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Figure 1. Block-NeRF is a method that enables large-scale scene reconstruction by representing the environment using multiple compact
NeRFs that each fit into memory. At inference time, Block-NeRF seamlessly combines renderings of the relevant NeRFs for the given area.
In this example, we reconstruct the Alamo Square neighborhood in San Francisco using data collected over 3 months. Block-NeRF can

update individual blocks of the environment without retraining on the entire scene, as demonstrated by the construction on the right. Video
results can be found on the project website waymo.com/research/block-nerf.

Abstract

We present Block-NeRF, a variant of Neural Radiance
Fields that can represent large-scale environments. Specif-
ically, we demonstrate that when scaling NeRF to render
city-scale scenes spanning multiple blocks, it is vital to de-
compose the scene into individually trained NeRFs. This
decomposition decouples rendering time from scene size, en-
ables rendering to scale to arbitrarily large environments,
and allows per-block updates of the environment. We adopt
several architectural changes to make NeRF robust to data
captured over months under different environmental condi-
tions. We add appearance embeddings, learned pose refine-
ment, and controllable exposure to each individual NeRF,
and introduce a procedure for aligning appearance between
adjacent NeRF's so that they can be seamlessly combined. We
build a grid of Block-NeRFs from 2.8 million images to cre-
ate the largest neural scene representation to date, capable
of rendering an entire neighborhood of San Francisco.

1. Introduction

Recent advancements in neural rendering such as Neural
Radiance Fields [40] have enabled photo-realistic reconstruc-

*Work done as an intern at Waymo.

tion and novel view synthesis given a set of posed camera im-
ages [3,38,44]. Earlier works tended to focus on small-scale
and object-centric reconstruction. Though some methods
now address scenes the size of a single room or building,
these are generally still limited and do not naively scale up
to city-scale environments. Applying these methods to large
environments typically leads to significant artifacts and low
visual fidelity due to limited model capacity.

Reconstructing large-scale environments enables several
important use-cases in domains such as autonomous driv-
ing [30,43,69] and aerial surveying [ 14, 33]. For example,
a high-fidelity map of the operating domain can serve as
a prior for robot navigation. Large-scale scene reconstruc-
tions can be used for closed-loop robotic simulations [13].
Autonomous driving systems are commonly evaluated by re-
simulating previously encountered scenarios. Any deviation
from the recorded encounter, however, may change the vehi-
cle’s trajectory, requiring high-fidelity novel view renderings
along the altered path. Scene conditioned NeRFs can further
augment simulation scenarios by changing environmental

lighting conditions, such as camera exposure, weather, or
time of day.

Reconstructing such large-scale environments introduces
additional challenges, including the presence of transient
objects (cars and pedestrians), limitations in model capacity,
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along with memory and compute constraints. Furthermore,
training data for such large environments is highly unlikely
to be collected in a single capture under consistent condi-
tions. Rather, data for different parts of the environment may
need to be sourced from different data collection efforts, in-
troducing variance in both scene geometry (e.g., construction
work and parked cars), as well as appearance (e.g., weather
conditions and time of day).

We extend NeRF with appearance embeddings and
learned pose refinement to address the environmental
changes and pose errors in the collected data. We addi-
tionally add exposure conditioning to provide the ability
to modify the exposure during inference. We refer to this
modified model as a Block-NeRF. Scaling up the network
capacity of Block-NeRF enables the ability to represent in-
creasingly large scenes. However this approach comes with a
number of limitations; rendering time scales with the size of
the network, networks can no longer fit on a single compute
device, and updating or expanding the environment requires
retraining the entire network.

To address these challenges, we propose dividing up large
environments into individually trained Block-NeRFs, which
are then rendered and combined dynamically at inference
time. Modeling these Block-NeRFs independently allows
for maximum flexibility, scales up to arbitrarily large en-
vironments and provides the ability to update or introduce
new regions in a piecewise manner without retraining the
entire environment as demonstrated in Figure |. To com-
pute a target view, only a subset of the Block-NeRFs are
rendered and then composited based on their geographic lo-
cation compared to the camera. To allow for more seamless
compositing, we propose an appearance matching technique
which brings different Block-NeRFs into visual alignment
by optimizing their appearance embeddings.

2. Related Work
2.1. Large Scale 3D Reconstruction

Researchers have been developing and refining tech-
niques for 3D reconstruction from large image collections
for decades [, 10,31,46,56,78], and much current work re-
lies on mature and robust software implementations such as
COLMAP to perform this task [54]. Nearly all of these recon-
struction methods share a common pipeline: extract 2D im-
age features (such as SIFT [37]), match these features across
different images, and jointly optimize a set of 3D points and
camera poses to be consistent with these matches (the well-
explored problem of bundle adjustment [23, 64]). Extending
this pipeline to city-scale data is largely a matter of imple-
menting highly robust and parallelized versions of these
algorithms, as explored in work such as Photo Tourism [56]
and Building Rome in a Day [1]. Core graphics research
has also explored breaking up scenes for fast high quality
rendering [36].

Target View

Discarded

R «—

@ Block-NeRF Origin |:| Visibility Prediction

Block-NeRF Training Radius E] Color Prediction

Figure 2. The scene is split into multiple Block-NeRFs that are each
trained on data within some radius (dotted orange line) of a specific
Block-NeRF origin coordinate (orange dot). To render a target
view in the scene, the visibility maps are computed for all of the
NeRFs within a given radius. Block-NeRFs with low visibility are
discarded (bottom Block-NeRF) and the color output is rendered
for the remaining blocks. The renderings are then merged based on
each block origin’s distance to the target view.

These approaches typically output a camera pose for each
input image and a sparse 3D point cloud. To get a complete
3D scene model, these outputs must be further processed by
a dense multi-view stereo algorithm (e.g., PMVS [18]) to
produce a dense point cloud or triangle mesh. This process
presents its own scaling difficulties [ 7]. The resulting 3D
models often contain artifacts or holes in areas with limited
texture or specular reflections as they are challenging to
triangulate across images. As such, they frequently require
further postprocessing to create models that can be used to
render convincing imagery [55]. However, this task is mainly
the domain of novel view synthesis, and 3D reconstruction
techniques primarily focus on geometric accuracy.

In contrast, our approach does not rely on large-scale
SfM to produce camera poses, instead performing odome-
try using various sensors on the vehicle as the images are
collected [63].

2.2. Novel View Synthesis

Given a set of input images of a given scene and their
camera poses, novel view synthesis seeks to render observed
scene content from previously unobserved viewpoints, al-
lowing a user to navigate through a recreated environment
with high visual fidelity.

Geometry-based Image Reprojection. Many ap-
proaches to view synthesis start by applying traditional 3D
reconstruction techniques to build a point cloud or triangle
mesh representing the scene. This geometric “proxy” is
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then used to reproject pixels from the input images into
new camera views, where they are blended by heuristic [6]
or learning-based methods [24,51,52]. This approach has
been scaled to long trajectories of first-person video [29],
panoramas collected along a city street [28], and single
landmarks from the Photo Tourism dataset [29]. Methods
reliant on geometry proxies are limited by the quality of the
initial 3D reconstruction, which hurts their performance in
scenes with complex geometry or reflectance effects.

Volumetric Scene Representations. Recent view synthe-
sis work has focused on unifying reconstruction and render-
ing and learning this pipeline end-to-end, typically using
a volumetric scene representation. Methods for rendering
small baseline view interpolation often use feed-forward
networks to learn a mapping directly from input images to
an output volume [ 15, 77], while methods such as Neural
Volumes [35] that target larger-baseline view synthesis run
a global optimization over all input images to reconstruct
every new scene, similar to traditional bundle adjustment.

Neural Radiance Fields (NeRF) [40] combines this single-
scene optimization setting with a neural scene representation
capable of representing complex scenes much more effi-
ciently than a discrete 3D voxel grid; however, its rendering
model scales very poorly to large-scale scenes in terms of
compute. Followup work has proposed making NeRF more
efficient by partitioning space into smaller regions, each
containing its own lightweight NeRF network [42,47,48].
Unlike our method, these network ensembles must be trained
jointly, limiting their flexibility. Another approach is to pro-
vide extra capacity in the form of a coarse 3D grid of latent
codes [34]. This approach has also been applied to compress
detailed 3D shapes into neural signed distance functions [61]
and to represent large scenes using occupancy networks [45].

Concurrent works Mega-NeRF [65] and CityNeRF [67]
utilize NeRFs to represent large scenes. Mega-NeRF splits
data captured from drones into multiple partitions to train
specialized NeRFs. CityNeRF learns a multi-scale represen-
tation from satellite imagery.

We build our Block-NeRF implementation on top of mip-
NeRF [3], which improves aliasing issues that hurt NeRF’s
performance in scenes where the input images observe the
scene from many different distances. We incorporate tech-
niques from NeRF in the Wild (NeRF-W) [38], which adds
a latent code per training image to handle inconsistent scene
appearance when applying NeRF to landmarks from the
Photo Tourism dataset. NeRF-W creates a separate NeRF
for each landmark from thousands of images, whereas our
approach combines many NeRFs to reconstruct a coherent
large environment from millions of images. Our model also
incorporates a learned camera pose refinement which has
been explored in previous works [32,58,66,70,71].

Some NeRF-based methods use segmentation data to
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Figure 3. Our model is an extension of the model presented in
mip-NeRF [3]. The first MLP f, predicts the density o for a
position x in space. The network also outputs a feature vector
that is concatenated with viewing direction d, the exposure level,
and an appearance embedding. These are fed into a second MLP
fe that outputs the color for the point. We additionally train a
visibility network f, to predict whether a point in space was visible
in the training views, which is used for culling Block-NeRFs during
inference.

isolate and reconstruct static [68] or moving objects (such
as people or cars) [43, 74] across video sequences. As we
focus primarily on reconstructing the environment itself, we
choose to simply mask out dynamic objects during training.

2.3. Urban Scene Camera Simulation

Camera simulation has become a popular data source
for training and validating autonomous driving systems on
interactive platforms [2,27]. Early works [13, 19,50,53] syn-
thesized data from scripted scenarios and manually created
3D assets. These methods suffered from domain mismatch
and limited scene-level diversity. Several recent works tackle
the simulation-to-reality gaps by minimizing the distribution
shifts in the simulation and rendering pipeline. Kar ez al. [26]
and Devaranjan et al. [ 1 2] proposed to minimize the scene-
level distribution shift from rendered outputs to real camera
sensor data through a learned scenario generation frame-
work. Richter et al. [49] leveraged intermediate rendering
buffers in the graphics pipeline to improve photorealism of
synthetically generated camera images.

Towards the goal of building photo-realistic and scalable
camera simulation, prior methods [9, 30, 69] leverage rich
multi-sensor driving data collected during a single drive to
reconstruct 3D scenes for object injection [9] and novel view
synthesis [69] using modern machine learning techniques, in-
cluding image GANs for 2D neural rendering. Relying on a
sophisticated surfel reconstruction pipeline, SurfelGAN [69]
is still susceptible to errors in graphical reconstruction and
can suffer from the limited range and vertical field-of-view
of LiDAR scans. In contrast to existing efforts, our work
tackles the 3D rendering problem and is capable of modeling
the real camera data captured from multiple drives under
varying environmental conditions, such as weather and time
of day, which is a prerequisite for reconstructing large-scale
areas.
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3. Background

We build upon NeRF [40] and its extension mip-NeRF [3].
Here, we summarize relevant parts of these methods. For
details, please refer to the original papers.

3.1. NeRF and mip-NeRF Preliminaries

Neural Radiance Fields (NeRF) [40] is a coordinate-based
neural scene representation that is optimized through a dif-
ferentiable rendering loss to reproduce the appearance of a
set of input images from known camera poses. After opti-
mization, the NeRF model can be used to render previously
unseen viewpoints.

The NeRF scene representation is a pair of multilayer
perceptrons (MLPs). The first MLP f, takes in a 3D position
x and outputs volume density ¢ and a feature vector. This
feature vector is concatenated with a 2D viewing direction
d and fed into the second MLP f., which outputs an RGB
color c. This architecture ensures that the output color can
vary when observed from different angles, allowing NeRF
to represent reflections and glossy materials, but that the
underlying geometry represented by o is only a function of
position.

Each pixel in an image corresponds to aray r(¢) = o +
td through 3D space. To calculate the color of r, NeRF
randomly samples distances {¢;}¥; along the ray and passes
the points r(¢;) and direction d through its MLPs to calculate
o; and c;. The resulting output color is

N
Cout = Zwici, where w; = T;(1 — e_A”"i), (D
i=1

T; = exp _ZAjaj , Aj=ti—ti. (2

7<i

The full implementation of NeRF iteratively resamples the
points ¢; (by treating the weights w; as a probability distribu-
tion) in order to better concentrate samples in areas of high
density.

To enable the NeRF MLPs to represent higher frequency
detail [62], the inputs x and d are each preprocessed by a
componentwise sinusoidal positional encoding ypg:

~pE(2) = [5in(2°2), cos(2°2), .. .,sin(28712), cos(28712)] (3)
where L is the number of levels of positional encoding.

NeRF’s MLP f, takes a single 3D point as input. How-
ever, this ignores both the relative footprint of the corre-
sponding image pixel and the length of the interval [¢;_1, t;]
along the ray r containing the point, resulting in aliasing
artifacts when rendering novel camera trajectories. Mip-
NeRF [3] remedies this issue by using the projected pixel
footprint to sample conical frustums along the ray rather than

intervals. To feed these frustums into the MLP, mip-NeRF
approximates each of them as Gaussian distributions with
parameters p,, 3; and replaces the positional encoding ~ypg
with its expectation over the input Gaussian

Ype(1 2) = Ex onu,z) [ee(X)], 4)
referred to as an integrated positional encoding.

4. Method

Training a single NeRF does not scale when trying to
represent scenes as large as cities. We instead propose split-
ting the environment into a set of Block-NeRFs that can
be independently trained in parallel and composited during
inference. This independence enables the ability to expand
the environment with additional Block-NeRFs or update
blocks without retraining the entire environment (see Fig-
ure /). We dynamically select relevant Block-NeRFs for
rendering, which are then composited in a smooth manner
when traversing the scene. To aid with this compositing,
we optimize the appearances codes to match lighting condi-
tions and use interpolation weights computed based on each
Block-NeRF’s distance to the novel view.

4.1. Block Size and Placement

The individual Block-NeRFs should be arranged such
that they collectively achieve full coverage of the target en-
vironment. We typically place one Block-NeRF at each
intersection, covering the intersection itself and any con-
nected street 75% of the way until it converges into the next
intersection (see Figure ). This results in a 50% overlap
between any two adjacent blocks on the connecting street
segment, making appearance alignment easier between them.
We make sure to train each Block-NeRF on data that is con-
fined to a geographic area. This can be automated and only
relies on basic map data, such as OpenStreetMap [22].

Other placement heuristics are conceivable. For example,
for some of our experiments, we place Block-NeRFs along a
street segment at uniform distances and define the block size
to be a sphere around the origin of the blocks (see Figure ).

4.2, Training Individual Block-NeRF's
4.2.1 Appearance Embeddings

Given that different parts of our data may be captured under
different environmental conditions, we follow NeRF-W [38]
and use Generative Latent Optimization [5] to optimize per-
image appearance embedding vectors, as shown in Figure .
This allows the NeRF to explain away several appearance-
changing conditions, such as varying weather and lighting.
We can additionally manipulate these appearance embed-
dings to interpolate between different conditions observed
in the training data (such as cloudy versus clear skies, or
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Figure 4. The appearance codes allow the model to represent different lighting and weather conditions.

day and night). Examples of rendering with different appear-
ances can be seen in Figure <. In § , We use test-time
optimization over these embeddings to match the appear-
ance of adjacent Block-NeRFs, which is important when
combining multiple renderings.

4.2.2 Learned Pose Refinement

Although we assume that camera poses are provided, we find
it advantageous to learn regularized pose offsets for further
alignment. Pose refinement has been explored in previous
NeRF based models [32,58,60,71]. These offsets are learned
per driving segment and include both a translation and a
rotation component. We optimize these offsets jointly with
the NeRF itself, significantly regularizing the offsets in the
early phase of training to allow the network to first learn a
rough structure prior to modifying the poses.

4.2.3 Exposure Input

Training images may be captured across a wide range of
exposure levels, which can impact NeRF training if left
unaccounted for. We find that feeding the camera exposure
information to the appearance prediction part of the model
allows the NeRF to compensate for the visual differences
(see Figure 3). Specifically, the exposure information is
processed as pg (shutter speed x analog gain/t) where vpg
is a sinusoidal positional encoding with 4 levels, and ¢ is
a scaling factor (we use 1,000 in practice). An example of
different learned exposures can be found in Figure

4.2.4 Transient Objects

While the appearance embeddings account for variation in
appearance, we assume that the scene geometry is consis-
tent across the training data. Movable objects (e.g. cars,
pedestrians) typically violate this assumption. We therefore
use a semantic segmentation model [10] to ignore masks
of common movable objects during training. Note that this
does not account for changes in otherwise static parts of
the environment, e.g. construction, it accommodates most
common types of geometric inconsistency.

4.2.5 Visibility Prediction

When merging multiple Block-NeRFs, it can be useful to
know whether a specific region of space was visible to a
given NeRF during training. We extend our model with an
additional small MLP f, that is trained to learn an approx-
imation of the visibility of a sampled point (see Figure 7).
For each sample along a training ray, f, takes in the lo-
cation and view direction and regresses the corresponding
transmittance of the point (7; in Equation ?). The model
is trained alongside f,, which provides supervision. Trans-
mittance represents how visible a point is from a particular
input camera: points in free space or on the surface of the
first intersected object will have transmittance near 1, and
points inside or behind the first visible object will have trans-
mittance near 0. If a point is seen from some viewpoints
but not others, the regressed transmittance value will be the
average over all training cameras and lie between zero and
one, indicating that the point is partially observed. Our visi-
bility prediction is similar to the visibility fields proposed by
Srinivasan et al. [57]. However, they used an MLP to predict
visibility to environment lighting to recover a relightable
NeRF model, while we predict visibility to training rays.
The visibility network is small and can be run indepen-
dently from the color and density networks. This proves
useful when merging multiple NeRFs, since it can help to
determine whether a specific NeRF is likely to produce mean-
ingful outputs for a given location, as explained in §
The visibility predictions can also be used to determine loca-
tions to perform appearance matching between two NeRFs,
as detailed in §

4.3. Merging Multiple Block-NeRFs
4.3.1 Block-NeRF Selection

The environment can be composed of an arbitrary number
of Block-NeRFs. For efficiency, we utilize two filtering
mechanisms to only render relevant blocks for the given
target viewpoint. We only consider Block-NeRFs that are
within a set radius of the target viewpoint. Additionally,
for each of these candidates, we compute the associated
visibility. If the mean visibility is below a threshold, we
discard the Block-NeRF. An example of visibility filtering
is provided in Figure 7. Visibility can be computed quickly
because its network is independent of the color network, and
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Figure 5. Our model is conditioned on exposure, which helps
account for exposure changes present in the training data. This
allows users to alter the appearance of the output images in a
human-interpretable manner during inference.

it does not need to be rendered at the target image resolution.
After filtering, there are typically one to three Block-NeRFs
left to merge.

4.3.2 Block-NeRF Compositing

We render color images from each of the filtered Block-
NeRFs and interpolate between them using inverse distance
weighting between the camera origin c and the centers x; of
each Block-NeRF. Specifically, we calculate the respective
weights as w; o distance(c, z;) P, where p influences the
rate of blending between Block-NeRF renders. The inter-
polation is done in 2D image space and produces smooth
transitions between Block-NeRFs. We also explore other
interpolation methods in §

4.3.3 Appearance Matching

We can control the appearance of our learned models by
an appearance latent code after the Block-NeRF has been
trained. These codes are randomly initialized during train-
ing and the same code therefore typically leads to different
appearances when fed into different Block-NeRFs. This is
undesirable when compositing as it may lead to inconsis-
tencies between views. Given a target appearance in one of
the Block-NeRFs, we match its appearance in the remaining
blocks. To this end, we first select a 3D matching location
between pairs of adjacent Block-NeRFs. The visibility pre-
diction at this location should be high for both Block-NeRFs.
Given the matching location, we freeze the Block-NeRF net-
work weights and only optimize the appearance code of the
target in order to reduce the /5 loss between the respective
area renders. This optimization is quick, converging within
100 iterations. While not necessarily yielding perfect align-
ment, this procedure aligns most global and low-frequency
attributes of the scene, such as time of day, color balance, and
weather, which is a prerequisite for successful compositing.
Figure 6 shows an example optimization, where appearance
matching turns a daytime scene into nighttime to match the
adjacent Block-NeRF. Starting from a root Block-NeRF, we
propagate the optimized appearance through the scene by

iteratively optimizing the appearance of its neighbors. If mul-
tiple blocks surrounding a target Block-NeRF have already
been optimized, we consider each of them when computing
the loss.

5. Results and Experiments

In this section we will discuss our datasets and exper-
iments. We provide the architectural and optimization
specifics in the supplement. The supplement also provides
comparisons to reconstructions from COLMAP [54], a tradi-
tional Structure from Motion approach. This reconstruction
is sparse and fails to represent reflective surfaces and the sky.

5.1. Datasets

We perform experiments on datasets that we collected
for novel view synthesis of large-scale scenes using data
collection vehicles driving on public roads. Existing public
large-scale driving datasets are not designed for the task of
view synthesis. For example, some datasets lack sufficient
camera coverage (e.g., KITTI [21], Cityscapes [ |]) or pri-
oritize visual diversity over repeated observations of a target
area (e.g., NuScenes [7], Waymo Open Dataset [60], Argov-
erse [8]). Instead, these datasets are typically designed for
tasks such as object detection and tracking.

Our dataset includes both long-term sequence data (100's
or more) and distinct sequences captured repeatedly in a
particular target area over a period of several months. We
use image data captured by 12 cameras, where 8 cameras
mounted on the roof of the car provide a 360° surround
view, and 4 cameras located at the front of the vehicle point
forward and sideways. Each camera captures images at
10 Hz and stores a scalar exposure value. The vehicle pose
is known and all cameras are calibrated. We calculate the
corresponding camera ray origins and directions in a com-
mon coordinate system, accounting for the rolling shutter
of the cameras. As described in § , We use a semantic
segmentation model [ 0] to detect movable objects.

San Francisco Alamo Square Dataset. We select San
Francisco’s Alamo Square neighborhood as the target area
for our scalability experiments. The dataset spans an area
of approximately 960 m x 570 m, and was recorded in June,
July, and August of 2021. We divide this dataset into 35
Block-NeRFs. Example renderings and Block-NeRF place-
ments can be seen in Figure |. To best appreciate the scale
of the reconstruction, please refer to supplementary videos.
Each Block-NeRF was trained on data from 38 to 48 differ-
ent data collection runs, adding up to a total driving time of
18 to 28 minutes each. After filtering out some redundant
image captures (e.g. stationary captures), each Block-NeRF
is trained on between 64,575 to 108,216 images. The over-
all dataset is composed of 13.4h of driving time sourced
from 1,330 different data collection runs, with a total of
2,818,745 training images.
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Base Block-NeRF

Adjacent Block-NeRF

Before Appearance Matching

After Appearance Matching

Figure 6. When rendering scenes based on multiple Block-NeRFs, we use appearance matching to obtain a consistent appearance across the
scene. Given a fixed target appearance for one of the Block-NeRFs (left image), we optimize the appearances of the adjacent Block-NeRFs
to match. In this example, appearance matching produces a consistent night appearance across Block-NeRFs.

San Francisco Mission Bay Dataset. We choose San
Francisco’s Mission Bay District as the target area for our
baseline, block size, and placement experiments. Mission
Bay is an urban environment with challenging geometry and
reflective facades. We identified a long stretch on Third
Street with far-range visibility, making it an interesting test
case. Notably, this dataset was recorded in a single capture in
November 2020, with consistent environmental conditions al-
lowing for simple evaluation. This dataset was recorded over
100 s, in which the data collection vehicle traveled 1.08 km
and captured 12,000 total images from 12 cameras. We will
release this single-capture dataset to aid reproducibility.

5.2. Model Ablations

NeRFs || PSNRT | SSIM? | LPIPS|

mip-NeRF || 17.86 | 0.563 | 0.509
-Appearance 20.13 0.611 0.458

g -Exposure 23.55 0.649 0.418
&  -Pose Opt. 23.05 0.625 0.442
Full 23.60 | 0.649 0.417

Table 1. Ablations of different Block-NeRF components on a
single intersection in the Alamo Square dataset. We show the
performance of mip-NeRF as a baseline, as well as the effect of
removing individual components from our method.

We ablate our model modifications on a single intersec-
tion from the Alamo Square dataset. We report PSNR, SSIM,
and LPIPS [76] metrics for the test image reconstructions
in Table |. The test images are split in half vertically, with
the appearance embeddings being optimized on one half and
tested on the other. We also provide qualitative examples
in Figure 7. Mip-NeRF alone fails to properly reconstruct
the scene and is prone to adding non-existent geometry and
cloudy artifacts to explain the differences in appearance.
When our method is not trained with appearance embed-
dings, these artifacts are still present. If our method is not
trained with pose optimization, the resulting scene is blurrier
and can contain duplicated objects due to pose misalignment.
Finally, the exposure input marginally improves the recon-
struction, but more importantly provides us with the ability

to change the exposure during inference.

5.3. Block-NeRF Size and Placement

#Blocks | Weights / Total |  Size | Compute || PSNRT | SSIM? | LPIPS|

1 0.25M/0.25M | 544m 1x 23.83 0.825 0.381
4 0.25M/1.00M | 271m 2x 25.55 0.868 0.318
8 0.25M/2.00M | 116 m 2x 26.59 0.890 0.278
16 0.25M/4.00M | 54m 2x 27.40 | 0.907 0.242
1 1.00M/ 1.00M | 544 m 1x 2490 | 0.852 0.340
4 0.25M/1.00M | 271m 0.5x 25.55 0.868 0.318
8 0.13M/1.00M | 116 m 0.25x 25.92 0.875 0.306

1

[=)}

0.07M/1.00M | 54m 0.125x 2598 | 0.877 0.305

Table 2. Comparison of different numbers of Block-NeRFs for
reconstructing the Mission Bay dataset. Splitting the scene into
multiple Block-NeRFs improves the reconstruction accuracy, even
when holding the total number of weights constant (bottom section).
The number of blocks determines the size of the area each block is
trained on and the relative compute expense at inference time.

We compare performance on our Mission Bay dataset
versus the number of Block-NeRFs used. We show details
in Table 2, where depending on granularity, the Block-NeRF
sizes range from as small as 54 m to as large as 544 m. We
ensure that each pair of adjacent blocks overlaps by 50%
and compare other overlap percentages in the supplement.
All were evaluated on the same set of held-out test images
spanning the entire trajectory. We consider two regimes,
one where each Block-NeRF contains the same number of
weights (top section) and one where the total number of
weights across all Block-NeRFs is fixed (bottom section).
In both cases, we observe that increasing the number of
models improves the reconstruction metrics. In terms of
computational expense, parallelization during training is
trivial as each model can be optimized independently across
devices. At inference, our method only requires rendering
Block-NeRFs near the target view. Depending on the scene
and NeRF layout, we typically render between one to three
NeRFs. We report the relative compute expense in each
setting without assuming any parallelization, which would
also be possible and lead to an additional speed-up. We find
that splitting the scene into multiple lower capacity models
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Block-NeRF

Ground Truth

mip-NeRF

I _Appearance

-Exposure

-Pose Opt.

Figure 7. Model ablation results on multi segment data. Appearance embeddings help the network avoid adding cloudy geometry to explain
away changes in the environment like weather and lighting. Removing exposure slightly decreases the accuracy. The pose optimization
helps sharpen the results and removes ghosting from repeated objects, as observed with the telephone pole in the first row.

can reduce the overall computational cost as not all of the
models need to be evaluated (see bottom section of Table ).

5.4. Interpolation Methods

Interpolation || Consistent? | PSNRT | SSIM? | LPIPS|

- 26.40 | 0.887 0.280
IDW 2D v 26.59 0.890 0.278
IDW 3D - 26.57 0.890 0.278

- 27.39 0.906 0.242
- 27.41 0.907 0.242

Pixelwise Visibility

Nearest
Imagewise Visibility

Table 3. Comparison of interpolation methods. For our flythrough
video results, we opt for 2D inverse distance weighting (IDW) as it
produces temporally consistent results.

We explore interpolation techniques in Table . The sim-
ple method of only rendering the nearest Block-NeRF to
the camera requires the least amount of compute but results
in harsh jumps when transitioning between blocks. These
transitions can be smoothed by using inverse distance weight-
ing (IDW) between the camera and Block-NeRF centers, as
described in § . We also explored a variant of IDW
where the interpolation was performed over projected 3D
points predicted by the expected Block-NeRF depth. This
method suffers when the depth prediction is incorrect, lead-
ing to artifacts and temporal incoherence.

Finally, we experiment with weighing the Block-NeRFs
based on per-pixel and per-image predicted visibility. This
produces sharper reconstructions of further-away areas but is
prone to temporal inconsistency. Therefore, these methods
are best used only when rendering still images. We provide
further details in the supplement.

6. Limitations and Future Work

The proposed method filters out transient objects during
training via masking using a segmentation model. Objects
that are not properly masked can cause artifacts, such as

remaining shadows of cars that have been removed from
the scene. Temporal inconsistencies in the training data,
such as changing vegetation or temporary construction work,
break our assumptions and may result in blurred renderings.
The inability to handle dynamic objects currently limits ap-
plications to closed-loop robotic simulation. These issues
could be addressed by learning transient objects [38] or di-
rectly modeling dynamic objects [43,68]. Our model does
not sample distant objects with the same density as nearby
objects. This issue with sampling unbounded volumetric
representations can lead to blurrier reconstructions. Tech-
niques proposed in NeRF++ [75] and Mip-NeRF 360 [4]
could potentially be used to produce sharper renderings of
distant objects. In many applications, real-time rendering
is key. NeRFs, however, are computationally expensive to
render. NeRF caching techniques [20,25, 73] or sparse voxel
grids [34] could enable real-time Block-NeRF rendering.
Recent work has demonstrated techniques to speed up NeRF
training by multiple orders of magnitude [41,59,72].

7. Conclusion

We propose Block-NeRF, a method that reconstructs arbi-
trarily large environments using NeRFs. We demonstrate the
efficacy of the method by building an entire neighborhood
in San Francisco from 2.8M images, forming the largest neu-
ral scene representation to date. We accomplish this scale
by splitting our representation into multiple blocks that can
be optimized independently. At such a scale, the data col-
lected will necessarily have transient objects and variations
in appearance, which we account for by modifying the un-
derlying NeRF architecture. We hope that this can inspire
future work in large-scale scene reconstruction using modern
neural rendering methods.
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