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Abstract

In the field of computer vision, recent works show that
a pure MLLP architecture mainly stacked by fully-connected
layers can achieve competing performance with CNN and
transformer. An input image of vision MLP is usually split
into multiple tokens (patches), while the existing MLP mod-
els directly aggregate them with fixed weights, neglecting
the varying semantic information of tokens from different
images. To dynamically aggregate tokens, we propose to
represent each token as a wave function with two parts,
amplitude and phase. Amplitude is the original feature
and the phase term is a complex value changing accord-
ing to the semantic contents of input images. Introducing
the phase term can dynamically modulate the relationship
between tokens and fixed weights in MLP. Based on the
wave-like token representation, we establish a novel Wave-
MLP architecture for vision tasks. Extensive experiments
demonstrate that the proposed Wave-MLP is superior to the
state-of-the-art MLP architectures on various vision tasks
such as image classification, object detection and seman-
tic segmentation. The source code is available at https :
//github.com/huawei—-noah/CV-Backbones/
tree/master/wavemlp_pytorch and https://
gitee.com/mindspore/models/tree/master/
research/cv/wave_mlp.

1. Introduction

In computer vision, convolutional neural networks
(CNNs) have been the mainstream architectures for a long
time [19,26,36]. It is challenged by the recent works [9,33,

], in which a standard Transformer [46] model can also
work well on various computer vision tasks, such as im-
age classification, object detection and semantic segmenta-
tion [16]. Considering the high complexity of self-attention
modules in the vision transformer, more simple architec-
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tures (e.g., MLP-Mixer [43], ResMLP [44]) stacking only
multi-layer perceptrons (MLPs) have attracted much atten-
tion. Compared with CNNs and Transformers, these vision
MLP architectures involve less inductive bias and have po-
tential to be applied on more diverse tasks.
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Figure 1. Performance comparison between the proposed Wave-
MLP and existing architectures. Top-1 accuracies on ImageNet
are reported.

Taking a sequence of image patches (tokens) as in-
put, MLP-like models [43, 44] mainly contain two sepa-
rable blocks, i.e., channel-mixing MLP and token-mixing
MLP, both composing of full-connected layers and activa-
tion functions. The channel-mixing MLP transforms feature
of each token and the token-mixing MLP tries to aggregate
information from different tokens. By stacking these two
types of MLP block alternatively, the simple MLP architec-
ture could have sufficient capacity to extract features and
achieve good performance on vision tasks.

However, the performance of MLP architecture is still in-
ferior to that of SOTA Transformer and CNN architectures.
We point out that one of the bottlenecks for vision MLP
lies in its manner of aggregating different tokens, i.e., mix-
ing different tokens with fixed weights of fully-connected
layers. Recall that Transformer [9, 46] aggregates tokens
with weights dynamically adjusted by the attention mech-
anism. The inner products between different tokens are
calculated and tokens with higher similarities tend to have
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Figure 2. The diagram of a block in the Wave-MLP architecture.

larger weights in the aggregation process of each other.
However, the existing vision MLP models aggregate differ-
ent tokens with fixed weights. The same weights are used
for tokens from different input images, neglecting differ-
ences in semantic information of various tokens, which may
not aggregate tokens well for all the input images.

Different from Transformer that delicately designs the
attention mechanism, we aim to improve the representation
way of tokens for dynamically aggregating them according
to their semantic contents. Actually, in quantum mechan-
ics, an entity (e.g., electron, photon) is usually represented
by a wave function (e.g., de Broglie wave) containing both
amplitude and phase [, | 1,20]. The amplitude part mea-
sures the maximum intensity of a wave and the phase part
modulates the intensity by indicating the location of a point
in the wave period. Inspired by the quantum mechanics, we
describe each token as a wave to realize the dynamic aggre-
gation procedure of tokens.

In this paper, we present a novel vision MLP architec-
ture (dubbed as Wave-MLP), which takes each token as a
wave with both amplitude and phase. The amplitude is the
real-value feature representing the content of each token,
while the phase term is a unit complex value modulating
the relationship between tokens and fixed weights in MLP.
The phase difference between these wave-like tokens affects
their aggregated output and tokens with close phases tend to
enhance each other. Considering that tokens from different
input images contain diverse semantic contents, we use a
simple module to dynamically estimate the phase for each
token. With tokens equipped with amplitude and phase in-
formation, we introduce a phase-aware token mixing mod-
ule (PATM in Figure 2) to aggregate these tokens. The
whole Wave-MLP architecture is constructed by stacking
the PATM module and channel-mixing MLP, alternately.

The proposed Wave-MLP architecture shows a large su-
periority to the existing architectures (shown in Figure 1).
For example, the proposed Wave-MLP-S model achieves

82.6% top-1 accuracy on ImageNet with 4.5G FLOPs,
which significantly surpasses Swin-T [33] with 81.3% ac-
curacy and 4.5G FLOPs. Besides, Wave-MLP also achieves
strong performance on the dense prediction tasks such as
object detection and semantic segmentation.

The paper is organized as follows: Section 2 briefly re-
views the existing works about designing model architec-
tures, and Section 3 discusses the proposed Wave-MLP ar-
chitecture detailedly. In Section 4, we empirically investi-
gate the method’s effectiveness on multiple vision tasks and
make conclusions in Section 5.

2. Related Work

CNN-based Architectures. Convolutional neural networks
(CNNs) have been the mainstream in computer vision for
a long time. The prototype of CNN model is presented
in [27] for the document recognition task, where convo-
lution is the core operation. Beginning with great success
of AlexNet [26] in ILSVRC 2012, various architectures
such as GoogleNet [40], VGGNet [38], ResNet [19], Reg-
Net [36] are developed. Though the model architectures
become more complex for pursuing high performance, the
core operations have always the convolution and its vari-
ants. The occurrence of new computing paradigm such as
vision Transformer [46], vision MLP [43] bring new blood
to the area of architecture design in computer vision.
Transformer-based Architectures. Transformer [46] is
originally proposed for the natural language processing
(NLP) tasks such as language modeling and machine trans-
lation. Dosovitskiy et al. [9] introduce it to computer vision
and achieve excellent performance on image classification
tasks especially when training data are extremely sufficient.
Touvron et al. [45] refine the training recipe and present a
teacher-student strategy specific to transformers, which pro-
duce competitive transformer models trained on ImageNet
from scratch. Then many works explore the architecture
design of vision transformers [5, 12, 15, 17,41,42,48,49].
For example, Han et al. [17] present a nested transformer
architecture to capture global and local information simul-
taneously. To be compatible with the dense prediction task
such as object detection and semantic segmentation, hierar-
chical architectures are adopted in [9,21,47], which splits
the whole architecture into multiple stages and reduce the
spatial resolution stage-wisely. Swin Transformer [33] ex-
tract representation with shifted windows and limit the self-
attention in local regions. Compared with the self-attention
in [9] connecting all the tokens in a layer, the shifted win-
dow operation is more efficient.
MLP-based Architectures. Recently, MLP-like architec-
tures composing of fully connected layers and non-linear
activation functions have been paid much attention [0, 13,
,43]. Though they have more simple architectures and in-
troduce less inductive bias, their performances are still com-
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parable with SOTA models. The MLP-Mixer model [43]
uses two type of MLP layers, i.e., channel-mixing MLP
and token-mixing MLPs. The channel-MLP extract fea-
tures for each tokens while the token-mixing MLPs cap-
ture the spatial information. Touvron et al. [44] present a
similar architecture and replace the Layer Normalization [2]
with the simpler affine transformation. Liu et al. [32] em-
pirically validate that MLP architectures with gating can
achieve similar performance with Transformers in both lan-
guage and vision tasks. To preserve the positional infor-
mation of input images, Hou et al. [22] keep the 2D shape
of the input image and extract features by permuting them
along width and height, respectively. Based on MLP-Mixer,
Yu et al. [50] replace the token-mixing MLP with a spatial
shift operation for capturing the local spatial information,
which is also computationally efficient. Currently, Lian et
al. [29] propose to shift tokens along two orthogonal di-
rections to obtain an axial receptive field. Chen et al. [0]
propose a cycle fully-connected layer, which mixes infor-
mation along the spatial and channel dimensions simultane-
ously and can cope with variable input image scales. Dif-
ferent from them, we explore how to represent the tokens in
vision MLP and take each token as a wave with both ampli-
tude and phase. Empirically, we find that our Wave-MLP
architecture achieves a better trade-off between accuracy
and computational cost compared with the existing archi-
tectures.

3. Method

In this section, we discuss the proposed Wave-MLP
models detailedly. After introducing the vision MLP ar-
chitecture briefly, we present the phase-aware token mixing
module (PATM), which represents each token as a wave and
aggregate them by considering amplitude and phase simul-
taneously. At last, we describe the blocks in Wave-MLP and
architecture variants with different computational costs.

3.1. Preliminaries

A MLP-like model is a neural architecture mainly com-
posed of full-connected layers and non-linear activation
functions. For the vision MLP, it first splits an image into
multiple patches (also referred to as tokens) and then ex-
tract their features with two components, i.e., channel-FC
and token-FC described as following.

Denote the intermediate feature containing n tokens
as Z = [z1,%2, - ,2n), Where each token z; is a d-
dimension vector. The channel-FC is formulated as:

Channel-FC(z;, W¢) = W¢;,j=1,2,---n, (1)

where W€ is the weight with learnable parameters. The
channel-FC operates on each token independently to extract
their features. To enhance the transformation ability, multi-
ple channel-FC layers are usually stacked together with the

Pﬁhase ¢
(c) Two waves have the opposite phase.

Figure 3. The interaction between two waves with different phase.
The left is the superposition of two waves in the complex-value
domain, while the right shows how their projections along the real
axis varies w.r.t. the phase. The dashed lines denote two waves
with different initial phase, and the solid line is their superposed
wave.

non-linear activation function, which constructs a channel-
mixing MLP.

To aggregate information from different tokens, the
token-FC operation is required, i.e.,

Token—FC(Z, Wt)j = Z Wfk ©zgj=12--n, (2)
k

where W is the token-mixing weight, ® denotes element-
wise multiplication and the subscript j indicates the j-
th output token. The token-FC operation tries to capture
the spatial information by mixing features from different
tokens. In the existing MLP-like models such as MLP-
Mixer [43], ResMLP [44], a token-mixing MLP is also
constructed by stacking the token-FC layers and activation
functions. Such a simple token-mixing MLP with fixed
weights neglects the varying semantic contents of tokens
from different input images, which is a bottleneck restrict-
ing the representation ability of MLP-like architectures.

3.2. Phase-Aware Token Mixing

To dynamically modulate the relationship between to-
kens and fixed weights in MLP for aggregating tokens more
properly, we take each token as a wave with both amplitude
and phase. We firstly discuss the wave-like representation
of a token and then present the phase-aware token mixing
module (PATM) for aggregating tokens.

Wave-like representation. In Wave-MLP, a token is repre-
sented as a wave z; with both amplitude and phase infor-
mation, i.e.,

zj=|zl0e%,j=1,2, n, 3)

where i is the imaginary unit satisfying i> = —1. | - | de-
notes the absolute value operation and © is element-wise
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multiplication. The amplitude |z;| is a real-value feature
representing the content of each token. ¢%% is a periodic
function whose elements always have the unit norm. 6,
indicates the phase, which is the current location of token
within a wave period. With both amplitude and phase, each
token z; is represented in the complex-value domain.
When aggregating different tokens, the phase term 6;

modulates their superposition modes. Supposing z,, = z1 +
Z, is the aggregated results of wave-like token 21, 2, !, its
amplitude |z,| and phase 6, can be calculated as following:

20| = Vlzi]* +

|22 + 2|z © |zj] © cos(B; — 0;), (4)

97« = 92 + atan2(|zj| ® sin(Oj — 01),

©)
|z:] + |2;] © cos(0; — 6,)),

where atan2(z,y) is the two-argument arctangent func-
tion. As shown in the above equations, the phase differ-
ence |@; — 6;] between two tokens has a large impact on
the amplitude of aggregated result z,. An intuitive dia-
gram is shown in Figure 3. The left is the superposition
of two waves in the complex-value domain, while the right
shows how their projections along the real axis varies w.r.t.
the phase. When two tokens have the same phase (6; =
0; + 2w «m,m € [0,£2,44, - - -]), they will be enhanced
by each other, i.e., |z,.| = ¢ 3 (b)). For the
opposite phase (8; = @;+m*m,m € [£1,+3,---]), the re-
sultant wave will be weakened (|z,| = ||z;|—|z;]|). In other
cases, their interaction is more complex but whether they
will be enhanced or weakened also depends on the phase
difference (Figure 3 (a)). Note that the classical representa-
tion strategy with only real-value feature is a special case of
Eq 3, whose phase 8; is only the integer multiple of 7.
Amplitude. To get the wave-like tokens in Eq. 3, both
amplitude and phase information are required. The am-
plitude |z;| is similar to the real-value feature in the tra-
ditional model, expect for an absolute operation. Actually,
the element-wisely absolute operation can be absorbed into
the phase term, i.e., |zj4|e%t = z; e if z;, > 0, and
|2j.4]et = z; tel(ei ++m) otherwise, where z;, and 6;;
denote the ¢- th element in z; and 8;. Thus we remove the
absolute operation in practical implementation for simplic-
ity. Denoting X = [x1, x2, ..., x,] as the input of a block,
we get the token’s amplitude z; by a plain channel-FC op-
eration, i.e.,

z; = Channel-FC(x;, W¢),j =1,2,--- ,n.  (6)

Phase. Recalling that the phase indicates the current loca-
tion of token in a period of wave, we discuss different strat-
egy to generate phases as following. The simplest strategy

'Without affecting the conclusion, the aggregating weights are set to 1
for simplicity.

(‘static phase’) is to represent the phase 8; of each tokens
with fixed parameters, which can be learned in the training
process. Though the static phase can distinguish different
tokens, it neglects the diversity of different input images ei-
ther.

To capture the particular attributes for each input re-
spectively, we use an estimation module © to generate
the phase information according to input features x;, i.e.,
0; = O(x;, W?), where W? denotes the learnable parame-
ters. Considering that simplicity is an important characteris-
tic of MLP-like architectures, complex operations are unde-
sirable. Thus we also adopt the simple channel-FC in Eq. 1
as the phase estimation module. The estimation module can
also be constructed with other formulations, whose impact
on the model performance is empirically investigated in Ta-
ble 6 of Section 4.4.

Token aggregation. In Eq. 3, the wave-like tokens are rep-
resented in the complex domain. To embed it in a general
MLP-like architecture, we unfold it with Euler’s formula
and represent it with real part and imaginary part, i.e.,

zZj = |Zj‘ ©cosl; + i|Zj| ©sinf;,7=1,2,--- ,n. (7)
In the above equation, a complex-value token is represented
as two real-value vectors, indicating the real and imaginary
parts, respectively. Different tokens z; are then aggregated
with the token-FC operation (Eq. 2), i.e.,

6; = Token-FC(Z,W');,j =1,2,--- ,n, (8)

where Z = [Z1, 2y, , Z,] denotes all the wave-like to-
kens in a layer. In Eq. 8, different tokens interact with
each other considering both the amplitude and phase infor-
mation. The output 0; is the complex-value representation
of the aggregated feature. Following the common quantum
measurement methods [3,24] which project a quantum state
with complex-value representation to the real-value observ-
able, we get the real-value output o; by summing the real
and imaginary part of 0; with weights. Combined with
Eq. &, the output o; can be obtained as:

Z kzk ® cos Oy, + ijzk ® sin Oy,
©
j: 1727"' 2

where W*t, W' are both learnable weights. In the above
equation, the phase 8y, adjusts dynamically according to the
semantic content of input data. Besides the fixed weights,
the phases also modulate the aggregating process of differ-
ent tokens.

In vision MLP, we construct a phase-aware token mix-
ing module (PATM) to conduct the above token aggregating
procedure, which is shown in Figure 2. Given the input fea-
ture x;, the amplitude z; and phase 8; are generated with
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the channel-FC and phase estimation module, respectively.
Then the wave-like token z; is unfolded with Eq. 7 and ag-
gregated to get output feature o; (Eq. 9). The final module
output is obtained by transforming o; with another channel-
FC to enhance the representation capacity.

3.3. Wave-MLP Block

A basic unit in the proposed Wave-MLP mainly contains
two blocks, channel-mixing MLP and phase-aware token-
mixing block (Figure 2). The channel-mixing MLP is stack
by two channel-FC layers (Eq. 1) and non-linear activa-
tion functions, which extracts features for each token. The
token-mixing block composes of the proposed PATM mod-
ules, aggregating different tokens by considering both am-
plitude and phase information.

To be more compatible with computer vision tasks, we
preserve the 2D spatial shape of input image by using
feature maps with shape H x W x C, which H, W,
C are the height, width and channel’s number, respec-
tively. This is a successful practice widely used in re-
cent vision transformer architectures (e.g., PVT [47], Swin-
Transformer [33]). There are two parallel PATM mod-
ules, which aggregate spatial information along high and
width dimensions, respectively. Similar to [0, 22], different
branches are summed with a re-weighting module. In the
traditional MLP-Mixer [43], each token-FC layer connects
all tokens together, whose dimension depends on specific
input size. Thus it is not compatible with the dense pre-
diction tasks (e.g., object detection and semantic segmen-
tation) with varying sizes of input images. To address this
issue, we use a simple strategy that restricts the FC layers
only connect tokens within a local window. The empirical
investigation of the window size is shown in Table 7 of Sec-
tion 4.4. Besides the PATM modules, another channel-FC
connecting the input and output directly is also used to pre-
serve the original information. The final output of the block
is the summation of these three branches.

The whole model is constructed by stacking phase-aware
token-mixing blocks, channel-mixing MLPs, and normal-
ization layers, alternately. To produce hierarchical features,
we split the architecture into 4 stages, which reduces the
size of feature maps and increases the number of channels
stage-wisely. By varying the width and depth of model, we
develop 4 models with different parameters and computa-
tional costs, denoted as Wave-MLP-T, Wave-MLP-S, Wave-
MLP-M, Wave-MLP-B, sequentially. The detailed config-
ures of these models can be found in the supplemental ma-
terial.

4. Experiments

In this section, we empirically investigate the proposed
Wave-MLP architecture on multiple tasks, containing im-
age classification, object detection and semantic segmenta-

Table 1. Comparison of the proposed Wave-MLP architecture with
existing vision MLP models on ImageNet.

Model Params. FLOPs Tbroughput Top-1
(image / s) | acc. (%)
EAMLP-14 [14] 30M - 771 78.9
EAMLP-19 [14] 55M - 464 79.4
Mixer-B/16 [43] S9M 127G - 76.4
ResMLP-S12 [44] 15M 3.0G 1415 76.6
ResMLP-S24 [44] 30M 6.0G 715 79.4
ResMLP-B24 [44] 116M  23.0G 231 81.0
gMLP-S [32] 20M 4.5G - 79.6
gMLP-B [32] 73M  15.8G - 81.6
SZ-MLP-wide [50] 71IM  14.0G - 80.0
S2-MLP-deep [50] 5IM  10.5G - 80.7
ViP-Small/7 [22] 25M 6.9G 719 81.5
ViP-Medium/7 [22] 55M  16.3G 418 82.7
ViP-Large/7 [22] 88M 244G 298 83.2
AS-MLP-T [29] 28M 4.4G 862 81.3
AS-MLP-S [29] 50M 8.5G 473 83.1
AS-MLP-B [29] 88M  15.2G 308 83.3
CycleMLP-B1 [6] 15M 2.1G 1040 78.9
CycleMLP-B2 [6] 27T 3.9G 635 81.6
CycleMLP-B3 [6] 38M 6.9G 371 82.4
CycleMLP-B4 [6] 52M  10.1G 259 83.0
CycleMLP-BS [6] 76M  12.3G 253 83.2
Wave-MLP-T* (ours) | 15M 2.1G 1257 80.1
Wave-MLP-T (ours) 17M 24G 1208 80.6
Wave-MLP-S (ours) 30M 4.5G 720 82.6
Wave-MLP-M (ours) | 44M 7.9G 413 834
Wave-MLP-B (ours) 63M  10.2G 341 83.6

tion. Wave-MLP is firstly compared with the existing vision
MLPs, vision Transformers and CNNs on ImageNet [&] for
image classification. Then it is used as the backbone of two
detectors (RetinaNet [30] and Mask R-CNN [ 8]) for object
detection and instance segmentation on COCO dataset [31].
As for semantic segmentation, the widely used semantic
FPN [25] on ADE20K [54] is adopted. Finally, ablation
studies are conducted to verify the effectiveness of each
component.

4.1. Image Classification on ImageNet

Settings. We conduct image classification experiments
on the benchmark dataset ImageNet [8], which contains
1.28M training images and 50k validation images from
1000 classes. For a fair comparison, we use the same train-
ing strategy as [45]. Specially, the model is trained for 300
epochs with AdamW [34] optimizer, whose learning rate is
initialized as 0.001 and declines with a cosine decay strat-
egy. The batchsize and weight decay are set to 1024 and
0.05, respectively. We use the common data augmenta-
tion strategies following [45], containing Mixup [53], Cut-
Mix [52] and Rand-Augment [7]. At the inference phase,
the top-1 accuracy on a single crop is reported. To be com-

10939



Table 2. Comparison of the proposed Wave-MLP architecture with
SOTA models on ImageNet.

Model Family | Params. FLOPs {?r;(;l;il}p;t a;r:).p(_‘;a )
ResNet18 [19] CNN | 12M  1.8G - 69.8
ResNet50 [19] CNN | 26M  4.1G - 78.5
ResNet101 [19] CNN | 45M 7.9G - 79.8
RegNetY-4G [36] | CNN | 2IM  4.0G 1157 80.0
RegNetY-8G [36] | CNN | 39M  8.0G 592 81.7
RegNetY-16G [36]| CNN | 84M 16.0G 335 82.9
GFNet-H-S [37] FFT | 32M 4.5G - 81.5
GFNet-H-B [37] FFT | 54M 8.4G - 82.9
BoT-S1-50 [39] Hybrid| 21M  4.3G - 79.1
BoT-S1-59 [39] Hybrid| 34M  7.3G - 81.7
DeiT-S [45] Trans | 22M  4.6G 940 79.8
DeiT-B [45] Trans | 86M 17.5G 292 81.8
PVT-Small [47] Trans | 25M  3.8G 820 79.8
PVT-Medium [47] | Trans | 44M  6.7G 526 81.2
PVT-Large [47] Trans | 61M  9.8G 367 81.7
T2T-ViT-14 [51] Trans | 22M  5.2G 764 81.5
T2T-ViT-19 [51] Trans | 39M  8.9G 464 81.9
T2T-ViT-24 [51] Trans | 64M 14.1G 312 82.3
TNT-S [17] Trans | 24M  5.2G 428 81.5
TNT-B [17] Trans | 66M 14.1G 246 82.9
iRPE-K [49] Trans | 87M 17.7G - 82.4
iRPE-QKYV [49] Trans | 22M  4.9G - 81.4
GLiT-Small [4] Trans | 25M  4.4G - 80.5
GLiT-Base [4] Trans | 96M 17.0G - 82.3
Swin-T [33] Trans | 29M  4.5G 755 81.3
Swin-S [33] Trans | SOM  8.7G 437 83.0
Swin-B [33] Trans | 88M 15.4G 278 83.5
Wave-MLP-T* MLP | I5M 2.1G 1257 80.1
Wave-MLP-T MLP | 17TM  24G 1208 80.6
Wave-MLP-S MLP | 30M 4.5G 720 82.6
Wave-MLP-M MLP | 44M  7.9G 413 83.4
Wave-MLP-B MLP | 63M 10.2G 341 83.6

patible with the downstream tasks, we use a local window
for token-FC and set the window size to 7 empirically. By
adjusting the architecture configures, four models (T, S ,M,
B) with different parameters and computational costs are
developed. Besides, by replacing the FC layer of phase esti-
mation module with a depth-wise convolution, an more effi-
cient architecture is developed and denoted as Wave-MLP-
T*. All the experiments are conducted with PyTorch [35]
and MindSpore [23] on NVIDIA V100 GPUs.

Comparison with the existing MLP-like architectures.
Table 1 compares the proposed Wave-MLP with existing vi-
sion MLP models proposed recently or currently. Through-
put is measured on a V100 GPU following [33,45]>. The
family of Wave-MLP achieves a better trade-off between
the computational cost and accuracies than the existing

2Note that AS-MLP [29] reports throughput under the mixed precision
mode (mixed FP16 and FP32). For a fair comparison with the existing
models, we remeasure it with pure FP32 following [33,45]

methods. For example, our Wave-MLP-M model achieves
83.4% top-1 accuracy with only 7.9G FLOPs, which shows
a large superiority to ResMLP-B24 [44] (81.0% accuracy
with 23.0G FLOPs). Compared with the SOTA MLP ar-
chitecture CycleMLP [0], Wave-MLP also achieves higher
accuracies with similar parameters and FLOPs, e.g., Wave-
MLP-T achieve a accuracy of 80.6%, much higher than that
of CycleMLP-B1 with 78.9% accuracy. It shows that equip-
ping each token with the phase information can well capture
the relationship between varying tokens and fixed weights
to improve the performance of MLP architecture.

Comparison with SOTA models on ImageNet. We further
compare the proposed Wave-MLP with typical CNN and
transformer architectures on ImageNet in Table 2. Com-
pared with Swin Transformer [33], our Wave-MLP achieves
higher performance with fewer parameters and computa-
tional costs. For example, with 4.5G FLOPs, Wave-MLP-S
achieves 82.6% top-1 accuracy, wihch significantly supe-
rior to Swin-T with 81.3% accuracy. Its trade-off between
computational cost and accuracy also suppresses the typical
CNN architectures such as RegNetY and ResNetl8. The
superiority of Wave-MLP implies that the simple MLP ar-
chitecture has a large potential and modulating the token ag-
gregating process with phase term can exploit it adequately.

4.2. Object Detection on COCO

Settings. We further investigate the proposed Wave-MLP
architecture on the object detection and instance segmenta-
tion tasks. The experiments are conducted on the COCO
2017 dataset [3 1], which contains 118k training images and
5k validation images. Wave-MLP is used as the backbone
and embedded into two prevalent detectors, RetinaNet [30]
and Mask R-CNN [18]. For a fair comparison, we fol-
low the training recipe in [47] and train the model with
AdamW [34] optimizer for 12 epochs (1x training sched-
uler). The batchsize is set to 16 and initial learning to
0.0001. The backbones are initialized with the pre-trained
weights on ImageNet while other layers are initialized with
Xavier [10].

Results. Table 3 compares the object detection results
with different architectures as the backbone. For both Reti-
naNet and Mask R-CNN, the proposed Wave-MLP achieves
obviously higher performance compared with the existing
models. For example, With RetinaNet 1x, Wave-MLP-
T achieves 40.4% AP with only 25.3M parameters and
196.3G FIOPs, which is higher than CycleMLP-B1 (38.6
AP) with similar model size by 1.8 AP. When using Mask
R-CNN as the detector, the performance improvements are
also significant. Compared with Swin-T of 42.2 box AP
and 39.1 mask AP with 47.8M parameters and 264.0G
FLOPs, our Wave-MLP-S achieves significantly higher per-
formance (44.0 box AP and 40.0 mask AP) with fewer pa-
rameters (47.0M) and lower computational cost (250.3G).
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Table 3. Results of object detection and instance segmentation on COCO val2017.

Backbone RetinaNet 1x Mask R-CNN 1 x
Params. /FLOPs | AP APsy AP;5 | APs APy APL | Params. /FLOPs | AP® APY, APS; [ AP™ APS, APH
ResNet18 [19] 21.3M/188.7G |31.8 49.6 33.6 |163 343 432 31.2M/207.3G |34.0 540 36.7 |31.2 51.0 32.7
PVT-Tiny [47] 23.0M/189.5G | 36.7 56.9 389 [22.6 38.8 50.0| 329M/208.1G [36.7 59.2 393 351 56.7 373
CycleMLP-B1 [6] | 249M /195.0G | 38.6 59.1 40.8 [21.9 41.8 50.7 | 34.8M/213.6G [39.4 614 43.0 368 58.6 39.1
Wave-MLP-T 253M/196.3G | 404 61.0 434 (249 437 51.7|352M/214.6G [41.5 63.7 454 (382 609 40.7
ResNet50 [19] 37.7M/239.3G | 363 553 38.6 193 40.0 488 | 442M/260.1G |38.0 58.6 41.4 [344 551 36.7
Swin-T [33] 38.5M /244.8G |41.5 62.1 442 (251 449 555| 47.8M/264.0G |42.2 646 46.2 (39.1 61.6 42.0
PVT-Small [47] 342M /226.5G |40.4 613 43.0 |25.0 429 55.7| 44.1M/245.1G |404 629 43.8 |37.8 60.1 40.3
CycleMLP-B2 [6] | 36.5M/230.9G [40.9 61.8 434 (234 447 534| 46.5M/249.5G |41.7 63.6 45.8 |382 604 41.0
Wave-MLP-S 37.1M/231.3G | 434 644 465 (266 47.1 57.1| 47.0M/250.3G |[44.0 65.8 482 [40.0 63.1 429
ResNet101 [19] 56.7M /3154G |38.5 57.8 412 |21.4 42.6 51.1| 63.2M/336.4G [40.4 61.1 442 |364 577 388
Swin-S [33] 59.8M /334.8G |44.5 65.7 475 (274 48.0 59.9| 69.1M/353.8G |44.8 66.6 48.9 (409 634 442
PVT-Medium [47] | 53.9M /283.1G [41.9 63.1 443 (250 449 57.6| 63.9M/301.7G [42.0 644 45.6 (39.0 61.6 42.1
CycleMLP-B3 [0] | 48.1M/291.3G [42.5 632 453 (252 455 56.2| 58.0M/309.9G |43.4 650 47.7 395 62.0 424
Wave-MLP-M 49.4M/291.3G |44.8 658 47.8 [28.0 482 59.1| 59.6M/311.5G [45.3 67.0 495 |41.0 64.1 44.1
PVT-Large [47] 71.1M/345.7G |42.6 63.7 454|258 46.0 584 | 81.0M/364.3G |429 650 466 395 619 425
CycleMLP-B4 [0] | 61.5M/356.6G [43.2 639 46.2 |26.6 46.5 574| 71.5M/3752G |44.1 65.7 48.1 |40.2 62.7 435
CycleMLP-BS5 [6] | 85.9M/402.2G [42.7 633 453 |24.1 463 574| 953M/421.1G |44.1 655 484 |40.1 62.8 43.0
Wave-MLP-B 66.1M /333.9G (44.2 65.1 47.1 |27.1 47.8 589 | 75.1M/353.2G |45.7 67.5 50.1 |27.8 49.2 59.7
Table 4. The semantic segmentation results of different backbones Table 5. The effectiveness of phase information.
on the ADE20K validation set. T Results are from GFNet [37].
Mode Params. | FLOPs | Top-1 accuracy (%)
Backbone Semantic FPN No phase 15M 2.1G 78.8
Params. | FLOPs | mloU (%) Static phase 15M 2.1G 79.3
ResNet18 [19] 15.5M 127G 32.9 Dynamic phase 15M 2.1G 80.1
PVT-Tiny [47] 17.0M 123G 35.7
CycleMLP-B1 [6] 18.9M 130G 39.5 Table 6. The formulation of phase estimation module.
Wave-MLP-T (ours) 19.3M 131G 41.2
ResNet50 [19] 28.5M 183G 36.7 size Params. | FLOPs | Top-1 accuracy (%)
PVT-Small [47] 28.2M 163G 39.8 Baseline 15M 2.1G 78.8
Swin-S" [33] 319M | 182G 415 Identity 15M 2.1G 79.3
GFNet-H-Ti [37] 26.6M 126G 41.0 Depth-wise 15M 2.1G 80.1
CycleMLP-B2 [6] 30.6M 167G 42.4 Channel-FC 17M 2.4G 80.6
Wave-MLP-S (ours) 31.2M 168G 44.4
ResNet101 [19] 47 .5M 260G 388 Table 7. The size of window for aggregating tokens.
PVT-Medium [47] 48.0M 219G 41.6 ;
GFNet-H-S [37] 47.5M 179G 45 Size | Params. | FLOPs | Top-1 accuracy (%)
Swin-Bf [33] 53.2M 274G 45.2 3 15M 2.1G 79.7
GFNet-H-B [37] 74.7M 261G 44.8 5 15M 2.1G 79.8
CycleMLP-B3 [6] 42.1M 229G 44.5 7 15M 2.1G 80.1
CycleMLP-B4 [6] 55.6M 296G 45.1 All 16M 2.3G 80.0
CycleMLP-BS [6] 79.4M 343G 45.6
Wave-MLP-M (ours) | 43.3M 231G 46.8

4.3. Semantic Segmentation on ADE20K

Settings.
dataset [

testing. Following [
MLP architecture with the widely used Semantic FPN

The experiments for the semantic segmen-
tation task are conducted on the challenging ADE20K
], which contains 25k images from 150 seman-
tic categories, 20k for training, 2k for validation and 3k for
], we combine the proposed Wave-

[25]

approach. With the pre-trained weights on ImageNet, the
model is fine-tuned for 40k iterations with AdamW [
optimizer and the batchsize is set to 32. The initial learn-
ing rate is 0.0001 and decays with the polynomial sched-
ule (a power of 0.9). The images are randomly resized and
cropped to 512 x 512 for training and rescaled to have a
shorter side of 512 for testing. The FLOPs are tested with
2048 %512 input.
Results. The results of different models for semantic seg-
mentation are shown in Table 4. Under different configures
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of parameters and computational costs, Wave-MLP outper-
forms the existing models consistently. Compared with the
transformer-based model such as PVT, the model show a
large superiority, e.g., 4.6% mloU gap between Wave-MLP-
S (44.4% mloU) and PVT-Tiny (39.8% mloU). It also sup-
press the CycleMLP-B2 model with 42.4% mloU and Swin-
S with 41.5%. We infer that modulating the aggregating
process of different tokens with the phase term can capture
more detailed information and thus enhance the semantic
segmentation results.

4.4. Ablation Studies

For better understanding the proposed method, we in-
vestigate the effectiveness of each component via ablation
studies. The experiments are conducted on ImageNet with
the Wave-MLP-T* model.

The effectiveness of phase information. The phase plays
a vital role in aggregating the information of different to-
kens, whose effectiveness is investigated in Table 5. With-
out the phase information (‘No phase’), the model’s perfor-
mance is obviously inferior compared with others, with only
78.8% top-1 accuracy. The proposed ’dynamic phase’ flex-
ibly generates phases and modulate the aggregating process
for each input instance, which achieves much better perfor-
mance (e.g., 80.1% top-1 accuracy).

The formulation of phase estimation module. The phase
estimation module generates phases for different inputs,
which can be implemented with different formulations.
We investigate three simple formulations, depth-wise con-
volution, channel-FC and identity projection. The iden-
tity projection directly copies the input feature instead
of estimating the phase, incurring poor performance (i.e.,
79.3%). The depth-wise convolution and channel-FC can
achieve high accuracy improvement compared with the
baseline (e.g., 1.3% and 1.8%), implying they can capture
the phase information well for aggregating tokens. Using
channel-FC achieves higher performance than the depth-
wise convolution, but also increase the computational cost
slightly.

The size of window for aggregating tokens. To be com-
patible with dense prediction tasks (e.g., object detection
and semantic segmentation) with varying sizes of input im-
ages, we restrict that the token-FC only aggregates features
within a local window, and Table 7 investigates the impact
of window size. Changing window size from 3 to 7, the
top-1 accuracies increase accordingly. ‘All’ denotes that the
token-FC connects all the tokens in a layer, which achieves
similar performance with window size 7. However, its pa-
rameter configure is corrected to the size of input image,
and thus is infeasible in dense prediction tasks such as ob-
ject detection and semantic segmentation.

Visualization. The phase difference between two tokens
(10; — 6;|) directly affects the aggregating process as ana-

 33e1g

¢ 33e)s

Figure 4. Visualization of the phase difference between tokens.

lyzed in Section 3.2 (Eq. 4, 5). In order to have an intuitive
understanding, we show the cosine value of phase differ-
ence of the 3rd and 4th stages in Figure 4. Take the visual-
ized figure of the 1st image and the 4th stage for example,
the 7 x 7 values in the (7, j)-th patch denote the phase differ-
ences between the (4, j)-th token and all the 7 x 7 tokens.
From the figure, we can see that tokens with similar con-
tents tend to have close phases and then enhanced by each
other. For example, in the first image, a token describing the
“house’ has a closer phase with another token of the ‘house’
than that of the sky (magnifying parts in the figure). The
phase difference of different tokens also varies w.r.t. differ-
ent input images depending on the image contents.

5. Conclusion

This paper proposes a Wave-MLP architecture for vision

tasks, which takes each token as a wave with both amplitude
and phase information. Amplitude is the original real-value
feature and the phase modulates relationship between the
varying tokens and fixed weights in MLP. With the dynam-
ically produced phase, the tokens are aggregated accord-
ing to their varying contents from different input images.
Extensive experiments show that the proposed Wave-MLP
suppresses the existing MLP-like architectures and can also
be used as a strong backbone for the dense prediction tasks
such as object detection and semantic segmentation. In the
future, we will further explore the potential of MLP-like ar-
chitectures on more diverse tasks.
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