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Abstract

Few-shot font generation (FFG), which aims to generate
a new font with a few examples, is gaining increasing at-
tention due to the significant reduction in labor cost. A typ-
ical FFG pipeline considers characters in a standard font
library as content glyphs and transfers them to a new tar-
get font by extracting style information from the reference
glyphs. Most existing solutions explicitly disentangle con-
tent and style of reference glyphs globally or component-
wisely. However, the style of glyphs mainly lies in the local
details, i.e. the styles of radicals, components, and strokes
together depict the style of a glyph. Therefore, even a sin-
gle character can contain different styles distributed over
spatial locations. In this paper, we propose a new font gen-
eration approach by learning 1) the fine-grained local styles
from references, and 2) the spatial correspondence between
the content and reference glyphs. Therefore, each spatial
location in the content glyph can be assigned with the right
fine-grained style. To this end, we adopt cross-attention
over the representation of the content glyphs as the queries
and the representations of the reference glyphs as the keys
and values. Instead of explicitly disentangling global or
component-wise modeling, the cross-attention mechanism
can attend to the right local styles in the reference glyphs
and aggregate the reference styles into a fine-grained style
representation for the given content glyphs. The experi-
ments show that the proposed method outperforms the state-
of-the-art methods in FFG. In particular, the user studies
also demonstrate the style consistency of our approach sig-
nificantly outperforms previous methods.

1. Introduction

In the modern era, both computer systems and humans
process huge amounts of text information. Fonts, the rep-
resentations of text, have thus played critical roles in many
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Figure 1. Our proposed fine-grained local style extraction and
style aggregation process. Our proposed module enables fine-
grained style extraction from references and learns the correspon-
dence between content and reference, thus aggregate correspond-
ing local styles into correct locations in content with high-fidelity.

applications. Therefore, the stylish font generation has its
unique commercial and artistic values. However, building
commercial font libraries is costly and labor-intensive. The
cost is even higher for those languages with a huge amount
of characters (Chinese, Japanese Kanji, Korean, Thai, etc.).

Due to the expert’s high cost of building fonts, automatic
font generation with deep learning has drawn rising atten-
tion. It aims at generating a brand new font library with
only a few characters as a reference. With the development
of Generative Adversarial Networks (GANSs) [10,20], there
have been many classic works of font generation. Early at-
tempts, such as zi2zi [26], use Pix2Pix [14] like networks
with a plug-in font category embedding conditions to learn
multiple font styles with a single model. However, these
methods require a large number of glyphs to train each un-
seen font.

In recent years, some works tried to tackle few-shot font
generation (FFG) with a few-shot Image-to-Image transla-
tion (I2I) scheme [4,8,22,23,31]. Unlike zi2zi, the font style
representation is learned from a few reference exemplars,
rather than learning embeddings from different font labels.
One popular strategy of these works is to explicitly disen-
tangle the content and style representations from given con-
tent images and reference exemplars, and two representa-
tions are then combined and decoded into the target glyphs.
With the advance of these works, the generated glyphs’
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quality is significantly improved when the number of ref-
erences is limited. Based on the explicit disentanglement
ideas, the research of FFG can be divided into two different
categories, i.e. global style representation and component-
wise style representation. The former one models the glyph
style as universal representation for each font [8, 18, 31],
while the latter one utilizes component-wise style repre-
sentation from different reference exemplars in the same
font [4,13,22,23].

However, in a commercial font, multiple levels of styles
need to be considered. An expert would carefully design ev-
ery possible detail. The detailed styles among components,
strokes and, even edges are designed to be consistent. Pre-
vious works mostly focus on component-wise styles, while
largely ignoring the finer-grained styles. Meanwhile, since
the content and style are highly entangled, the commonly
used explicit disentanglement can hardly assure the con-
sistency of component-wise styles between the reference
glyphs and the generated glyphs. To this end, we employ
an references encoder to learn the fine-grained local styles
(FLS) without explicit disentangled representation learning.
Instead of regarding the overall reference map as style, we
consider each spatial location of the feature map as a FLS
representation of reference glyph. After learning the spatial
correspondence between references and content, we further
acquire the target style map by aggregating the correspond-
ing FLSs from references. Each feature vector of the target
style map also represents FLSs for the target glyph.

In this paper, we propose a novel approach shown
in Figure 1, named FSFont for few-shot font generation.
The reference glyph images are encoded into reference
maps, which represent the FLSs of the references. Our
proposed cross-attention based style aggregation module
(SAM) learns the spatial correspondence between refer-
ences and the content glyph. The spatial correspondence
is not only on the component level but also on the granular
level, which contains more detailed local styles. Afterward,
SAM aggregates the FLSs of references into the target style
map, where each spatial location can be assigned to the
right fine-grained style. Moreover, to enhance the model
to recover details of the references better and learn corre-
spondence more effectively, we adapt a self-reconstruction
branch that takes the target character as the input of the ref-
erence encoder, and the generated result is supervised by it-
self. This branch makes learning the correspondence more
easily, and helps to produce highly consistent output. Last
but not least, we develop a strategy to select the references
for each glyph automatically. After analyzing the compo-
sitional rules, we design a breadth-first search-based algo-
rithm to search for the reference set and find the optimal
references for each character.

In summary, the contribution of this paper is threefold:

* We devise a novel model for few-shot generation. The

model extracts the FLS of the reference glyph images,
and a cross-attention based style aggregation module
aggregates the reference styles into a target style map.
The details from reference glyphs are thereby trans-
ferred to the target glyph.

* We propose a unified training framework with a newly
designed self-reconstruction branch. This branch sig-
nificantly boosts the detail capture ability of the model
and improves the output images’ quality. As a result,
the proposed full model achieves state-of-the-art font
generation results.

* We analyze the relationship between characters and se-
lect a fairly small set of characters as references. Then
we develop a rule to map each character with the ele-
ments in the reference set. With the proposed rule, the
model’s ability to extract component features is better
exploited.

2. Related Works
2.1. Image-to-image translation

Image-to-image (I2I) translation refers to the task of
learning a mapping function between the source domain
and target domain, which preserves the content of the
source image while merging the style of the target do-
main at the same time. According to many I2I methods
[6,7,14,17,18,32,34], I2] methods have developed towards
multi-mapping [7,17,32] and few-shot learning [ 1 8]. Cycle-
GAN [34] introduces the cycle-consistency into generative
models, which enables 121 methods to train cross-domain
translation without paired data. FUNIT [18] accomplish
the style transfer task by encoding content and style respec-
tively and combine them with adaptive instance normaliza-
tion (AdaIN) [12]. From an intuitive thought, font genera-
tion is a typical I2I translation task, since it tries to keep the
content information of the source font and maps it into the
target font. Thus, many font generation methods are based
on I2] translation methods.

2.2. Many-shot font generation

Early font generation methods [5,9,11,15,16,19,24-26,

,30] aim at learning a mapping function between source
fonts and target fonts. When new font references are in-
troduced, these methods use hundreds of reference glyphs
to fine-tune the original mapping function. zi2zi [26] and
Rewrite [25] train GANS in a supervised way with one-hot
style labels. AGEN [19] proposes an model based on the
auto encoder to transfer standard font images to calligraphy
images. HAN [5] designs skip connection and hierarchical
loss functions to improve zi2zi’s generation performance.
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Figure 2. Overview of our proposed model. Our generator consists of four parts: a reference encoder E,, a content encoder E., the
Style Aggregation Module(SAM), and a decoder D. Given a content image z. and k-shot references {y1, y2, ..., yx } which is selected
based on our proposed Reference Selection, F,. and F. extract their features F). and f. respectively. Our SAM matches F;. and f. based
on the attention mechanism and links them with spatial correspondence, outputting the target style map f. .. Afterwards, we use D to
obtain the generated image .. We also propose a auxiliary branch of Self-Reconstruction during training stage (yellow branch) . It shares
weights with the main branch and improves generated images’ quality in details. A multi-task discriminator is employed to calculate the
adversarial loss and simultaneously distinguish the content and style category of the generated character. We also compute the pixel-wise
reconstruction loss between the ground truth y. and the generated image 4., and between y. and the reconstructed image g., respectively.

These methods require paired data to train a mapping func-
tion, e.g,775 for [16]. Other methods [9, 1 1] focus on un-
paired data, and use them for style extraction. Although
these many-shot font generation methods have achieved re-
markable performance, it is still a laborious task to collect
hundreds of references for the fine-tuning process, espe-
cially when the reference font library is glyph-rich.

2.3. Few-shot font generation

Most Few-shot font generation (FFG) methods focus on
disentangling the content feature and style feature from
the given glyphs. Based on different kinds of feature rep-
resentation, FFG methods can be divided into two main
categories: global feature representation [, 8,29, 33] and
component-based feature representation [4, 13,22,23]. In
methods that apply global feature representation, vectors re-
lated to content and style are extracted from content glyphs
and reference glyphs respectively. MCGAN [ 1] synthesize
the ornamented glyphs with stacked conditional GANs to
extract features from input images. EMD [33] and AGIS-
Net [8] combine a style vector and content vector together
to synthesize a glyph. ZiGAN [29] matches the features
to Hilbert space to better capture the structural informa-
tion. Works related to component-based feature represen-
tation concentrate on devising a feature representation that
is related to the glyphs’ components or localized features.
RD-GAN [13] uses a radical encoder to extract features of
glyphs’ specific components. In DM-Font [4], it disassem-
bles glyphs to stylized components and reassembles them
to new glyphs by utilizing strong compositionality prior.
LF-Font [22] designs a component-conditioned reference
encoder to extract component-wise features from reference

images. MX-Font [23] employs multiple encoders for each
reference image with disentanglement between content and
style which makes the cross-lingual task possible. DG-Font
[31] is an unsupervised framework based on TUNIT [2]
by replacing the traditional convolutional blocks with De-
formable blocks which enables the model to perform better
on cursive characters which are more difficult to generate.

However, the previous FFG works fail to fully explore
the style maps from k-shot references. When receiving k-
shot reference images, they tend to explicitly disentangle
style and content of images globally or component-wisely
and conduct a average operation among extracted features
[22,23]. The local details extracted from each reference are
significantly weakened by disentanglement and the average
operation. Therefore, we design Style Aggregation Module
that aims to keep the very detailed features from reference
images and to fully utilize the spatial details.

2.4. Attention Mechanism

The attention mechanism [27] is known to capture de-
pendence. After its debut in machine translation, it has been
applied in many vision tasks including font generation. RD-
GAN [13] using attention mechanism to extract rough radi-
cals from content characters and then render them into tar-
get style. HWT [3] uses transformer blocks to bridge the
gap between image and text, making it capable of gener-
ating stylized handwriting English text images. Our Style
Aggregation Module is highly motivated by the attention
mechanism for fine-grained feature map re-composition.
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3. Method

In this section, we present the details of our FS-Font
method. We first briefly review the few-shot font genera-
tion problem setup and introduce the overall framework of
our method (3.1). Next, we present the details of three cru-
cial components of our approach, including the Style Aggre-
gation Module (SAM) (Sec. 3.2), the Self-Reconstruction
branch (Sec. 3.3), and Reference Selection (Sec. 3.4).

3.1. Problem Setting and Method Overview

In few-shot font generation, given a content glyph image
x. with the content ¢ from a standard font X = {z.}
and a k-shot reference glyph images with the style s: R;, =
{yi}le C Y, our goal is to generate a stylized image .
that has the content ¢ and style s via a generator G:

Qc = G(xcvRs)v (l)

where the style s of ¢, is omitted for sake of simplicity.

In training, we collect L fonts with different styles Y =
{Y L |, where Y, = {y.} Y. Therefore, we have a paired
dataset {z., y.}2_, for each content c in s-th training style.

The overall framework is shown in Figure 2. The ref-
erence encoder F, first encodes R, into k-shot reference
maps F, = { fi}le, where f; is encoded from y;. The con-
tent encoder E.. extracts the content feature map f. from the
input content image x.. Our proposed SAM takes F;. and f.
as inputs, attends to the corresponding spatially local styles
in the reference maps F,. and aggregates the local styles into
the target style map f., = SAM(f., F;). In the end, the
decoder D decodes f. , into the generated output image 9.
A multi-task projection discriminator [21] is employed to
discriminate each generated image and real image. The dis-
criminator outputs a binary classification of fake or real for
each character’s style and content category.

3.2. Style Aggregation Module

An overview of the SAM is depicted in Figure 3. The
core in SAM is a multi-head cross attention block that at-
tends to spatially local styles from the reference maps F’.
and aggregates the reference styles into the fine-grained
style representation for the given content image. For the
m-th attention head, SAM learns a Query map Q" from
content feature map f. and Key map K" from reference
maps F)., which achieves the spatial correspondence matrix
A™ between the pixels of @ and K™. A value map V'™
is simultaneously learned from F).. Multiplying the corre-
spondence matrix A™ with the value map V""" aggregates
the local style styles into the target style S™. As different
head captures different information, we combine all the tar-
get styles together for decoding.

Formally, we reshape f. € into a sequence
fe € RX(w) swhere (h, w) is the resolution of the feature
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Figure 3. The illustration of the Style Aggregation Module
(SAM). We use multihead attention mechanism to calculate the
spatial correspondence of content and references and generate the
fine-grained feature map.

map, c is the number of channels. For the m-th head, af-
ter applying a linear layer Ly, € Re*¢" we acquire the
query matrix Q™ € R¢" *(mw) Meanwhile, the reference
maps F, = { fz}f , are reshaped and concatenated along
the spatial dimension (%, w), forming a reference sequence
fr € Rex(khw) e multlply f, by two linear projections

key> Lvatue € R*<" and generate a key map K™ and a
value map V'™ as follows:

Q query(f) Qm c Rc""x(h-w)7
) K™ ¢ Rc””x(blvw), (2)

vm e Rcm X (k-h-w) )

m _ m
K™ = key

V= valup ( )

We then compute a spatial correspondence matrix A™
of which each element A™(u,v) is a pairwise feature cor-
relation between content feature in position w and reference
feature in position v, calculated as follows:

QmT Km
Ve
where ¢ is the hidden dimension of Q™ and K™. The
1/+/¢™ factor follows Transformers [27] to prevent the

magnitude of the dot product from growing extreme.
With the correspondence matrix A™, we obtain the ag-
gregated style from references by

A™M — € Rhkahw, (3)

S™ = softmaz(A™)V™T e Rhwxe”, 4)

After permuting and reshaping S™ into R¢" X/ X% we
concatenate all S™ along the channel dimension, and em-
ploy a linear projection L, € R(¢""M)*¢ to obtain S. The
target style map f., is obtained as the concatenation be-
tween S and content feature f.. The decoder D decodes it
into the target image . as follows:

S = LS(Sl o 52, ...7OSM) c IRCXth7
jo = D(fer) = D(fe 0 9),

where o denotes concatenation operator and M is the num-
ber of total attention heads.

®)
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3.3. Self Reconstruction

To achieve a highly style-consistent glyph using SAM,
it depends not only on the proper aggregation of styles, but
also on the expressivity of the styles that depict fine and lo-
cal details of the references. However, the k-shot font gen-
eration setup is a hard-to-learn problem, as it requires the
attention learns spatial correspondence from weakly cor-
related content-references pairs, which is sometimes con-
fusing even for a human expert. Thus, besides the main
branch of k-shot learning, we introduce an easy-to-learn
Self-Reconstruction (SR) branch to boost the learning pro-
cess.

While the generator is trained in the above mentioned k-
shot setup, for a given content input x., we have the ground
truth image vy, to supervise the model training. Self Recon-
struction is a parallel branch that shares the same model as
the main branch during training. It takes ¥, as the reference
image Ry = {y.}, and its output §, is also supervised by
Y. itself. In contrast to Eq. 1, the generation process of this
branch is

e = G(2¢, Ry). (©6)

The detailed training setup can be found in Sec.3.5.
In the SR branch, the content and reference images are
strongly correlated. The spatial correspondence matrix can
be easily learned as the strokes and the components’ re-
lationship between content and reference is clear. With
the well-learned correspondence, the generator can be op-
timized with well-aligned gradients. As a result, the ex-
pressivity of depicting details can be further learned within
our framework.

3.4. Reference Selection

In previous works considering the decomposition of
components like LF-Font [22], reference characters that
contain the same components as content character are ran-
domly selected from the training set during each itera-
tion. The model can hardly learn how to extract the right
component-wise features with varying combinations of the
reference set. Thus, we introduce a strategy to select a
fixed reference set whose components cover most of the
commonly used characters and design a content-reference
mapping that fixes the combination of reference set for each
character. To establish this mapping function, we firstly de-
compose each character into a component tree, as shown in
Figure 4, based on a commonly used decomposition table'.
We define the components at the level 0, 1, and 2 as the
conspicuous components, which contains both radical and
compositional structures that easier be transfered from the
references to the target.

Reference set selection. This reference set should cover
as many conspicuous-level components as possible. Ini-

Uhttps://github.com/cjkvi/cjkvi-ids/blob/master/ids.txt

Conspicuous
Components

- Inconspicuous
+ - Components

refers to left-right structure
i refers to up-down structure

Figure 4. A component tree. To make the mapping process more
sensible, the component’s structure information is also taken into
consideration.

tially, we select a small subset (typically including 100 char-
acters). First, we decompose the characters into component
trees. Once the character contains two or more new com-
ponents, we add this character to our reference set. When
the elements in the reference set reach their limits, we stop
searching and obtain the style reference set and its corre-
sponding contained components.

Content-reference mapping. After completing the ref-
erence set selection, we then establish the mapping relations
between content glyphs and style references. We propose a
greedy process to find k-shot references for a glyph. In this
process, we search the reference set for k times to estab-
lish a mapping relation. During every searching step, we
find the reference glyph that shares the most components
with the target glyph. If there are multiple solutions, we se-
lect the optimal solution that has the most components with
the same structure composition. After selection, we remove
the reference from the reference set and continue the next
searching step. By this process, we can determine every
glyph’s corresponding k-shot references.

3.5. Training

We train our model to generate the image ¢, from a con-
tent glyph image z. and a fixed set of reference glyph im-
ages R,. In each iteration, the main branch and the SR
branch generate . and y. simultaneously and are super-
vised by the same losses. FSFont learns the reference en-
coder I, content encoder E,, Style Aggregation Module
and decoder D with following losses: 1) Adversarial loss
with the multi-task discriminator. 2) L1 loss among g, 4.
and a paired ground truth image y..

Adversarial loss. Since we our aim is to generate visu-
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ally high-quality images, we employ a multi-head projec-
tion discriminator [22] in our framework. The loss function
is represented as follows:

‘C(?dv =Ey.ep, [min(0,1 — DS,C(yC))]
+ E?JC‘EPQ [min(0, -1 — Ds,c(ﬂc))], @)
£ade = _EQCEPQDS,C(QC);

where . € {9, Jc}, Ds.c(:) refers to the logits from the
character ¢ head and style s head from the discriminator,
P, denotes the set of generated images from both main
branch and Self-Reconstruction branch, and P, denotes the
set of real glyph images.

L1 loss. For learning the pixel-level consistency, we em-
ploy an L1 loss between the generated images g., 7. and
ground truth image y..

»Cll :]E[”gc_yc”l—'—ch—ycHl]‘ ®)

Overall objective loss. Combining all losses mentioned
above, we train the whole model by the following objective:

mé;n max Nado (LG, + L2 Y + N1 L1, 9

where A,q, and \;; are hyperparameters to control the
weight of each loss. We empirically set A\,q, = 1 and
A1 = 0.1 in our experiments.

4. Experiments

In this section, we evaluate FSFont for the representative
Chinese font generation task. We first introduce the datasets
we used and compare our framework with other state-of-
the-art(SOTA) methods. After that, an ablation study evalu-
ates the effectiveness of each module in our framework and
how they affect final results.

4.1. Datasets and evaluation metrics

Datasets. We choose 407 fonts and 3396 commonly
used Chinese characters as our datasets including handwrit-
ing fonts, printed fonts as well as artistic fonts. All im-
ages are 128 x 128 pixels. We select 100 characters from
datasets as our reference set and create a Content-Reference
mapping with the strategy discussed in Sec.3.4. Reference
set and Content-Reference mapping are fixed in both train-
ing set and testing set which means only 100 characters
are needed to generate a new font library. The training set
contains 397 fonts, 2896 characters. The test set are from
10 representative fonts including typewriter fonts, artistic
fonts, and handwriting fonts to evaluate the generalization
of our model on variant unseen fonts. We test the methods

with two setups Unseen Fonts Unseen Characters(UFUC)
and Unseen Fonts Seen Characters(UFSC). UFUC refers to
the 500 characters in the test fonts, and UFSC refers to the
2896 characters in the test fonts.

Evaluation metrics. To evaluate the similarity between
generated images and ground truth, we compare our frame-
work with other SOTA methods in the following metrics,
i.e. L1, RMSE, SSIM and LPIPS. Additionally, we con-
duct user studies to calculate the Character Accuracy, as
CNN-based classifiers are tolerant of little defects like miss-
ing or broken strokes and blurry edges in a stroke-rich char-
acter. We hire 51 volunteers to rigorously count the correct
ones from 500 generated characters of each method. A char-
acter will be counted as correct only if the volunteer can not
spot a defect. For Style Consistency, the volunteers are re-
quired to evaluate which of the methods generates the most
similar character given a set of reference glyph images from
30 randomly selected cases.

4.2. Comparison methods

We compare our method with previous SOTA methods.
1) FUNIT [18] is a early work on Few-shot image trans-
lation in an Unsupervised way which introduces two dif-
ferent encoders and an AdalN module to generate a new
image with mixed content and style. 2) DG-Font [31] is
an Unsupervised network using Deformable Convolution in
Generator to achieve a better effect on cursive characters 3)
MX-Font [23] adopts multiple experts to extract different
local structures which makes cross-lingual generation task
possible. (4) AGIS-net [8] uses two different decoders to
generate images with shape and texture information which
makes generated image more stable. (5) LF-Font [22] pro-
poses localized style representation which makes it enable
to extract the component-wise features. For a fair compar-
ison, we choose the Kaiti Line Font 2 as the standard font
and re-train all models on the training datasets in Sec. 4.1.

4.3. Experimental results

Quantitative comparison. Table 1 shows the FFG per-
formance of our FSFont and other competitors. We con-
ducted the experiment on UFUC and UFSC. FSFont clearly
outweighs previous SOTA methods on all of the similar-
ity metrics from pixel-level to perceptual-level. On UFSC
setup, MX-Font [23] and AGIS-Net [8] generates little more
correct characters than FSFont. However, FSFont still gen-
erates the most correct characters on UFUC. AGIS-Net suf-
fers from a performance drop on Character Accuracy in
UFUC. This may suggest that its generalization to new char-
acters are limited. Meanwhile, the user study of Style Con-
sistency of FSFont is remarkably better than other meth-
ods, which further verifies that FSFont generates the visu-
ally similar results from users’ perspective.

2Font is available at https://chanind.github.io/hanzi-writer-data/
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Unseen Fonts Seen Characters

Methods ‘ L1 loss | RMSE | SSIM 1 LPIPS | User(C) % 1 User(S) % 1
FUNIT [18] 0.148 0.344 0.565 0.2543 86.0 0.3
DG-FONT [31] 0.131 0.329 0.604 0.2154 92.4 6.1
MX-FONT [23] 0.152 0.347 0.584 0.2291 97.4 8.4
AGIS-NET [8] 0.105 0.289 0.651 0.1865 97.2 5.2
LF-FONT [22] 0.129 0.322 0.607 0.2006 93.4 11.3
Ours 0.097 0.268 0.671 0.1618 96.6 68.7
Unseen Fonts Unseen Characters
Methods ‘ L1loss | RMSE | SSIM 1 LPIPS | User(C) % 1 User(S) % 1
FUNIT [18] 0.152 0.345 0.532 0.2424 84.6 1.2
DG-FONT [31] 0.141 0.341 0.573 0.2151 86.4 3.1
MX-FONT [23] 0.153 0.352 0.573 0.2317 93.2 11.2
AGIS-NET [8] 0.114 0.302 0.623 0.1877 89.8 4.1
LF-FONT [22] 0.138 0.334 0.577 0.2018 90.6 13.3
Ours 0.106 0.283 0.642 0.1627 93.8 67.1
Table 1. Qualitative comparison on UFUC and UFSC datasets
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Figure 5. Generated results of each method on UFUC datasets. We represent the generated samples of four different kinds of fonts. We
mark the main component of each character with boxes. The blue boxes in Reference are components we hope the model recover. It shows
our model(green boxes) is capable of recovering more details from Reference than other SOTA works do(red boxes).

Qualitative comparison We illustrate the generated
samples in Figure 5 for each method. We selected four dif-
ferent fonts including typewriter fonts, artistic fonts as well
as handwriting fonts to see the generalization of all com-
petitors. As demonstrated in Figure 5, FSFont are available
to recover as many details from reference images. Though
other methods like LF-Font [22] or AGIS-Net [£] are able to
generate stable characters and recover coarse features such
as the thickness of strokes and inclination of font, they could
not recover details as explicitly as our method does.

Ablation studies. In this part, we discuss the effective-
ness of each module we introduce in FSFont. We discard

each module at a time and train the model with other set-
tings unchanged. The overall evaluation results on UFUC
datasets are shown in Table 2. We replace SAM with aver-
aging features in F;. to test its effect. For Reference Selec-
tion and Content-Reference mapping, we replace them with
the strategy of LF-Font [22] by randomly selecting refer-
ence glyph images with a common component set for each
content character. Both two modules have a positive effect
on the final results. The Self-Reconstruction Branch has
a significant impact on outputs. As shown in Table 3, the
model trained without SR branch can hardly recover details
from reference glyph images.
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Figure 6. Visualization of Style Aggregation Module. The brighter spot in the attention maps denotes the larger contribution of corre-
sponding features in the reference feature maps. The light-green dot, line and bounding box denote the queries from different level.

Unseen Fonts Unseen Characters

SAM SR RS Llloss] RMSE| SSIMt LPIPS |

0.106 0283  0.642  0.1627

X 0.113 0294  0.621  0.1822
X 0.127 0318 0596  0.1859

X 0114 0292 0624 0.1798

X X X 0131 0338  0.584  0.2189

Table 2. Analysis of different modules in our proposed frame-
work. By discarding the Style Aggregation Module (SAM), Self
Construction (SR), and Reference Selection (RS) individually, we
can see that all these modules have positive effects on the original
model respectively. The model with three modules has the best
performance in all evaluation metrics.

coment HE [ JE 42 4E
G &% 4%
1 SR @ 4k W
g 8

¥ X &R

Table 3. Comparison of generated images with and without
Self-Reconstruction branch. The green box in the reference set
is the component we hope the model to recover. The red box shows
the insufficient details generated from the model trained without
Self Reconstruction branch.

Visualization of SAM. To demonstrate the effectiveness
of SAM, we visualize the attention maps for different lev-
els in Figure 6. Specifically, given a certain spatial point
q in the content feature map as a query, we can obtain the

corresponding correlations A" € R*" from the spatial

correspondence matrix A™ € R"Xkhw “and construct an
attention map by reshaping Aj" to h x kw. We consider
the queries from the Granular, Stroke, and Component-
level, respectively, and compute the final attention map by
summing over the attention maps related to the queries. It
shows that our SAM module empowers the model to attend
to the correct FLSs from reference images and extract a sub-
component level feature representation for content images.

5. Conclusion

In this paper, we propose a novel FFG model, which is
able to calculate the spatial correspondence of the content
and reference based on their component features. Our pro-
posed Style Aggregation Module aggregates fine-grained
local styles of references to content’s corresponding lo-
cation with high-fidelity. Besides, we propose a Self-
Reconstruction branch to help model to recover details
from references. Last but not least, our Reference Selec-
tion strategy guarantee that each content can match refer-
ences that share common conspicuous components. Our
extensive experiments show that FSFont significantly out-
performs other methods in both objective and subjective
similarity. Limitation The model is trained on limited
data, it can not faithfully replicate every detail of the
font. Negative Impact Though FSFont can be poten-
tially used to imitate handwriting, a human expert can still
spot the difference between generated and real handwrit-
ings.
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