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Abstract

Multi-view clustering has been shown to boost cluster-
ing performance by effectively mining the complementary
information from multiple views. However, we observe that
learning from data with more views is not guaranteed to
achieve better clustering performance than from data with
fewer views. To address this issue, we propose a general
deep learning based framework that is guaranteed to re-
duce the risk of performance degradation caused by view
increase. Concretely, the model is trained to simultaneously
extract complementary information and discard the mean-
ingless noise by automatically selecting features. These
two learning procedures are incorporated into one unified
framework by the proposed optimization objective. In the-
ory, the empirical clustering risk of the model is no higher
than learning from data before the view increase and data
of the new increased single view. Also, the expected clus-
tering risk of the model under divergence-based loss is no
higher than that with high probability. Comprehensive ex-
periments on benchmark datasets demonstrate the effective-
ness and superiority of the proposed framework in achiev-
ing safe multi-view clustering.

1. Introduction

Multi-view data, which contains data collected from dif-
ferent sources, exists widely in real-world application sce-
narios. For example, video can be represented by audible
and visual information, and images can be characterized
by different descriptors. As an important topic in multi-
view learning, multi-view clustering (MVC) aims to par-
tition similar instances into the same group and dissimilar
instances into different groups by utilizing the complemen-
tary information in multi-view data [35, 46]. Through the
well-designed learning mechanism, multi-view clustering
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can fully discover the potential structure hidden in multi-
view data and achieve better clustering performance.

Figure 1. Clustering performance degradation phenomenon.

However, in real-world scenarios, multi-view data are
collected and constructed dynamically, which leads to an in-
creasing number of views. For instance, a new view will be
added to the original multi-view dataset after a new descrip-
tion is proposed. Thus, a natural problem is, will the clus-
tering performance of the multi-view model degrade when
the number of views increases? Intuitively, data of the in-
creased view contain both semantic features and meaning-
less noise. The former can provide complementary infor-
mation that is beneficial for improving clustering perfor-
mance. The latter, however, may bring the risk of clustering
performance degradation. That is, more views do not nec-
essarily guarantee to promote the clustering performance.
Sometimes, on the contrary, conducting clustering on the
dataset with more views may obtain worse results than that
with fewer views. This performance degradation caused by
view increase is observed in our experiments. As shown in
Figure 1, the clustering performance of some MVC meth-
ods degenerates when the number of views increases, which
verifies the fact that conducting clustering on datasets with
more views will not always be better. Besides, single-view
can be regarded as a special variant of multi-view. Thus, any
multi-view model can be directly applied to obtain a single-
view result on data of the new increased view. This result
may perform better than the multi-view model, which has
been verified and discussed in [34]. Therefore, how to re-
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duce the risk of clustering performance degradation caused
by view increase should be considered from both single-
view and multi-view aspects.

Although many solid MVC methods [25,28,30,42] have
been proposed, the efforts to tackle the clustering perfor-
mance degradation caused by view increase are still limited.
To this end, this work aims to design a new framework with
theoretical guarantee that provides a lower bound perfor-
mance guarantee for MVC methods, such that more views
never hurt the clustering performance. We firstly give a for-
mal and complete definition of safe multi-view clustering.
However, the main challenge of achieving safe multi-view
clustering is that all the ground-truth labels are not avail-
able. Thus, from the perspectives of empirical and expected
clustering risk, we introduce the definitions of empirical
and (ϵ, δ, δn)-expected safe multi-view clustering. Based
on that, we propose a general deep learning based multi-
view clustering framework. From the perspective of clus-
tering and representation learning, the model is required to
extract complementary information from multi-view data.
Meanwhile, from the perspective of safeness, the model is
required to automatically select the features from a single
view or multiple views, so that the features learned from
the new increased view are discarded if it contains more
meaningless noise than useful complementary information.
These two learning processes are cast as a unified optimiza-
tion problem. In theory, the proposed framework is guaran-
teed to achieve empirical safe multi-view clustering. Also,
we discuss a special case of the proposed framework under
divergence-based loss and prove that it can achieve the de-
fined (ϵ, δ, δn)-expected safe multi-view clustering. Experi-
ments on benchmark datasets demonstrate the effectiveness
of the proposed learning mechanism to achieve safe multi-
view clustering.

2. Related Work
In this section, we briefly introduce the most related

work to our study in this paper, including multi-view clus-
tering and safeness studies in machine learning.
Multi-view clustering. Existing multi-view clustering
methods can be divided into five categories, including mul-
tiple kernel learning based approaches [23–26, 37], spec-
tral based approaches [11, 15, 47, 48], subspace learning
based approaches [1, 13, 33, 42], non-negative matrix fac-
torization based approaches [2, 41, 43, 45], and deep learn-
ing based approaches [35, 38–40, 46]. In [37], the authors
propose a late-fusion method where the weighted basic par-
titions are aligned to obtain a consensus partition. Zhang
et al. [44] propose a unified framework where binary rep-
resentation learning and binary clustering are jointly con-
ducted. In [17], view-peculiar subspace representations are
mined and integrated into a common latent representation to
extract complementary and census information from mul-

tiple views. The work in [30] conducts multi-view clus-
tering via connection graph to achieve geometric consis-
tency and cluster assignment consistency. In [31], a self-
pace learning mechanism is introduced to address the is-
sue that being stuck in local optima. Zhou et al. [46] pro-
pose an end-to-end clustering framework where the latent
features are mined by adversarial learning as well as atten-
tion mechanism. In [35], contrastive learning is adopted to
prevent the model from learning a group of equal fusion
weights, which is demonstrated to obtain more accurate re-
sults. Liu et al. [25] propose a late-fusion framework that
combines the cluster assignments generation and the learn-
ing of consensus partition matrix into one unified proce-
dure. The work in [26] calculates the kernel alignment in
a local manner. Recent works have focused on the robust-
ness of multi-view learning. In [28], a new weight learn-
ing schema is proposed to learn proper weights for multiple
views. The authors in [10] design a new multi-view classi-
fication framework to promote classification reliability via
integrating multiple views at an evidence level. Unlike these
existing approaches, the goal of this work is to present a
new framework that can reduce the potential risk of clus-
tering performance caused by view increase and provide a
guarantee of no worse clustering performance in the cases
where views dynamically increase.

Safeness studies in machine learning. Safeness is an im-
portant topic in machine learning which focuses on reduc-
ing the performance degradation of learners. Some pio-
neer works achieve safeness in semi-supervised learning
and weakly supervised learning [8, 19–21]. Li et al. [21]
propose safe semi-supervised support vector machines by
utilizing low-density separators. In [19], safe predictions
are learned from multiple semi-supervised regressors by
the proposed projection algorithm. A general ensemble
learning schema that integrates multiple weakly supervised
learners is presented in [20]. Recently, some works have
focused on achieving the safeness of deep learning mod-
els. The authors in [8] provide a novel safe deep semi-
supervised learning framework to address the performance
degradation caused by class distribution mismatch. These
methods focus on classification and regression tasks on
single-view data and are not suitable for multi-view data
without ground-truth labels. [34] is the first work to achieve
safeness in multi-view clustering, which obtains safe clus-
ter assignments that are no worse than given single-view
methods based on several candidate multi-view clustering
by solving a max-min optimization problem. Moreover, a
safe multi-task model is proposed in [9] which is guaran-
teed to be no worse than its single-task component on each
task. Different from the aforementioned methods, our work
is to guarantee that the new increasing view never degrades
the clustering performance on the data before view crease
and data of the new increased view.
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3. The Proposed Method
In this section, we first give the notations used in this pa-

per. Then several definitions of safe multi-view clustering
are introduced, including safe multi-view clustering, empir-
ical safe multi-view clustering, and (ϵ, δ, δn)-expected safe
multi-view clustering. After that, we present a general deep
learning based multi-view clustering framework and theo-
retically demonstrate its mechanism to achieve safeness.

3.1. Notations

D = {x1
i , · · · ,xm

i }ni=1 denotes multi-view data with m
views sampled i.i.d. from a certain distribution µ over input
space X . K is the number of clusters. Ai,: and A:,j denote
the i-th row and j-th column of matrix A, respectively.

(
K
2

)
denotes the combination number. L̂{1,··· ,p−1}

n and L̂p
n de-

note the empirical clustering risk of the multi-view model
learning from data before view increase and data of the
new increased view, respectively. L̂n denotes the empiri-
cal clustering risk of the proposed model. The expectation
of L̂{1,··· ,p−1}, L̂p

n and L̂n are denoted as L{1,··· ,p−1}, Lp,
and L, respectively.

3.2. Definitions

When the ground-truth labels are available, one can mea-
sure the ability of the model to achieve safeness (i.e., per-
forming no worse than the model that learns from data be-
fore view increase and the data of the new increased view)
by comparing the clustering results with the ground-truth
labels, which naturally leads to the following definition.

Definition 1 (Safe Multi-view Clustering). If the clustering
performance of a multi-view model is no worse than learn-
ing from data before view increase and the data of the
increased view when the number of views increases, this
model is said to achieve safe multi-view clustering.

However, the clustering performance of the model is un-
known during the learning process as the ground-truth la-
bels are not available, which makes it hard to evaluate the
ability of the model to achieve safeness by Definition 1.
According to the empirical risk minimization, the model
should minimize the empirical clustering risk on multi-view
data. With this observation in mind, we present the follow-
ing definition to describe the empirical safeness of MVC.

Definition 2 (Empirical Safe Multi-view Clustering). When
the number of views increases, if the empirical clustering
risk of a multi-view model is no higher than that of the
model learning from data before view increase and the
data of the increased view, this model is said to achieve
empirical safe multi-view clustering.

Moreover, the model is expected to achieve lower empirical
risk on unseen data, which motivates us to introduce the
following definition.

Definition 3 ((ϵ, δ, δn)-Expected Safe Multi-view Clustering).
For a given multi-view dataset, when the number of views
increases from p− 1 to p, for 0 < δ < 1, there exists a con-
stant ϵ ≥ 0 such that L + ϵ ≤ min{L{1,··· ,p−1},Lp} + δn
holds with probability at least 1− δ, where δn is a function
related to n such that limn→+∞ δn = 0 holds, this
model is said to achieve (ϵ, δ, δn)-expected safe multi-view
clustering.

According to Definition 3, once a model achieves (ϵ, δ, δn)-
expected safe multi-view clustering, its generalization abil-
ity is no worse than the model learning from data before
view increase and data of the new increased view with high
probability. That is, the model is guaranteed to maintain the
safe ability on the data that is unseen in the learning process,
which is more applicable in real-world scenarios.

3.3. General Framework of Deep Safe Multi-view
Clustering

Generally, a deep MVC model consists of the feature
extractor module F and the cluster assignment module C,
where F and C can be implemented by the deep neural net-
work. Now we consider the case that the number of views
increases from p − 1 to p. Let F{1,··· ,p−1} and F{1,··· ,p}
denote the feature extractors of the multi-view model that
learns from data before and after view increase. As single-
view can be regarded as a special variant of multi-view, this
multi-view model can be directly trained from the data of
the new increased view. The feature extractor of this single-
view variant is denoted as Fp. To simplify the notations, the
collection of Fp,F{1,··· ,p−1},F{1,··· ,p} is denoted as {F}p.
To achieve multi-view safeness, we introduce the following
safe module S to obtain a combination of the outputs from
features extractors

S({xv}pv=1; {F}p) =λ1Fp(x
p) + λ2F{1,··· ,p−1}({xv}p−1

v=1)

+ λ3F{1,··· ,p}({xv}pv=1),
(1)

where λ1, λ2, λ3 ∈ [0, 1] are learnable parameters that rep-
resent the safe coefficients assigned by safe module. Then
the objective of the proposed deep safe multi-view cluster-
ing framework can be formulated as

min
λ∈Λ

{
min
θ∈Θ

1

n

n∑
i=1

L(C(S({xv
i }pv=1; {F}p)))

}
, (2)

where C and L denote the cluster assignment module and
clustering loss, respectively. Θ and Λ include all the param-
eters in {Fp,F{1,··· ,p−1},F{1,··· ,p}, C} and S, respectively.
To achieve multi-view safeness, a constraint λ1+λ2+λ3 =
1 on λ is added. Note that under this constraint, when
λ2 = 1, the proposed framework degenerates into the multi-
view model where only the first p−1 views are utilized and
the p-th view is discarded. This corresponds to the case that
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the new increased view xp contains more noise than use-
ful complementary information. Thus the proposed frame-
work should discard the new increased view to eliminate
its negative impact on the cluster performance. Besides,
when λ1 = 1, our proposed framework happens to be the
single-view variant. Under this situation, the new increased
view contains more useful complementary information than
noise. Thus, directly conducting clustering on the new in-
creased view may achieve better performance. Further, we
analyze the empirical risk of the proposed framework and
obtain the following theorem.

Theorem 1. Let the empirical clustering risk of the model
learning from data of the new increased view be

L̂p
n =

1

n

n∑
i=1

L(C(Fp(x
p
i ))). (3)

The empirical clustering loss of the model learning from
data before view increase is denoted as

L̂{1,··· ,p−1}
n =

1

n

n∑
i=1

L(C(F{1,··· ,p−1}({xv
i }p−1

v=1))). (4)

Let L̂∗
n be the optimal value of the optimization prob-

lem in Eq. (2). We can prove that L̂∗
n is no higher

than the minimum of L̂{1,··· ,p−1}
n and L̂p

n, namely, L̂∗
n ≤

min{L̂{1,··· ,p−1}
n , L̂p

n}.

Proofs of theorems in this paper are provided in the ap-
pendix due to the space limit. Theorem 1 shows that our
framework can achieve empirical safe multi-view cluster-
ing, i.e., Definition 2. That is, the empirical risk of the
multi-view model trained by the proposed framework is no
higher than that of the model learning from data before view
increase and data of the increased view.

3.4. Divergence-based Safe Multi-view Clustering

In Section 3.3, we propose a general framework for deep
learning clustering method to achieve multi-view safeness,
which can be extended to any deep learning based cluster-
ing methods by replacing {Fp,F{1,··· ,p−1},F{1,··· ,p}, C}
and L with specific deep neural network and cluster-
ing loss. To verify the effectiveness of our frame-
work, we set the clustering loss L to the widely used
divergence-based loss [12, 35, 46]. Besides, the architec-
ture of {Fp,F{1,··· ,p−1},F{1,··· ,p}, C} are set to the version
adopted in [35, 46]. In this architecture, the output of safe
module (i.e., Eq. (1)) is fed to a fully connected layer to ob-
tain hidden features h(p). Then the cluster assignments y(p)

are obtained from the hidden features by another fully con-
nected layer and a Softmax layer. In this way, we can obtain
an example of the proposed framework named Deep Safe
Multi-view Clustering (DSMVC). According to Eq. (2), the

objective of the proposed DSMVC can be formulated as

min
λ∈Λ

{
min
θ∈Θ

L(λ,θ)

}
, (5)

with

L(λ,θ) = 1(
K
2

) K−1∑
l=1

∑
s>l

Y
(p)⊤
:,l K(p)Y

(p)
:,s√

Y
(p)⊤
:,l K(p)Y

(p)
:,l Y

(p)⊤
:,s K(p)Y

(p)
:,s

+
1(
n
2

) n∑
i=1

∑
j>i

Y
(p)
i,: Y

(p)⊤
j,:

+
1(
K
2

) K−1∑
l=1

∑
s>l

D
(p)⊤
:,l K(p)D

(p)
:,s√

D
(p)⊤
:,l K(p)D

(p)
:,l D

(p)⊤
:,s K(p)D

(p)
:,s

.

(6)
Y(p) ∈ Rn×K represents the partition matrix, Y(p)

i,: = y
(p)
i .

K(p) ∈ Rn×n is the Gaussian kernel matrix, K
(p)
ij =

exp(∥h(p)
i − h

(p)
j ∥22/(2σ2)). D(p) ∈ Rn×K represents the

similarity matrix between the cluster assignments and the
standard simplex ej ∈ RK , i.e., D

(p)
ij = exp(∥y(p)

i −
ej∥22). The first term in Eq. (6) aims to make the clus-
ter assignments belong to one cluster more compact and
that belong to different clusters more separable. The sec-
ond and the third term are optimized to make the pre-
dictions to be orthogonal and close to the standard sim-
plex. The overall learning procedure is summarized as fol-
lows. First, the features from data before and after view
increase are obtained from F{1,··· ,p−1} and F{1,··· ,p}. The
features from the new increased view are obtained from
Fp. Then the hidden features are computed by Eq. (1),
i.e., hp = S({xv}pv=1; {F}p), and the objective L(λ,θ)
is calculated by Eq. (6). Second, for a specific value λ,
the optimal solution of the inner subproblem is obtained by
θ∗(λ) = argminθ∈Θ L(λ,θ) via gradient descent. Third,
the optimal solution of the outer subproblem is obtained by
λ∗ = argminλ∈Λ L(λ,θ∗(λ)) via gradient descent. The
aforementioned process is repeated until convergence. On
the one hand, for a group of given safe coefficients λ, the
optimization can be regarded as a vanilla deep multi-view
clustering process where the model is trained to extract
complementary information from multi-view data. On the
other hand, the safe coefficients are optimized to make the
model automatically select proper features from the feature
extractors. Thus, this optimization problem can make the
model extract complementary information and discard the
meaningless noise by automatically selecting features.

3.5. Theoretical Analysis

Recent work in [27] has made significant breakthrough
in deriving sharper generalization bound for kernel and ap-
proximate k-means. In [18], a unified theoretical frame-
work for analyzing the generalization of clustering is pro-
posed. In this part, we study the generalization bound of the
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proposed DSMVC method. Let S : X 2 7→ R+ be a sim-
ilarity function which maps a given instance pair into spe-
cific similarity. H = [H1,2, · · · , HK−1,K , H1, · · · , HK ]
denotes a collection of partition functions Hl,s : X 2 7→ R+

for l = 1, . . . ,K− 1, s = l+1, . . . ,K and Hl : X 2 7→ R+

for l = 1, . . . ,K that partitions given instance pairs into
disjoint clusters. Then the criterion of the divergence-based
clustering framework can be formulated as

L̂n(S,H) =
1

n2
(
K
2

) K−1∑
l=1

K∑
s=l+1

n∑
i,j=1

S(xi,xj)Hl,s(xi,xj)

+
1

2
(
n
2

) K∑
l=1

n∑
i,j,i ̸=j

Hl(xi,xj).

(7)

To simplify the notation, S(xi,xj)Hl,s(xi,xj) and
Hl(xi,xj) are denoted as gS,Hl,s

(x,x′) and gHl
(x,x′), re-

spectively. Let gS,H denote the vector-valued function, i.e.,
gS,H := (gS,H1,2

, · · · , gS,HK−1,K
, gH1

, · · · , gHK
). Then

the expectation of Eq. (7) is defined as

L(gS,H) =E

[
1(
K
2

) K−1∑
l=1

K∑
s=l+1

gS,Hl,s(x,x
′)

]

+ E

[
K∑
l=1

gHl(x,x
′)

]
,

(8)

where {x,x′} is an instance pair sampled from µ. The fam-
ily of gκ,h is denoted as

G := {gS,H |gS,H(x,x′),∀ x,x′ ∈ X}. (9)

To derive the generation bound, we introduce the following
assumptions.

Assumption 1. Assume that S, Hl,s for l = 1, . . . ,K −
1, s = l+1, . . . ,K and Hl for l = 1, . . . ,K are symmetry,
namely, S(x,x′) = S(x′,x), Hl,s(x,x

′) = Hl,s(x
′,x),

and Hl(x,x
′) = Hl(x

′,x) hold for all instance pairs
(x,x′) ∈ X 2. Also, we assume that the hypothesis functions
gS,Hl,s

(·, ·) ∈ [0,M ] for l = 1, . . . ,K−1, s = l+1, . . . ,K
and gHl

(·, ·) ∈ [0,M ] for l = 1, . . . ,K where M > 0 is a
constant.

Remark 1. In the appendix, we show that the loss func-
tion in Eq. (6) is an example of the clustering framework in
Eq. (7). Also, it is verified that hypothesis functions corre-
sponding to this loss satisfy Assumption 1.

It is worth noting that under this clustering framework, the
criterion is calculated on a pair of instances, which leads
to an independent degree of order O(n2). Therefore, di-
rectly analyzing the generalization bound via Rademacher
complexity is infeasible. To addressed this issue, inspired
by [3, 4, 18], the non i.i.d. summation form is transformed
into a i.i.d. summation form by utilizing the permutations in

U -process. In this way, the generalization of the proposed
deep safe multi-view clustering framework can be derived.
Let Lp and L{1,··· ,p−1} be the expectation of Eq. (3) and
Eq. (4), respectively. The expectation of Eq. (6) is denoted
as L. Based on Theorem 1 and Assumption 1, we obtain the
following theorem.

Theorem 2. For any 0 < δ < 1, the following inequality
holds with at least probability 1− δ:

L+ ϵ ≤ min{L{1,··· ,p−1},Lp}+ c1√
n
+ c2

√
log 2

δ

2n
, (10)

where c1 and c2 are constants dependent on K and M . ϵ is
formulated as ϵ := min{L̂p

n, L̂
{1,··· ,p−1}
n } − L̂∗

n.

We define δn as δn = c1/
√
n + c2/

√
log(2/δ)/2n. One

can see that limn→+∞ δn = 0 holds. According to Theo-
rem 1, ϵ ≥ 0 holds. Also, ϵ is a constant on a given dataset
D. Therefore, Theorem 2 shows that, with high probabil-
ity, the expected clustering risk of the proposed model is
bounded by the sample-dependent complexity terms and the
minimum value between the expected clustering risk of the
multi-view model learning from data before view increase
and data of the new increased view. That is, there exists a
constant ϵ such that the expected clustering risk of the pro-
posed DSMVC is at least ϵ lower than that of the model
learning from data before view increase and data of the in-
creased view with high probability 1 − δ. To summarize,
the proposed DSMVC is theoretically guaranteed to achieve
safe multi-view clustering in terms of both empirical and
expected clustering risks, which could be the best result to
achieve multi-view safeness under the case that all ground-
truth labels are not available.

4. Experiments
4.1. Experimental Setup

Datasets. The experiments are conducted on several bench-
mark multi-view datasets. Digit [5] consists of 2,000 in-
stances and each data point is represented by six features,
including profile correlations, Fourier coefficients of the
character shapes, Karhunen-Love coefficients, morphologi-
cal features, pixel averages in 2 × 3 windows, and Zernike
moments. Caltech [7] is consist of five features from RGB
image, including WM, CENTRIST, LBP, GIST, and HOG.
We select 1,400 instances from 7 classes and construct a
multi-view dataset. VOC (PASCAL VOC 2007) [6] contains
9,963 image-text pairs from 20 different categories. Fol-
lowing [35, 46], 5,649 instances are selected to construct a
two-view dataset, where the first and the second view is 512
Gist features and 399 word frequency count of the instance
respectively. RGB-D (SentencesNYUv2) [14] is an indoor
scenes image-text dataset where the image is described by
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Dataset Caltech-2V Caltech-3V Caltech-4V Caltech-5V
Metrics ACC NMI Purity ACC NMI Purity ACC NMI Purity ACC NMI Purity
SC [32] 0.567 0.441 0.604 0.625 0.525 0.661 0.692 0.596 0.754 0.772 0.738 0.814

BMVC [44] 0.596 0.445 0.612 0.514 0.462 0.560 0.634 0.537 0.671 0.743 0.676 0.766
RMVC [34] 0.563 0.391 0.574 0.654 0.538 0.665 0.708 0.616 0.746 0.695 0.594 0.731

MVC-LFA [37] 0.462 0.348 0.496 0.551 0.423 0.578 0.609 0.522 0.636 0.741 0.601 0.747
COMIC [30] 0.188 0.147 0.241 0.155 0.134 0.231 0.451 0.573 0.811 0.156 0.111 0.211
EAMC [46] 0.419 0.256 0.427 0.389 0.214 0.398 0.296 0.165 0.310 0.318 0.173 0.342

CoMVC [35] 0.466 0.426 0.527 0.541 0.504 0.584 0.568 0.569 0.646 0.700 0.687 0.729
COMPLETER [22] 0.505 0.509 0.563 0.436 0.440 0.565 0.510 0.514 0.535 0.547 0.550 0.572

OPLFMVC [25] 0.503 0.368 0.520 0.558 0.401 0.567 0.784 0.691 0.806 0.841 0.712 0.841
localized SimpleMKKM [26] 0.567 0.391 0.594 0.664 0.541 0.689 0.739 0.625 0.746 0.700 0.589 0.743

DSMVC (single) 0.564 0.440 0.595 0.598 0.544 0.628 0.656 0.589 0.656 0.871 0.774 0.871
DSMVC (vanilla) 0.533 0.392 0.533 0.622 0.555 0.660 0.767 0.724 0.784 0.841 0.741 0.841

DSMVC 0.603 0.526 0.619 0.745 0.674 0.745 0.834 0.766 0.834 0.919 0.847 0.919

Table 1. Clustering performance comparison on Caltech dataset with increase views. “XV” denotes the number of views.

Dataset RGB-D VOC
Metrics ACC NMI Purity ACC NMI Purity
SC [32] 0.312 0.286 0.320 0.372 0.387 0.382

BMVC [44] 0.212 0.082 0.349 0.576 0.535 0.668
RMVC [34] 0.320 0.293 0.348 0.254 0.192 0.294

MVC-LFA [37] 0.415 0.329 0.516 0.503 0.451 0.576
COMIC [30] 0.264 0.131 0.313 0.164 0.435 0.644
EAMC [46] 0.323 0.207 0.311 0.615 0.628 0.615
SiMVC [35] 0.396 0.356 0.344 0.551 0.615 0.740

CoMVC [35] 0.413 0.405 0.413 0.613 0.641 0.735
COMPLETER [22] 0.200 0.219 0.421 0.471 0.478 0.574

OPLFMVC [25] 0.416 0.314 0.529 0.580 0.517 0.637
localized SimpleMKKM [26] 0.355 0.273 0.479 0.380 0.303 0.477

DSMVC 0.431 0.416 0.602 0.601 0.683 0.768

Table 2. Clustering performance comparison on RGB-D and VOC.

the text. The version provided in [35, 46] is adopted in the
experiments, which provides visual features from a ResNet-
50 network pretrained on the ImageNet dataset and textual
features from a doc2vec model pretrained on the Wikipedia
dataset. Multi-MNIST is a multi-view version of the popu-
lar MNIST dataset [16], whose two views are the raw image
and its augmented version with a highlighted edge [35, 46].
Baseline methods. We compare DSMVC with several
state-of-the art multi-view clustering methods, including
Spectral Clustering (SC) [32], BMVC [44], RMVC [34],
MVC-LFA [37], COMIC [30], EAMC [46], CoMVC [35],
COMPLETER [22], OPLFMVC [25], and localized Sim-
pleMKKM [26]. For spectral clustering, the results on the
concatenation of all views are reported as it is a single-view
clustering method. To verify the effectiveness of the pro-
posed DSMVC, we report the results of its two versions,
including a single-view version (denoted as DSMVC (sin-
gle)) and a vanilla version (denoted as DSMVC (vanilla)).
DSMVC (single) is a single-view model trained from data
of the new increased view which corresponds to the case
that λ2 = λ3 = 0 in Eq. (1). DSMVC (vanilla) is a multi-
view model without the proposed safe module, which can
be treated as the SiMVC method proposed in [35].

Evaluation metrics. The clustering performance is evalu-
ated by three metrics: clustering accuracy (ACC), normal-
ized mutual information (NMI), and purity. For all these
metrics, a higher value means better performance.
Implementation details. The proposed DSMVC is imple-
mented with PyTorch [29]. The number of training epochs
is 120. Following [35, 46], mini-batch gradient descent
and Adam optimizer are adopted, and the kernel width
σ in Eq. (6) is set to 15% of the median pairwise dis-
tance between the semantic features within each mini-batch.
Though our theoretical analysis considers the case where
the kernel is constructed from overall datasets, we empiri-
cally demonstrate that it has little impact due to the well-
designed learning schema. Please refer to the appendix for
more detailed settings.

4.2. Experimental Results

Clustering performance comparison. The ACC, NMI,
and purity comparison is presented in Table 1, Table 2, Ta-
ble 3, and Table 4. The clustering results of DSMVC with
increasing views are shown in Figure 4. We can obtain the
following observations: (i) The proposed DSMVC outper-
forms both the single-view variant and the vanilla version
(i.e., SiMVC [35]), which is consistent with our analysis in
Section 3.3 and Section 3.5. One can observe that the clus-
tering performance of the vanilla version degrades on Digit
when the number of views increases from 4 to 5, which
verifies our claim that more views are not always guaran-
teed to promote the clustering performance. Similarly, the
vanilla version performs worse than its single-view vari-
ant on Caltech-2V dataset, which demonstrates the fact that
MVC methods are not guaranteed to perform better than the
single-view method. Thus, it is necessary to consider both
the single-view and multi-view aspects to achieve multi-
view safeness. Besides, the proposed DSMVC outperforms
other baseline models including traditional and deep learn-
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Dataset Digit-2V Digit-3V Digit-4V Digit-5V Digit-6V
Metrics ACC NMI Purity ACC NMI Purity ACC NMI Purity ACC NMI Purity ACC NMI Purity
SC [32] 0.647 0.628 0.647 0.643 0.624 0.643 0.628 0.618 0.628 0.647 0.626 0.647 0.663 0.644 0.663

BMVC [44] 0.648 0.624 0.691 0.797 0.814 0.843 0.848 0.827 0.848 0.812 0.835 0.859 0.814 0.859 0.862
RMVC [34] 0.894 0.820 0.894 0.905 0.826 0.905 0.912 0.831 0.912 0.919 0.843 0.919 0.966 0.923 0.966

MVC-LFA [37] 0.797 0.680 0.797 0.658 0.650 0.693 0.782 0.702 0.782 0.787 0.723 0.787 0.646 0.672 0.663
COMIC [30] 0.685 0.757 0.997 0.766 0.844 0.822 0.590 0.705 0.998 0.754 0.808 0.912 0.718 0.772 0.997
EAMC [46] 0.652 0.610 0.683 0.375 0.289 0.389 0.342 0.258 0.351 0.323 0.226 0.336 0.373 0.240 0.379

CoMVC [35] 0.726 0.737 0.751 0.704 0.749 0.749 0.760 0.791 0.808 0.761 0.765 0.768 0.730 0.799 0.767
COMPLETER [22] 0.651 0.655 0.619 0.761 0.763 0.729 0.622 0.626 0.580 0.652 0.656 0.627 0.792 0.794 0.797

OPLFMVC [25] 0.810 0.690 0.810 0.842 0.724 0.842 0.861 0.754 0.861 0.870 0.766 0.870 0.913 0.829 0.906
localized SimpleMKKM [26] 0.883 0.815 0.885 0.879 0.814 0.886 0.890 0.824 0.896 0.914 0.841 0.915 0.956 0.907 0.956

DSMVC (single) 0.593 0.540 0.596 0.807 0.767 0.807 0.653 0.615 0.654 0.669 0.672 0.686 0.619 0.636 0.623
DSMVC (vanilla) 0.861 0.791 0.861 0.878 0.857 0.878 0.894 0.846 0.894 0.863 0.837 0.863 0.969 0.938 0.969

DSMVC 0.912 0.867 0.912 0.927 0.879 0.927 0.953 0.911 0.953 0.960 0.914 0.960 0.978 0.950 0.978

Table 3. Clustering performance comparison on Digit dataset with increase views. “XV” denotes the number of views.

ing based methods in terms of ACC and NMI. The reason is
that DSMVC can eliminate the effects of the noise hidden
in data by automatically selecting features from the single
view and multiple views. (ii) When the number of views
is equal to 2, the proposed DSMVC consists of a multi-
view model and two single-view models. As shown in Ta-
ble 2, on multi-view datasets with two views (i.e., VOC and
RGB-D), the proposed DSMVC still outperforms both its
vanilla version (i.e., SiMVC [35]) and most baseline meth-
ods, which further demonstrates the effectiveness of the pro-
posed safe multi-view learning schema by solving the pro-
posed optimization problem. (iii) Our DSMVC surpasses
other deep learning based clustering methods on Dataset
Multi-MNIST, which demonstrates the effectiveness of the
proposed safe multi-view mechanism in large-scale cluster-
ing scenarios.

Figure 2. Clustering results of the proposed DSMVC with the
increase of training epochs on RGB-D.

Visualization and convergence analysis. In Figure 2, we
plot the clustering loss value of DSMVC with iterations
to verify its convergence. As observed, the loss value de-
creases rapidly in the first several epochs. The ACC, NMI,
and purity at each iteration are also reported in Figure 2.
It can be discovered that the clustering performance of the
proposed DSMVC keeps increasing with iterations, and

Figure 3. Safe coefficients of DSMVC on all datasets.

Figure 4. Clustering performance of DSMVC with increasing
views on Digit and Caltech.

Dataset Multi-MNIST
Metrics ACC NMI Purity

EAMC [46] 0.668 0.628 0.651
SiMVC [35] 0.868 0.862 0.870
CoMVC [35] 0.869 0.860 0.869

DSMVC 0.882 0.874 0.882

Table 4. Clustering performance comparison on Multi-MNIST.

then remains stable. Besides, the hidden features learned
by the proposed DSMVC with increasing iterations are vi-
sualized by t-SNE [36] in Figure 5. It can be observed
that the proposed DSMVC can learn a more compact and
separated cluster structure during training. All these obser-
vations demonstrate the effectiveness of the proposed safe
multi-view learning mechanism.
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(a) Epoch 0 (b) Epoch 40 (c) Epoch 80 (d) Epoch 120

Figure 5. t-SNE visualization of the hidden features on Multi-MNIST dataset with increasing training epochs.

Components Metrics
Fp F{1,··· ,p−1} F{1,··· ,p} ACC NMI Purity
✓ 0.871 0.774 0.871

✓ 0.767 0.724 0.784
✓ 0.841 0.741 0.841

✓ ✓ 0.889 0.803 0.889
✓ ✓ 0.731 0.675 0.742

✓ ✓ 0.901 0.830 0.901
✓ ✓ ✓ 0.919 0.847 0.919

Table 5. Ablation study on Caltech. “✓” in the table represents
DSMVC with the corresponding component.

Safe coefficients analysis. We then investigate the safe
coefficients (i.e., λ1, λ2, and λ3) learned by the proposed
DSMVC, whose values are presented in Figure 3. It can be
seen that the proposed DSMVC can learn a group of non-
sparse safe coefficients on all datasets. As discussed in Sec-
tion 3.3, a group of sparse safe coefficients means that the
model degenerates to the single-view variant (i.e., DSMVC
(single)) or the vanilla variant (i.e., DSMVC (vanilla)).
Note that the learned safe coefficients are the optimal so-
lution of the outer subproblem according to Eq. (2). Based
on Theorem 2, a group of non-sparse safe coefficients cor-
responds to the case that the expected clustering risk of
DSMVC is lower than that of the single view variant and
the vanilla variant with high probability. Indeed, the ob-
servations on all datasets show that DSMVC does perform
better, which demonstrates that DSMVC enjoys consistency
between theoretical and experimental results.
Ablation study. In this part, we design an ablation study to
demonstrate the superiority of the proposed safe multi-view
mechanism. As mentioned in Section 3.3, the proposed
deep safe multi-view clustering framework contains three
feature extractors, including a single-view extractor which
receives data of the new increased view and two multi-view
feature extractors which receive data before and after view
increase respectively. Thus, there are seven combinations
between these three feature extractors and the cluster as-
signment module. We experimentally evaluate these com-
binations on Caltech with all the views, i.e., Caltech-5V

dataset. As shown in Table 5, the proposed DSMVC out-
performs all other combinations, which indicates that each
component in the proposed framework is contributed to the
clustering performance.

5. Conclusion
In this work, we propose a deep learning based frame-

work to achieve multi-view safeness under the case where
views dynamically increase. By the proposed optimization
problem, our framework can extract complementary infor-
mation and discard the meaningless noise. In theory, the
empirical clustering risk of the proposed DSMVC is no
higher than learning from data before the view increased
and data of the new increased view. And the expected clus-
tering risk of the proposed DSMVC is no higher than that
with high probability. Comprehensive experiments demon-
strate the effectiveness of the proposed method in reducing
the risk of clustering performance degradation caused by
view increase. We believe that our work will bring more in-
sights in improving the robustness of multi-view clustering
on real-world scenarios. The main limitation of this work
is that the performance of the trained models may be af-
fected by the limited optimization skills. Future work may
focus on designing more effective optimization approaches
and extending the proposed framework to scenarios where
data with missing views.
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