides per-
spectives from both supervised learning and self-supervised
learning through the above mentioned jointly learning man-
ner. As the classifier is extremely unreliable in noisy learn-
ing settings, Co-learning also proposes a structural sim-
ilarity that imposes structure-preserving constraints simi-
lar to HCR. Co-learning directly assumes the pairwise dis-
tance follows a normal distribution and minimizes the Kull-
back-Leibler (KL) divergence of the distributions between
the projection head and the classifier.

However, Co-learning cannot theoretically guarantees
that the structure-preserving constraints are well performed.
As shown in Figure 6, we train Co-learning and HCR on
the CIFAR-10 dataset with 80% symmetric noise for a hun-
dred epochs, and present the hyperspherical distance dis-
tributions. The initial hyperspherical pairwise distances of
the projection head are roughly in [0,0.5]. After training,
they become large, which suggests the conclusion of [80]
is correct, i.e., contrastive learning is trying to make fea-
tures uniformly distributed on the hypersphere rather than
concentrating in a local area. Moreover, the distance distri-
bution learned by HCR preserves the structure better than
Co-learning’s because the classifier’s distance distribution
is balanced referring to the projection head’s.
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Figure 6. The hyperspherical distance distributions of the CIFAR-10 dataset with 80% symmetric noise.

5.2. Semi-supervised learning

Following the same experimental setting as [81], we
compare Self-Tuning with HCR against three classical
semi-supervised learning methods: Pseudo-Labeling [41],
II-model [40], and Mean Teacher [73], as well as three re-
cent methods UDA [85], FixMatch [69], SImCLRv2 [10],
and Self-Tuning itself [81]. Experiments are conducted
on three mainstream visual datasets: Stanford Cars [360],
FGVC Aircraft [56], CUB-200-2011 [76], and CIFAR-
100 [37]. Stanford Cars contains 16185 images of 196
classes of cars, and the pixel resolution is 360 x 240. FGVC
Aircraft consists of 10000 images of 100 different aircraft
model variants. The image resolution is about 1-2M pix-
els, but its width and height are not fixed. CUB-200-2011
is a dataset with totally 6033 images of 200 bird species,
and each image has about less than 250 thousand pixels.
CIFAR-100 is a classical visual dataset with 100 classes and
600 images per class, and the image resolution is 32 x 32.

For a fair comparison, all these methods implement a
ResNet-50 model and initialize it from ImageNet-pretrained
weights. Besides, we remove the last layer of the pretrained
model and add the projection head h and classifier g with
randomly initialized weights. The default temperature 7 is
0.07, and the learning rate is 0.001. The optimizer follows
the original Self-Tuning, which is SGD with a momentum
of 0.9. Experiments are repeated three times with different
random seeds, and we report the average test accuracy of
three trials for each experiment. When we reproduce Self-
Tuning, we unexpectedly find the results are better than its
paper reported, thus we honestly report the reproduced re-
sults rather than using results from its paper.

As reported in Table 1, HCR significantly improves the
performance of Self-Tuning by an average of 2.30% in dif-
ferent label proportions. Moreover, HCR obtains averagely
3.77% improvements under the condition of 15% label pro-
portion, which indicates the effectiveness of HCR with ex-
tremely few labels.

Table 2 shows results on FGVC Aircraft dataset. As

Table 1. Classification accuracy (%) 1 of semi-supervised learning
methods on Stanford Cars dataset (ResNet-50 pretrained).

Label Proportion

Method 15% 30% 50%
Pseudo-Labeling ~ 40.93+023  67.0240.19  78.71+0.30
T-model 45194021  57.294026  64.18-0.29
Mean Teacher ~ 54.2840.14  66.0240.21  74.24-0.23
UDA 39904043 64164040  71.86+0.56
FixMatch 49.8640.27  77.544029  84.78+033
SimCLRv2 45744016  61.7040.18  77.49+0.24
Self-Tuning 749940.11  8587+0.04  89.83+0.01
Self-TuningtHCR ~ 78.76-0.08  87.70+£0.07  91.14-:0.06

we can see, the observations are consistently the same as
those for Stanford Cars dataset, which is, HCR is still able
to obtain large gains (averagely 3.03%) even Self-Tuning
has achieved a very high accuracy. Also, the lower the label
proportion, the larger the improvements brought by HCR.

Table 2. Classification accuracy (%) 1 of semi-supervised learning
methods on FGVC Aircraft dataset (ResNet-50 pretrained).

Method Label Proportion

15% 30% 50%
Pseudo-Labeling 46.83£0.30  62.7740.31 73.21+0.39
II-model 37.72£0.25  58.49+0.26  65.63+0.36
Mean Teacher 51.59+0.23  71.62£0.29 80.31+0.32
UDA 43.96+£0.45  64.17+£049  67.42+0.53
FixMatch 55.53£0.26  71.35+0.35 78.341+0.43
SimCLRv2 40.78+0.21 59.03+£0.29  68.5440.30
Self-Tuning 66.68+£0.17  79.94+0.09 84.351+0.08
Self-Tuning+HCR ~ 70.54+0.02  82.64+0.04  86.89+0.15

We report results on CUB-200-2011 dataset in Table 3.
It can be seen that applying HCR yields better performance
than the original Self-Tuning.

Note that the improvement on CUB-200-2011 dataset is
slightly less than the former two datasets. The reason is
that the average number of samples per class of CUB-200-
2011 is much less than Stanford Cars and FGVC Aircraft
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Table 3. Classification accuracy (%) 1 of semi-supervised learning
methods on CUB-200-2011 dataset (ResNet-50 pretrained).

Table 4. Error rates (%) J. of semi-supervised learning methods on
CIFAR-100 dataset with 2500 labes, and 10000 labels.

Label Proportion

Method 15% 30% 50% Method Network 2.5K 10k
Pseudo-Labeling 45.33+£0.23 56.20+0.29 64.07£0.32 Pseudo-Labeling 57.38 36.21
IT-model 452040.25  58.49+0.26  65.63+0.36 I1-Model 57.25 37.88
Mean Teacher 53.26+0.19  66.66£0.20  74.3740.30 Mean Teacher 5391 35.83
UDA 46.9040.31 61.16£0.35  71.86+0.43 MixMatch WRN-28-8 39.94 28.31
FixMatch 44.064+0.23  63.54£0.18  75.96+0.29 UDA #Para: 1_1 7_6M 33.13 24.50
SimCLRv2 45744+0.15  62.70+£0.24  71.01+0.34 ReMixMatch o 27.43 23.03
Self-Tuning 64.79+£0.06  74.31£0.07  78.451+0.31 FixMatch 28.64 23.18
Self-Tuning+HCR  66.42+0.24  75.06+0.13  79.48+0.16 FixMatch 29.99 21.69
Fme—Tupmg EfficientNet-B2 31.69 21.74

Co-Tuning 30.94 2222

Self-Tuning #Para: 9.43M 24.16 17.57

datasets. It’s difficult for HCR to capture the structure of Self-Tuning+HCR 23.93 16.24

data while those data are sparsely distributed on the hyper-
sphere. We analyze the relationship between average sam-
ples per class and the improvements as shown in Figure 7.

1

EN gt A®
average samples per class

4.0

8 CUB-200-2011
I Stanford Cars
I FGVC Aircraft

improvement
=oNN W W
w o w o w

=
o

Figure 7. The improvements brought by HCR are proportional to
the average number of samples per class.

Except for the visual datasets evaluated in Self-Tuning,
we perform experiments on the standard semi-supervised
learning benchmark CIFAR-100 dataset. The results are
shown in Table 4 and Table 5. Self-Tuning implements
EfficientNet-B2 model [72] as the pretrained weights of
WRN-28-8 [89] are not available. While FixMatch ob-
tains a higher error rate with EfficientNet-B2 than WRN-
28-8, Self-Tuning outperforms those methods on WRN-28-
8. HCR here further increases its leading.

Besides, under extremely few labels condition, HCR
strongly outperforms other methods through promoting
Self-Tuning by 4.46% which is definitely a large margin.
We believe our proposed HCR can play a significant role
in bridging feature-dependent and label-dependent informa-
tion, especially in the case of few labels being available.

5.3. Fine-grained classification

We conduct experiments on fine-grained classification
using fully-labeled Stanford Cars, FGVC Aircraft, and
CUB-200-2011 datasets. The results in Table 6 show that
HCR performs consistently better than the baseline. FGVC

Table 5. Error rates (%) | of semi-supervised learning meth-
ods on CIFAR-100 dataset with only 400 labels (EfficientNet-B2
pretrained). CT: Co-Tuning, PL: Pseduo Labeling, MT: Mean-
Teacher, FM: FixMatch.

Fine-Tuning | L2-SP | DELTA | BSS

60.79 | 59.21 | 58.23 | 58.49

Co-Tuning ‘ Pseudo Labeling ‘ II-model ‘ Mean Teacher
57.58 | 59.21 | 60.50 | 60.68

FixMatch | UDA | SimCLRv2 | CT+PL

57.87 | 5832 | 59.45 | 5621

CT+MT ‘ CT+FM ‘ Self-Tuning ‘ Self-Tuning+HCR
56.78 | 57.94 | 47.17 | 42.71

Aircraft still gets the most improvements, benefited from
its large average number of samples per class as we have
mentioned above. We believe HCR can not only help semi-
supervised conditions but also difficult supervised learning.

Table 6. Classification accuracy (%) 1 of transfer learning methods
on fine-grained datasets.

Method Stanford Cars Aircraft CUB200

Fine-Tuning 87.20+0.19 81.134+0.21 78.011+0.16
L2-SP 86.58+0.26 80.98+0.29 78.444+0.17
DELTA 86.324+0.20 80.44+0.20 78.631+0.18
BSS 87.63+0.27 81.48+0.18 78.851+0.31
Co-Tuning 89.5340.09 83.87+0.09 81.2440.14
Self-Tuning 92.3340.10 88.96+0.21 81.60+0.11
Self-Tuning+HCR 93.034+0.06 90.414+0.03 82.631+0.19

5.4. Noisy label learning

We follows the same experimental settings as [71] to
compare Co-learning with HCR against other co-training-
based noisy label learning methods: Decoupling [57], Co-
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teaching [22], Co-teaching+ [88], JoCoR [82], and Co-
learning itself [71]. We conduct experiments on CIFAR-100
dataset with three different types of noise, i.e., symmetric,
asymmetric, and instance-dependent. The details of these
noise types are in Appendix. Among these noisy types, we
recognize instance-dependent (or feature-dependent) noise
as a more realistic setting because human annotations are
prone to different levels of errors for tasks with varying dif-
ficulty levels. Following [71], we report the average test
accuracy over the last 10 epochs of five trials for each ex-
periment. The base model is ResNet-18.

Tabel 7 shows the results on symmetric noise. As it is the
simplest synthetic noise type, we perform experiments on
high noise ratios as 50% and 80%. While Co-learning has
already shown amazing results on high noise ratios, HCR
further improves Co-learning by averagely 3.92% under dif-
ferent noise ratios.

Table 7. Average test accuracy (%) on CIFAR-100 with symmetric
noise over the last 10 epochs.

Method sym-20% sym-50% sym-80%

Standrad CE 57.79+0.44 33.75+0.46 8.64+0.22
Decoupling 56.18+0.32 31.58+0.54 7.71£0.23
Co-teaching 64.281+0.32 32.62+0.51 6.65+0.71

Co-teaching+ 55.40+0.71 26.4940.45 8.57+1.55
JoCoR 62.291+0.71 30.1940.60 6.84+0.92
Co-learning 66.58+0.15 55.54+0.43 35.45+0.79
Co-learning+HCR ~ 70.274+0.32  59.93+ 0.25  39.1440.47

We report the results on asymmetric noise in Table 8.
HCR significantly improves Co-learning by 3.74% on av-
erage. Moreover, HCR presents more stable results than
Co-learning as the standard deviations are minor.

Table 8. Average test accuracy (%) on CIFAR-100 with asymmet-
ric noise over the last 10 epochs.

Method asym-20% asym-30% asym-40%
Standrad CE 59.36+0.36  51.06+0.44  42.49+0.23
Decoupling 57.974+0.24  49.86+0.54  41.51+£0.67
Co-teaching 59.76+0.53  49.53+0.79  40.62+0.79
Co-teaching+ 56.11+0.60  47.12+0.73 38.98+0.54
JoCoR 58.58+0.51 49.04£0.91 39.724+0.76
Co-learning 65.26+0.76  56.97+1.22  47.62+0.79
Co-learning+tHCR ~ 68.85+0.22  61.94+0.17  50.2940.69

When it comes to instance-dependent 