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Abstract

Automatic lip-reading (ALR) aims to recognize words us-
ing visual information from the speaker’s lip movements.
In this work, we introduce a novel type of sensing de-
vice, event cameras, for the task of ALR. Event cameras
have both technical and application advantages over con-
ventional cameras for the ALR task because they have
higher temporal resolution, less redundant visual informa-
tion, and lower power consumption. To recognize words
from the event data, we propose a novel Multi-grained
Spatio-Temporal Features Perceived Network (MSTP) to
perceive fine-grained spatio-temporal features from mi-
crosecond time-resolved event data. Specifically, a multi-
branch network architecture is designed, in which differ-
ent grained spatio-temporal features are learned by oper-
ating at different frame rates. The branch operating on
the low frame rate can perceive spatial complete but tem-
poral coarse features. While the branch operating on the
high frame rate can perceive spatial coarse but temporal
refinement features. And a message flow module is devised
to integrate the features from different branches, leading
to perceiving more discriminative spatio-temporal features.
In addition, we present the first event-based lip-reading
dataset (DVS-Lip) captured by the event camera. Experi-
mental results demonstrated the superiority of the proposed
model compared to the state-of-the-art event-based action
recognition models and video-based lip-reading models.

1. Introduction
Automatic lip-reading (ALR), also known as visual lan-

guage recognition, aims to decode the text content through
the visual information of the speaker’s lip movements. ALR
has great applications in biometric identification [2], im-
proved hearing aids [40], speech recognition in noisy en-
vironments [29], so that it has attracted much attention in
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Figure 1. Visualization of event frames of different temporal reso-
lutions (25FPS and 200FPS, respectively) and their corresponding
feature maps and feature points that have been dimensionally re-
duced by t-SNE [41]. The low-rate event frames contain complete
spatial features but coarse temporal features, while the high-rate
event frames contain fine temporal features but incomplete spatial
features.
the field of computer vision and pattern recognition over a
long period.

In this paper, we introduce a novel type of optical sen-
sor, event cameras [18], to tackle automatic lip-reading
problem. Event cameras are biologically inspired optical
sensors. Unlike conventional cameras that capture images
at a fixed rate, event cameras capture per-pixel brightness
changes asynchronously in the microsecond level. For the
ALR task that requires the perception of fine-grained spatio-
temporal features, event cameras have significant advan-
tages over conventional cameras in terms of technology and
applications: 1) the high temporal resolution of event cam-
eras allow them to record finer-grained movements; 2) their
output does not contain much redundant visual information
since only brightness changes of the scene are recorded; 3)
they are low-power and can work on challenging lighting
conditions which are essential in real-world applications.
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To correctly recognize words from the event stream, it
is necessary to perceive fine-grained spatio-temporal fea-
tures from the event stream. There are already a number
of event-based action recognition methods [3,6,38,42–44].
Point-cloud-based [42] and graph-based methods [6, 44]
treat events data as point clouds and graph nodes, respec-
tively. However, during the conversion from the original
event data to the point clouds or graph nodes, the fine-
grained temporal and spatial information contained in the
event data is discarded. SNN-based methods [3, 38] pro-
cess the input events stream asynchronously with spiking
neural networks, but they are difficult to train since no ef-
ficient back-propagation algorithm exists. Existing CNN-
based methods [19,43] convert the asynchronous event data
into fixed-rate frame-like representations and feed them into
standard deep neural networks. They also lose varying de-
grees of spatial or temporal information depending on the
temporal resolution of the event frames. In summary, ex-
isting event-based action recognition methods are not suit-
able for the ALR task, which requires the perception of fine-
grained spatio-temporal features from the event data.

In this work, we choose to convert the event data into
multi-grained event frames. As illustrated in Figure 1, the
low-rate event frames contain complete spatial features but
coarse temporal features due to high temporal compres-
sion, while the high-rate event frames contain fine tempo-
ral features but incomplete spatial features since each event
frame is composed of a small number of events. To take
full advantage of the abundant spatio-temporal informa-
tion in the event data, we propose a Multi-grained Spatio-
Temporal Features Perceived Network (MSTP) that takes
multi-grained event frames as input to recognize words. The
proposed model contains two branches, of which the first
branch takes the low-rate event frames as input, allowing
the model to perceive complete spatial structure informa-
tion. In contrast, the second branch takes the high-rate event
frames as input, enabling the model to perceive fine tempo-
ral features. Furthermore, we devise a message flow mod-
ule (MFM) to merge multi-grained spatio-temporal features
learned by different branches, leading to perceiving more
discriminative spatio-temporal features.

Due to the lack of available datasets for event-based
lip-reading, we collected the first event-based lip-reading
dataset (called DVS-Lip) using event camera DAVIS346.
The DVS-Lip contains a total of 19,871 samples, an ex-
ample of which is shown in Figure 3. To explore the ad-
vantages of event cameras in capturing fine-grained move-
ment evolution information, we divided the vocabulary of
the DVS-Lip dataset into two parts. The first part con-
sists of the 25 pairs of visually similar words selected from
the LRW dataset [11], and the second part consists of an-
other 50 randomly selected words from the vocabulary of
the LRW dataset. More details can be found in Sect. 4.1.

We validate the effectiveness of the proposed MSTP by
conducting extensive experiments on the DVS-Lip dataset.
Quantitative results show that: 1) MSTP outperforms ex-
isting event-based action recognition models and the state-
of-the-art video-based lip-reading models on the proposed
dataset for both common and visually similar words; 2) The
proposed message flow module has a more significant im-
provement on visually similar words recognition, thus it is
beneficial to perceive fine-grained spatio-temporal features.

The major contributions of our work can be summarized
in the following four aspects:

• To the best of our knowledge, it is the first work to
study event-based automatic lip-reading. And we pro-
pose a novel event-based automatic lip-reading frame-
work MSTP to perceive multi-grained spatio-temporal
features for words recognition.

• We devise a message flow module to merge multi-
grained spatio-temporal features for more discrimina-
tive features perceiving.

• Considering the lack of a relevant benchmark, we col-
lected the first event-based lip-reading dataset (DVS-
Lip), which will be made available to the community.

• Extensive experiments conducted on the DVS-Lip
dataset show that the proposed method outperforms the
state-of-the-art event-based and video-based methods.

2. Related Work
In this section, we first investigate existing lip-reading

datasets and relevant lip-reading methods. Then we intro-
duce event cameras and existing event-based action recog-
nition methods.
Lip-Reading Datasets. Depending on the recognition ob-
ject, existing lip-reading datasets can be divided into alpha-
bet recognition datasets [13, 27], digit recognition datasets
[4, 28, 31], word recognition datasets [11, 14, 48], and sen-
tence recognition datasets [1, 10, 12, 37]. All of these
datasets are recorded by conventional cameras. In this pa-
per, we focus on word recognition with datasets recorded
by the event camera.
Lip-Reading Methods. State-of-the-art lip-reading meth-
ods are based on deep learning techniques [5, 8, 10, 11, 23,
26, 36, 37]. They leverage end-to-end deep neural networks
to extract visual features and then perform word classifica-
tion. [11] propose a multiple towers architecture that they
first extract shallow visual features of each frame with 2D
convolutions, then concatenate all features. Finally, several
3D convolution layers are used to extract the global visual
features of the video. [17, 26] employ convolutional neural
networks (CNN) as visual feature extractor and then lever-
age recurrent neural networks (RNN) [17] or temporal con-
volutional networks (TCN) [26] to model long-term depen-
dency.
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Event Cameras. Event cameras are neuromorphically in-
spired dynamic vision sensors (DVS) [18], different from
conventional cameras that capture images at a fixed-rate,
event cameras capture per-pixel brightness changes asyn-
chronously in the microsecond level. Event cameras have
attractive advantages over conventional cameras: high tem-
poral resolution (order of µs), low power consumption (or-
der of 10mW), high dynamic range (140 dB), and high pixel
bandwidth (order of kHz). The type of event camera we
used to collect data is DAVIS346, which can simultaneously
output the event stream and intensity images.
Event-based Action Recognition Methods. Event cam-
eras have been used in a wide range of applications [3, 21,
30, 33, 39, 43], among which the most relevant to ours are
gesture recognition [3] and gait recognition [43]. Same
as lip-reading, they are also a type of action recognition
[7, 24, 45, 47] task. Point-cloud-based method [42] treats
events as space-time event clouds and then leverages Point-
Net++ [32] as the feature extractor to extract events fea-
tures. Graph-based methods [6, 44] transform events into
a set of connected nodes and then use GNNs to extract
the spatio-temporal features of events. SNN-based meth-
ods [3, 38] process the input events stream asynchronously
with spiking neural networks, but they are difficult to train
since no efficient back-propagation algorithm exists. CNN-
based methods [19,43] convert the asynchronous events into
fixed-rate frames and feed them into standard deep neural
networks.

3. Method

In this section, we first briefly describe the output for-
mat of the event camera in Sect. 3.1. Then, we introduce
the proposed Multi-grained Spatio-Temporal Features Per-
ceived Network (MSTP) in Sect. 3.2.

3.1. Event Data

An event camera outputs asynchronous event data inde-
pendently at each pixel, it will trigger an event at a spe-
cific pixel u = (x, y) whenever the log brightness change at
(x, y) reaches the contrast threshold, i.e.,

logI(x, y, t)− logI(x, y, t−∆t) = pC, (1)

where I is the brightness of the scene, p ∈ {−1, 1} is the
polarity of the change in brightness, C is the contrast thresh-
old, and ∆t is the time elapsed since the last event triggered
at (x, y). In a given period of time [T0, T1], the output of
the event camera can be formulated as:

E = {ek}Nk=1 = {(xk, yk, tk, pk)}Nk=1, T0 ≤ tk ≤ T1,
(2)

which are scattered points in the space-time dimension.

3.2. Framework

As shown in Figure 2, we propose a novel event-
based lip-reading framework MSTP. Our framework con-
tains three components: 1) projection between the raw event
streams and frame-like representations; 2) a multi-branch
network with message flow modules (MFM) between dif-
ferent branches; 3) a sequence model that decodes the visual
features into words.

3.2.1 Event Representation

One of the most challenging problems for event-based tasks
is how to design an effective event representation. As ana-
lyzed in Sect. 1, it is not optimal to treat event data as point
clouds or graph nodes or directly process them using SNN
for ALR. In this paper, we choose to convert asynchronous
event data into synchronous frame-like representations.

Here we adopt the voxel grid [49], where each event dis-
tributes its polarity p to the two closest spatio-temporal vox-
els, to represent the event data. Given a set of N input
events E = {(xk, yk, tk, pk)}Nk=1 and the temporal bin T ,
the voxel grid approach first scales the timestamps to the
range [0, T −1], then generates event frames V with dimen-
sion T ×H ×W as follows:

t∗k =
T − 1

tN − t1
(tk − t1), (3)

V(t, y, x) =
∑
k

pkmax(0, 1− |t− t∗k|). (4)

In contrast to previous works [33, 49] that use one fixed
temporal bin in their voxel grid representation, we use mul-
tiple temporal bins to keep the spatio-temporal information
of the event stream better. According to Eq.3 and Eq.4,
we convert the input events E = {(xk, yk, tk, pk)}Nk=1 into
low-rate event frames V low with temporal bin set to T low

and high-rate event frames Vhigh with temporal bin set to
Thigh.

3.2.2 Multi-branch Networks

Event frames with different temporal resolutions belong to
the same modality but contain spatio-temporal information
with different granularities. The high-rate event frames con-
tain fine temporal information but incomplete spatial in-
formation, and the opposite is true for the low-rate event
frames as shown in Figure 1. To take full advantage of the
abundant spatio-temporal information in the event data, we
propose a multi-branch network with message flow mod-
ules between different branches, each branch taking event
frames of different temporal resolutions as input. This net-
work architecture allows the model to perceive both com-
plete spatial features and fine-grained temporal features si-
multaneously.
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Figure 2. (Top) The architecture of our proposed Multi-grained Spatio-Temporal Features Perceived Network (MSTP). MSTP consists of
three components: 1) projection from asynchronous raw events to multi-grained synchronous event frames; 2) a multi-branch network with
message flow modules between different branches, which is designed to perceive both complete spatial features and fine temporal features
from the event data; 3) a sequence model for decoding the visual features into words. (Bottom) Message Flow Module (MFM). MFM uses
features learned by different branches to obtain an attention weight map to merge multi-grained spatio-temporal features.

Specifically, each branch of the model is composed of
a 3D convolutional layer and several residual blocks [20].
To maintain the fine-grained temporal features, we preserve
the temporal dimension of each branch. The difference be-
tween them is that the number of channels in the convolu-
tional layers is not the same. Since the high time dimen-
sion leads to a significant increase in computation, we use a
smaller channel in the high-rate branch to reduce the com-
putation. As studied in [15], convolutional layers with lower
channel capacity can weaken the spatial modeling ability
while strengthening the temporal modeling ability and sig-
nificantly reducing the computation. The number of chan-
nels in the convolutional layers of the low-rate branch is
four times higher than that of the high-rate branch in our
implementation.

Different branches of the model focus on learning
spatio-temporal features at different granularities. To per-
ceive more discriminative spatio-temporal features for lip-
reading, we devise a message flow module to enable mes-
sage flow between different branches as illustrated at the
bottom of Figure 2. Let {Flow

l ∈ RT low×Clow
l ×Hl×Wl}Ll=1

and {Fhigh
l ∈ RThigh×Chigh

l ×Hl×Wl}Ll=1 be the output fea-
tures of the low-rate branch and the high-rate branch re-
spectively, where l denotes the layer in which we obtain
the features, L denotes the total layer numbers, T low and

Thigh denote the temporal bins of each branch, Clow
l and

Chigh
l denote the number of channels of the l-th layer of

each branch, Hl and Wl denote the height and width of the
output features from l-th layer. At l-th layer, we first down-
sample Fhigh

l along the temporal dimension by a tempo-
ral convolutional layer. Then concatenate the features from
two branches and use a convolutional layer to fuse them, the
fused features Ffuse

l are obtained by:

Ffuse
l = δ(BN(glf ([gld(Fhigh

l );Flow
l ]))), (5)

where g∗ is the convolutional layer and the same blow, δ
is the Relu function, BN is the batch normalization layer,
and [; ] denotes the concatenation operation.

The features from the higher-rate branch contain finer
temporal information that can guide the learning of the
lower-rate branch to focus on key parts of the features. To
merge features learned by different branches, we use the
fused features Ffuse

l to compute two attention contexts. The
first attention context is a local one:

Atchw
l = BN(gl2(δ(BN(gl1(Ffuse

l ))))), (6)

where Atchw
l ∈ RT low×Cf

l ×Hl×Wl is the local attention
context, Cf

l is the number of channels of Ffuse
l .

The second attention context is computed in temporal-
channel-wise, where a global average pooling is applied in
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Ffuse
l along spatial dimension before computing the atten-

tion context, formally:

Atc
l = BN(gl4(δ(BN(gl3(GAPhw(Ffuse

l )))))), (7)

where Atc
l ∈ RT low×Cf

l ×1×1 is the global attention context,
and GAPhw is the global average pooling along spatial di-
mension.

Then the attention map is computed by:

Attl = σ(Atchw
l

⊕
Atc

l ), (8)

where σ denotes the Sigmoid function,
⊕

denotes the
broadcasting addition.

The attention based augmented features F̃l is computed
by:

F̃l = Flow
l + Ffuse

l

⊗
Attl, (9)

where
⊗

denotes the element-wise multiplication.
To keep the original information from the higher-rate

branch, the downsampled features of Fhigh
l are concatenate

with F̃l as the output features of the message flow module:

Fout
l = [F̃l; gld(Fhigh

l )]. (10)

3.2.3 Sequence Model

Different from previous multi-branch networks [15,16], we
employ a sequence model as the backend of our frame-
work.The sequence model we use is a bidirectional Gate
Recurrent Unit [9], which takes the output of the multi-
branch network, i.e., Fout

L ∈ RT low×Co , as input. Fout
L is

treated as a sequence of length T low, and the dimension of
the feature at each time step is Co. Let P ∈ Rvoc size be the
output probabilities of each word in the vocabulary, where
voc size is the vocabulary size. Then P is computed by

P = Softmax(FC(GAPt(BiGRU(Fout
L )))), (11)

where BiGRU is a three-layer bidirectional Gate Recur-
rent Unit, GAPt is the global average pooling along tem-
poral dimension of the output features of the BiGRU , FC
is a fully connection layer that converts the final visual fea-
ture into probability logit. Finally, P is computed by the
Softmax function.

4. Experiments
In this section, we first detail the dataset collection pro-

cess in Sect. 4.1. Then, we describe the implementation
details of our proposed model in Sect. 4.2. Next, we com-
pare our proposed method with several existing event-based
action recognition methods and the state-of-the-art video-
based method in Sect. 4.3.1. We then conduct some ab-
lation studies to verify the effectiveness of each part of the
proposed model and study the impact of the temporal bin on
the model in Sect. 4.3.2. Finally, we show some qualitative
results of our model in Sect. 4.3.3.

4.1. Dataset Collection

Due to the lack of available datasets for event-based
lip-reading, we collected the first event-based lip-reading
dataset DVS-Lip, using the event camera. The type of event
camera we used is DAVIS346, which can simultaneously
output the event stream and intensity images with a spatial
resolution of 346×260 without viewpoint differences. To
explore the advantages of event cameras in capturing fine-
grained movement evolution information, we divide the vo-
cabulary of the DVS-Lip dataset into two parts, where the
first part is composed of visually similar word pairs and the
second part is composed of common words. The first part
of the vocabulary consists of the 25 most frequently confus-
ing word pairs that are selected from the vocabulary (500
words in total) of the LRW dataset [11]. Refer to the sup-
plementary materials for a more detailed selection of words
included in the first part of the vocabulary. For the sec-
ond part of our vocabulary, we randomly select another 50
words from the vocabulary of the LRW dataset. Combin-
ing the two parts, the vocabulary of the DVS-Lip dataset
contains a total of 100 words. We have listed all the words
contained in the vocabulary in the supplementary materials.

We recruited 40 volunteers to participate in the record-
ing of our dataset in indoor scene, 20 of each gender. We
first constructed 5 sequences, each containing all words in
the vocabulary. To avoid the volunteers reading the same
word too similarly, each sequence was randomly disrupted.
Thus for each word, the words before and after it in each
sequence are different. The volunteers were then asked to
sit in front of the event camera and read each of the five
word sequences once. If a word is mispronounced, we ask
the volunteers to reread the sequence until there are no er-
rors. We simultaneously recorded the audios correspond-
ing to these words, which were used to split the data of
each sequence into word-level samples. We used the Mon-
treal Forced Aligner* to get the start and end time of each
word according to the corresponding audio. For compari-
son with the video-based approach, we kept both the event
streams and the intensity images (25FPS) output from the
event camera. And we used the face detection tool† to ob-
tain the position of the face and mouth and then extracted a
mouth-centered crop of size 128×128 pixels.

A total of 200 word sequences from 40 volunteers were
recorded, each containing 100 words after word-level seg-
mentation. However, due to the damage of a small part of
the event data files, we finally obtained 19,871 valid word
samples, an example of which is shown in Figure 3. We use
the data of 30 volunteers (including 14,896 samples of 15
males and 15 females) for training and the remainder (in-
cluding 4,975 samples of 5 males and 5 females) for evalu-

*https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner
†https://github.com/ageitgey/face recognition
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(a) Raw Events (b) Event Frames

Figure 3. Visualization of an example in the DVS-Lip dataset. Red points denote the positive (p = 1) events while blue points denote the
negative (p = −1) events. (a) Visualization of asynchronous raw events. (b) Visualization of synchronous frame-like event representation
corresponding to the raw events.

Dataset classes Speakers Utterances Language Source
MIRACL-VC [34] 10 15 1500 English Recorded by RGB-D Camera
MODALITY [14] 182 35 231 English Recorded by stereo camera
LRW [11] 500 1000+ 550,000 English Crawling from TV programs
LRW1000 [48] 1000 2000+ 745,187 Chinese Crawling from TV programs
DVS-Lip 100 40 19,871 English Recorded by event camera

Table 1. Statistics of the DVS-Lip dataset, compared with previous video-based word-level lip-reading datasets.
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Figure 4. Word statistics. (left) Word duration. (right) Event num-
bers of each sample.

ation. Therefore, the speakers corresponding to the training
set and the test set do not overlap. The training set and test
set can also be divided into two parts according to which
part of the vocabulary the word comes from. As a result,
7,441 samples belong to the first part and 7,455 samples
belong to the second part of the training set, while 2,493
samples belong to the first part and 2,482 samples belong to
the second part of the test set. Table 1 shows the compari-
son between our dataset and previous word-level lip-reading
datasets. In addition, we counted the duration of words and
the number of events contained in each word, as illustrated
in Figure 4.

4.2. Implementation Details

All the experiments in this work are conducted on our
DVS-Lip dataset. The input spatial dimension of our pro-
posed model is 88×88, so we first perform central cropping
of size 96×96 on the original data. And then, we random
crop the event frames to 88×88 and random flip them with
a probability of 0.5 horizontally for data argumentation in
the training phase. While for testing, we center crop the test
data to 88×88. For the training and evaluation of video-
based methods, if the number of frames contained in each

video clip is larger than 30, we linearly sample 30 of them.
Otherwise, we pad them to the length of 30 with the zero-
padding operation. We set the maximum number of frames
per video to 30 for that most of the videos are shorter than
1.20 seconds according to Figure 4 and all videos have a
frame rate of 25FPS. To keep consistent with the number
of video frames, we set the temporal bin of the input event
frames of the low-rate branch to 30. Thus, our model’s low-
rate branch input has the same temporal resolution as the
video-based methods.

We use the PyTorch‡ framework to implement all the
methods used in this work. Our model is optimized by
Adam Optimizer [22] with standard settings. We use the
cosine annealing scheduler [25] to control the learning rate
during training, in which the initial learning rate is set to
3e-4 and the minimum learning rate is set to 5e-6. We set
the batch size to 32 and trained our model for 80 epochs.

4.3. Experimental Results

4.3.1 Comparisons with State-of-the-art Methods

We compare the proposed Multi-grained Spatio-Temporal
Features Perceived Network (MSTP) with several relevant
action recognition methods, including 1) event-based ac-
tion recognition methods [19,42–44]; 2) video-based action
recognition methods [7, 24, 45]; 3) video-based lip-reading
methods [17, 26, 46].

Quantitative comparison results of the above methods
and our model on the DVS-Lip test set are shown in Table 2.
We can find that our proposed MSTP significantly outper-
forms existing event-based and video-based action recogni-
tion methods on both parts of the test set. It indicates that
our proposed method has a much stronger ability to perceive
fine-grained spatio-temporal features from the event data

‡https://pytorch.org/
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Model Input Temporal Bin BackBone Acc1 (%) Acc2 (%) Acc (%)
Event Clouds [42] event - PointNet++ 35.82 48.51 42.15
EV-Gait-3DGraph [44] event - 3DGraph 26.35 37.75 32.04
EV-Gait-IMG [43] event - - 17.20 25.66 21.42
EV-Gait-IMG∗ [43] event 30 - 28.80 40.21 34.49
EST [19] event 30 ResNet-34 40.91 56.45 48.66
I3D [7] event 30 InceptionV1 58.24 77.68 67.94
TANet [24] event 30 ResNet-101 58.36 79.17 68.74
ACTION-Net [45] event 30 ResNet-50 58.32 79.41 68.84
DFTN [46] video 30 ResNet-18 52.63 73.73 63.16
Feng et al. [17] video 30 ResNet-18 54.23 72.60 63.40
Martinez et al. [26] video 30 ResNet-18 55.60 75.46 65.51
MSTP event (30, 210) ResNet-18 62.17 82.07 72.10

* We use the event frames with the temporal bin set to 30 instead of the four-channel representations in the original paper.

Table 2. Comparisons with existing event-based models and the state-of-the-art video-based models on the DVS-Lip test set. Temporal
bin denotes the temporal dimension of the input event frames or video clip. Acc1 denotes the accuracy on the first part of the test set, Acc2
denotes the accuracy on the second part of the test set, and Acc denotes the accuracy on the entire test set.

Model Temporal Bin Acc1 (%) Acc2 (%) Acc (%)
Low-rate Branch 30 58.84 80.34 69.57
High-rate Branch 210 59.04 79.96 69.49
MSTP(w/o MFM) (30, 210) 60.69 81.59 71.11
MSTP (30, 210) 62.17 82.07 72.10

Table 3. Effectiveness of each part of our MSTP.

than existing action recognition methods. There are obvious
flaws in these approaches. Point-cloud-based method [42]
and graph-based method [44] suffer from downsampling
operation. During the conversion from the original event
data to the point clouds or graph nodes, the fine-grained
temporal and spatial information will be discarded, lead-
ing them to perceive indiscriminative spatio-temporal fea-
tures. Existing CNN-based methods [7, 19, 24, 43, 45] only
use fixed frame rate event frames as input, so they are not
suitable for tasks such as lip-reading that require the per-
ception of fine-grained spatio-temporal features. In con-
trast, our MSTP can learn both complete spatial features
and fine temporal features by feeding multi-grained event
frames into different branches.

It is worth noting that the proposed model also outper-
forms the state-of-the-art video-based lip-reading models.
There are two reasons for it. On the one hand, the event data
contains less redundant visual information due to recording
only brightness changes. On the other hand, our MSTP can
successfully exploit abundant spatio-temporal information
in sparse event data.

4.3.2 Ablation Study

To verify the effectiveness of each part of the proposed
model and study the effect of the temporal bin on the pro-
posed model, we conducted the following two groups of
experiments.

As shown in Table 3, we compare our MSTP with a set of
ablated models with various settings: 1) Low-rate Branch:
using only the low-rate branch of the proposed model; 2)
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Figure 5. Effect of the temporal bin on High-rate Branch and our
full MSTP.

High-rate Branch: using only the high-rate branch of the
proposed model; 3) MSTP(w/o MFM): discarding the mes-
sage flow module and using the lateral connection between
different branches like previous works [15, 16].

According to the results in Table 3, we have the follow-
ing observations. Firstly, multi-branch models outperform
single-branch models. This is because multi-branch models
take event frames of different temporal resolutions as in-
put, leading to learning complete spatial features and fine-
grained temporal features simultaneously. Secondly, our
full MSTP outperforms MSTP(w/o MFM), which demon-
strates that integrating features from different branches with
our designed message flow module can help the model
to perceive more discriminative spatio-temporal features.
Thirdly, the relative improvement on the first part of the
test set is more significant than that of the second part. For
example, comparing Low-rate Branch with MSTP, the ac-
curacy of the first part improved by 3.33 from 58.84 to
62.17, while the accuracy of the second part improved by
only 1.73 from 80.34 to 82.07. This indicates that our pro-
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(a) Ground Truth: AMERICAN    Prediction: AMERICAN

(b) Ground Truth: EXACTLY    Prediction: EXACTLY

/ə/ /me/ /rɪ/ /kən/

/ɪɡ/ /k//zæ / /li//t/

Figure 6. Visualization of the saliency maps for words (a) “American” and (b) “exactly”. The first row of each example shows the saliency
maps for the low-rate branch’s input event frames (T low = 30), and the second row shows the saliency maps for the input event frames
(Thigh = 210) of the high-rate branch.

posed MSTP and the message flow module are effective in
perceiving fine-grained spatio-temporal features.

In addition, we studied the effect of the temporal bin for
High-rate Branch and MSTP as illustrated in Figure 5. We
can observe that the performance of High-rate Branch be-
comes better and then worse as the temporal bin increases.
This is because when the temporal bin is low, the event
frames will discard fine-grained temporal information due
to high temporal compression. When the temporal bin is
high, the spatial structure of the event frames will be cor-
rupted because each event frame is composed of a small
number of events. And the best compromise between com-
plete spatial information and fine temporal information is
achieved when the temporal bin is 90. For our MSTP, the
best performance is achieved when the temporal bin of the
high-rate branch is 210. The low-rate branch of the MSTP
can provide complete spatial features so that the MSTP can
perceive finer-grained spatio-temporal features as the tem-
poral bin of the high-rate branch increases. The results from
Figure 5 demonstrate that our MSTP can benefit from in-
putting multi-grained event frames, which enable our model
to learn both complete spatial features and fine temporal
features.

4.3.3 Qualitative Analysis
For the qualitative analysis, we apply the Grad-CAM [35]
to our MSTP using the samples from the DVS-Lip test set.
Grad-CAM result shows visual saliency regions clearly by
calculating gradients with respect to a unique class. Two
examples are shown in Figure 6. For each example, the first
row shows the saliency maps for the input of the low-rate
branch, and the second row shows the saliency maps for
the input of the high-rate branch. The temporal bin for the
low-rate branch is 30, and the temporal bin for the high-rate

branch is 210. Due to the limited space, we downsample the
saliency maps for the high-rate branch by a factor of 7. At
the same time, the downsampling operation can make the
saliency maps from the two branches aligned in time.

In Figure 6, we can see that the model has correctly
learned to focus on phonologically important regions in the
event frames and the saliency maps from different branches
complement each other. This indicates that our MSTP can
automatically select important spatio-temporal regions for
word recognition from event frame inputs of different gran-
ularities. Accordingly, the model can learn both complete
spatial features and fine temporal features.

5. Conclusion

This paper proposes a novel Multi-grained Spatio-
Temporal Features Perceived Network (MSTP) for event-
based lip-reading. MSTP takes multi-grained event frames
as input through the design of multi-branch architecture,
enabling it to perceive both complete spatial features and
fine-grained temporal features. And a message flow module
is devised to perceive more discriminative spatio-temporal
features. In addition, we collected the first event-based lip-
reading dataset (DVS-Lip) and will make it available to the
community. According to the evaluation on the test set of
the DVS-Lip, our proposed MSTP is significantly superior
to the state-of-the-art event-based and video-based meth-
ods.
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