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Abstract

Point cloud completion aims at completing geometric
and topological shapes from a partial observation. How-
ever, some topology of the original shape is missing, exist-
ing methods directly predict the location of complete points,
without predicting structured and topological information
of the complete shape, which leads to inferior performance.
To better tackle the missing topology part, we propose
LAKe-Net, a novel topology-aware point cloud comple-
tion model by localizing aligned keypoints, with a novel
Keypoints-Skeleton-Shape prediction manner. Specifically,
our method completes missing topology using three steps:
1) Aligned Keypoint Localization. An asymmetric keypoint
locator, including an unsupervised multi-scale keypoint de-
tector and a complete keypoint generator, is proposed for lo-
calizing aligned keypoints from complete and partial point
clouds. We theoretically prove that the detector can cap-
ture aligned keypoints for objects within a sub-category.
2) Surface-skeleton Generation. A new type of skeleton,
named Surface-skeleton, is generated from keypoints based
on geometric priors to fully represent the topological infor-
mation captured from keypoints and better recover the local
details. 3) Shape Refinement. We design a refinement sub-
net where multi-scale surface-skeletons are fed into each
recursive skeleton-assisted refinement module to assist the
completion process. Experimental results show that our
method achieves the state-of-the-art performance on point
cloud completion.

1. Introduction

The geometry and vision community has put huge ef-
fort into point cloud processing, which is challenging due to
the unordered, unstructured characteristics, and complex se-
mantics of the point clouds. However, in real applications,
occlusions and insufficient lighting lead to partial scans of
real shapes and degrade the performance of subsequent pro-
cessing. Point cloud completion focuses on predicting miss-
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Figure 1. Illustration of (a) visual comparison results of current
completion methods, (b) completion process of our LAKe-Net,
and (c) aligned keypoints. Compared with GRNet [34], PMP-
Net [29], PoinTr [40] and Snowflake [32], LAKe-Net can effec-
tively recover missing topology part (see Red ellipses).

ing regions from partial observations, and shows its unique
significance in many fundamental applications.

Recent works [7, 18, 26, 29, 32, 34, 35, 40, 41] for point
cloud completion successfully utilized deep-learning meth-
ods and achieved more plausible and flexible results com-
pared with traditional geometric-based methods [8, 19, 23]
and alignment-based methods [11, 12, 16]. However, most
existing methods directly predict the location of complete
points, without predicting structured and topological infor-
mation of the complete shape, which leads to coarse results
in missing regions (see Figure 1(a)).

Inspired by typical geometric modeling theory that a
complete 3D object includes geometry and topology, e.g.,
coordinates and connectivity, we tend to predict both ge-
ometric and structured topological information for point
cloud completion, including keypoints and generated skele-
ton. To this end, we propose a novel Keypoints-Skeleton-
Shape prediction manner, including three steps: keypoint
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localization, skeleton generation, and shape refinement.
We firstly introduce the keypoint localization. Different

from down-sampled points, keypoints are evenly distributed
across semantic parts of the shape, and are considered as
a crucial representation of geometric structure which are
widely-used in many vision applications [17,27,37]. There-
fore, we hold the belief that once the keypoints and their
connectivity are correctly localized, the entire geometry is
determined. To this end, we wish to localize complete key-
points according to partial inputs under the supervision of
the ground truth keypoints. However, obtaining keypoints
annotation for a large number of 3D data is difficult and
expensive, so we propose an asymmetric keypoint loca-
tor including an unsupervised multi-scale keypoint detec-
tor (UMKD) and a complete keypoint generator (CKG) for
complete and partial point cloud, respectively. For UMKD,
we extract Aligned Keypoints, which means the order of
keypoints are the same on different objects within a cer-
tain category (Figure 1(c)), so as to represent more stable
and richer information, and provide stronger supervision for
predicting complete keypoints from partial inputs by CKG.

Since discrete and sparse keypoints are not enough for
representing the whole objects, we leverage skeleton to
better represent topological details. Inspired by existing
skeleton extraction methods [1, 5, 14], we propose a novel
Surface-skeleton, which is generated from keypoints based
on geometric priors. Compared with other types of skele-
tons, our surface-skeleton is a mixture of curves and trian-
gle surfaces, and can represent more complex shape infor-
mation. We integrate surface-skeletons with different fine-
ness generated by multi-scale keypoints into the shape re-
finement step to recover finer results. Specifically, we pro-
pose a folding-based refinement subnet including three re-
cursive skeleton-assisted refinement modules (RSR) follow-
ing some of other completion methods [28, 32].

In general, we propose LAKe-Net, a novel topology-
aware point cloud completion model by localizing aligned
keypoints. The whole pipeline includes four parts: auto-
encoder, asymmetric keypoints locator, surface-skeleton
generator and the refinement subnet. We leverage pairs of
complete and partial point cloud during training. In detail,
the input point clouds (either complete or partial) are firstly
fed into an auto-encoder to learn a feature embedding space
and generate coarse and complete results. Then, we localize
multi-scale keypoints using asymmetric keypoints locator
and generate corresponding surface-skeletons. The multi-
scale structures are fed into the refinement subnet to gener-
ate fine output. The training process includes two stages for
point cloud reconstruction and completion, respectively.

Overall, we summarize our main contributions as fol-
lows: (1) We propose LAKe-Net, a novel topology-aware
point cloud completion model that utilizes a structured rep-
resentation of the surface as assistance, including Aligned

Keypoints and Surface-skeleton, with a new Keypoints-
Skeleton-Shape prediction manner. (2) We introduce an
asymmetric keypoint locator including an unsupervised
multi-scale keypoint detector and a complete keypoint gen-
erator, which can capture accurate keypoints for complete
and partial objects in multiple categories, respectively. We
theoretically prove that our detector detects aligned key-
points within each sub-category. (3) We conduct point
cloud completion experiments on two datasets, PCN and
ShapeNet55. Experimental results show that our LAKe-Net
achieves the state-of-the-art performance on both datasets.

2. Related Works
Point Cloud Completion. Point cloud completion focuses
on predicting missing shapes from partial point cloud input.
Recently, inspired by point cloud analysis approaches [20,
21], PCN [41] first adopts an encoder-decoder architec-
ture and a coarse-to-fine manner to generate the complete
shape. Several works [15, 26, 32, 43] follow this practice
and make modifications in network structure to obtain bet-
ter performance. SA-Net [28] further extends the decod-
ing process into multiple stages by introducing hierarchi-
cal folding. More recently, PoinTr [40] reformulates point
cloud completion as a set-to-set translation problem and de-
signs a new transformer-based encoder-decoder for point
cloud completion. However, these methods mostly predict
the location of complete points without predicting struc-
tured and topological information, which leads to coarse
results in missing regions. SK-PCN [18] is the most rele-
vant work to ours which pre-processes the dataset and uses
meso-skeletons as supervision. However, SK-PCN doesn’t
predict the structured and topological information of orig-
inal shape. Our proposed LAKe-Net utilizes aligned key-
points and corresponding surface-skeleton which can cap-
ture the shared topological information as an assistant for
completion, and obtains better performance.
Skeleton Representation. Skeleton representation is
widely-used in motion recognition [38,39], human pose es-
timation [2, 22] and human reconstruction [4, 42]. Jiang
et al. [10] propose to incorporate skeleton awareness into
the deep learning-based regression for 3D human shape
reconstruction from point clouds. Tang et al. [25] uti-
lize topology preservation property of skeleton to per-
form 3D surface reconstruction from a single RGB image.
P2P-Net [36] learns bidirectional geometric transforma-
tions between point-based shape representations from two
domains, surface-skeletons and surfaces. Our method de-
signs surface-skeleton representations generated by multi-
scale keypoints in a more fine-grained manner to progres-
sively aid point cloud completion.
Unsupervised keypoint detection. While most hand-
crafted 3D keypoint detectors fail to detect accurate and
well-aligned keypoints in complex objects, Li et al. [13]
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Figure 2. The overall architecture of LAKe-Net, which consists of two parts including Point Cloud Reconstruction (Blue) and Point cloud
Completion (Red). We show the detailed structure of (a) Auto-encoder E, (b) Complete Keypoint Generator G and (c) Recursive Skeleton-
assisted Refinement module R on the right side. PCN encoder is firstly proposed in [41]. UMKD denotes the unsupervised multi-scale
keypoint detector. Surface-skeletons Si and Ŝi are generated by Pi and P̂i, respectively.

propose the first learning-based 3D keypoint detector USIP.
However, the detected keypoints are neither ordered nor se-
mantically salient. Fernandez et al. [6] utilize symmetry
prior in point clouds to capture keypoints in an unsuper-
vised manner. Recently, Jakab et al. [9] further explore the
application of unsupervised keypoints in shape deformation
task. SkeletonMerger [24] proposes a novel keypoint detec-
tor based on an autoencoder architecture. However, differ-
ent models need to be trained for different categories. We
propose UMKD, an unsupervised multi-scale keypoint de-
tector which can capture keypoints for objects in multiple
categories. We find that it reaches the best performance on
categories with shared topology on KeypointNet [37] and
produces more salient and semantic richer keypoints.
3. Proposed Method

We propose a novel topology-aware point cloud com-
pletion network by localizing aligned keypoints (LAKe-
Net), whose overall architecture is shown in Fig. 2. The
pipeline includes four parts: auto-encoder, asymmetric key-
point locator, surface-skeleton generation and shape refine-
ment. The training includes two stages: point cloud re-
construction and completion. The training data consists of
pairs of complete and partial point clouds (X,X ), where
X ∈ RNc×3 and X ∈ RNp×3 denote the coordinates of
complete and partial point clouds, Nc and Np denote the
number of points of complete and partial data, respectively.

Firstly, see upper part of Fig. 2, we utilize complete data
X as input to train an unsupervised multi-scale keypoint de-
tector (UMKD) D, which extracts the multi-scale keypoints

PointNet++

Classification Loss

Category-specific Offset Predictors

𝑶𝑶𝟏𝟏𝟏𝟏 𝑶𝑶𝟏𝟏𝟏𝟏 𝑶𝑶𝟏𝟏𝓠𝓠

𝑶𝑶𝟐𝟐𝟏𝟏 𝑶𝑶𝟐𝟐𝟐𝟐 𝑶𝑶𝟐𝟐𝓠𝓠

𝑶𝑶𝟑𝟑𝟏𝟏 𝑶𝑶𝟑𝟑𝟐𝟐 𝑶𝑶𝟑𝟑𝓠𝓠

......Category
label

𝑾𝑾1

𝑾𝑾2

𝑾𝑾3

Predicted
label

Input 𝐗𝐗 FC

𝑾𝑾𝑡𝑡
3

𝑾𝑾𝑡𝑡
2

𝑾𝑾𝑡𝑡
1

FCFC

Output 𝐏𝐏𝟏𝟏

Output 𝐏𝐏𝟐𝟐

Output 𝐏𝐏𝟑𝟑

FC

Linear Layers Element-wise Add Matrix Multiply

𝑲𝑲𝟑𝟑 × 𝑲𝑲𝟑𝟑

𝑲𝑲𝟑𝟑 × 𝑵𝑵𝒄𝒄
𝑲𝑲𝟑𝟑 × 𝟑𝟑

𝑲𝑲𝟑𝟑 × 𝑵𝑵𝒄𝒄

𝑵𝑵𝒄𝒄 × 𝟑𝟑

Select

𝓠𝓠

Category-inviriant Convex Encoder
Unsupervised Multi-scale Keypoints Detector 𝑫𝑫

𝐏𝐏𝟑𝟑 = 𝑾𝑾 � 𝐗𝐗 = (𝑾𝑾𝒕𝒕
𝟑𝟑 + 𝑶𝑶𝟑𝟑𝟑𝟑(𝑾𝑾𝒕𝒕

𝟑𝟑)) � 𝐗𝐗

Softmax

𝝎𝝎

Figure 3. The detailed structure of our proposed UMKD. Take P3

as an example, we show the calculation process and dimensions of
relative tensors in Blue.

{Pi}3i=1, and an auto-encoder E1, which maps the inputs
into a global feature space c and obtain coarse results Xc.
Then, a surface-skeleton generation process is employed to
leverage the topology information in keypoints to construct
a finer representation. Finally, a refinement subnet adopts
the topology information S and coarse results Xc to gen-
erate high-resolution results Xf . The reconstruction part
unsupervisedly trains the UMKD to learn aligned keypoints
for later completion stage and also provides a good initial-
ization of the network to predict complete shape.

In the second stage, we fix the weights of keypoint detec-
tor D and auto-encoder E1, then input partial data X into
a new auto-encoder E2 and predict complete coarse results
Xc. It is noteworthy that the auto-encoder E1 and E2 have
the same architecture which includes a PCN encoder [41]
and coarse point generator. The encoder of E2 embeds in-
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put points into point-wise local features f̂ ∈ RNp×d, where
d denotes the dimension of feature embedding. We consider
the maximum value ĉ = maxNp

(f̂) ∈ R1×d as global fea-
tures. Then we fuse the local and global features and feed
the fused feature into a complete keypoint generator (CKG)
G to predict multi-scale keypoints {P̂i}3i=1, supervised by
keypoints {Pi}3i=1 detected in the first stage. At last, we
send Xc and interpolated surface-skeleton Ŝ to a skeleton-
assisted refinement subnet R to generate fine outputs Xf .
We describe the technical details of our proposed modules
and training losses in the following sections.

3.1. Unsupervised Multi-scale Keypoint Detector

Given a set of Nc input complete point clouds X =
{xj |j = 1, · · · , Nc} ∈ RNc×3, our aim is to pre-
dict {Ki}3i=1 numbers of keypoints {Pi}3i=1 = {pk|k =
1, · · · ,Ki} ∈ RKi×3. Specifically, we tend to predict con-
vex combination weights Wi = {wij} ∈ RNc×Ki of point
clouds instead of predicting the coordinates of keypoints di-
rectly to avoid deviating from the original shape. So the
predicted keypoints Pi are derived by:

Pi = WT
i X =

Nc∑
j=1

wT
ijxj , s.t., wij > 0,

Nc∑
j=1

wij = 1. (1)

To predict convex weight Wi using a single model for
all categories which adapts to our pipeline, we assume
Wi = Wi

t + Wi
o, where Wi

t denotes a category-invariant
template weight and Wi

o denotes a category-specific weight
offset. Besides, we expect to predict multi-scale keypoints
for subsequent tasks. To this end, we propose an Unsuper-
vised Multi-scale Keypoint Detector (UMKD) which con-
sists of a category-invariant convex encoder and category-
specific offset predictors. The detailed structure of UMKD
is shown in Figure 3. In detail, we apply a PointNet++ [21]
as a backbone encoder to extract local and global features.
It includes four set abstraction layers to group and down-
sample input points. Then the global and local features are
propagated back to each partial point. Then we input point-
wise features into three fully connected blocks and extract
multi-scale convex features Wi

t ∈ RKi×Nc progressively.
As for predicting category-specific offset Wi

o, we firstly
predict the category label ω for input shape and send the
Wi

t to the relative offset predictor Oiω . We add two fully-
connected layers after the last pointset abstraction layer in
PointNet++ as classification head to predict the category la-
bel of every input geometries. Oij ∈ RKi×Ki is a learnable
matrix. We set j ∈ [1,Q]. Q denotes the number of cat-
egories. Take P3 as an example (shown in Figure 3), the
input points X ∈ RNc×3 are send to the convex encoder and
output template convex weights W3

t ∈ RK3×Nc and pre-
dicted label ω = 2. Then W3

t are input to the selected offset
predictor O32 and output W3

o ∈ RK3×Nc . At last, we get

b) Recovery Prior

a) Topology Prior c) Edge Interpolation

d) Surface Interpolation

Adjacency Matrix A
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

Keypoints

Reference
Surface-skeleton

𝑷𝑷

𝑿𝑿
𝓢𝓢

Figure 4. The surface-skeleton generation operation.

the final convex weight W3 = W3
t +W3

o and normalize W3

by a softmax function and predict keypoint P3.
The keypoints extracted by UMKD D follow a theory

that: The coordinates of detected keypoints P are irrele-
vant to the order of original points X. That is: P = D(X) =
D(R(X)), where R(·) denotes random permutation oper-
ation. The theoretical proof is introduced in Supplementary
Materials. Therefore, the detected keypoints are aligned
among objects with shared topology within a sub-category
(shown in Figure 1(c)).

3.2. Surface-skeleton Generation

After extracting the keypoints of original point clouds,
our aim is to reconstruct the point cloud according to the ex-
tracted keypoints. We consider skeleton as an intermediate
representation between keypoints and original point clouds.
Previous methods like SkeletonMerger [24] used skeletons
connected by every pair of keypoints, which leads to high
computational complexity and a lot of invalid points. More-
over, given a surface, previous skeletons either are located
near the medial axis of the surface [5], or are mostly located
outside the surface [24]. We aim at extracting a skeleton
that are located near the surface, so that it can better as-
sist the later refinement process. In order to represent both
topological and geometric information of a complex shape,
we design a surface-skeleton structure which is generated
by keypoints and consists of a mixture of curves and trian-
gle surfaces adapted to the local 3D geometry. Specifically,
given predicted keypoints P ∈ RK×3 and reference points
X , we follow the two shape priors proposed in [14] and
generate the skeletal graph: (1) the topology prior that each
node has links to its top-2 nearest nodes; (2) the recovery
prior that two keypoints are linked if they are two nearest
keypoints of a reference point.

After skeletal graph generation, we can get an adjacency
matrix A ∈ RK×K . We propose a surface interpolation
strategy based on Delaunay-based triangulation region. The
whole interpolation process consists of two steps: edge in-
terpolation and triangle surface interpolation. Given a cer-
tain graph, we firstly interpolate points into each connected
edge. Next, we detect every triangle surface according to
the skeletal graph. Then we insert points into the triangle
region. The number of interpolated points is proportional
to the triangle area. The overall skeletal graph generation
and surface interpolation process is shown in Fig 4. It is
noteworthy that we utilize the complete point clouds X as
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reference shape for reconstruction while using the coarse
results Xc for completion.

Overall, we get the surface-skeleton S. Increasing
the number of keypoints leads to more complex surface-
skeletons which can represent finer shape details. We utilize
the structure as topology representation of geometric shape
which is crucial for reconstruction and completion.

3.3. Complete Keypoint Generator

In the second stage, given the partial input X ∈ RNp×3,
the aim of our proposed Complete Keypoint Generator
(CKG) module is to predict multi-scale complete keypoints
from partial feature embedding. To this end, we utilize the
local and global feature f̂ and ĉ extracted by the encoder
in E2 as input. Similar to Farthest Point Sampling (FPS)
strategy for point cloud, in order to downsample the point
features, we use Farthest Feature Sampling (FFS) strategy
to down sample point-wise local feature f̂ to sparse feature
f̂∗ where we replace point coordinates in FPS by feature
embeddings. The number of sampling is the same as pre-
dicted keypoints. Then we utilize a de-convolution layer to
upsample the global feature ĉ and fuse them into a resid-
ual block and predict final keypoints. We train three similar
blocks for multi-scale keypoints prediction. Then we gen-
erate corresponding surface-skeleton Ŝ by surface interpo-
lation introduced on Sec. 3.2.

3.4. Recursive Skeleton-assisted Refinement

Our proposed shape refinement subnet R includes three
recursive skeleton-assisted refinement (RSR) modules that
aim to integrate multi-scale surface-skeletons and coarse
output from previous auto-encoder to predict finer geo-
metric details in a recursive way. The detailed design of
the module is shown in Fig 2. It follows existing meth-
ods [28, 32, 35] using a coarse-to-fine strategy to learn
the offset of integrated points. Specifically, we progres-
sively concatenate coarse point clouds obtained from pre-
vious steps and surface-skeleton generated by correspond-
ing keypoints described in Sec. 3.2. We denote the input
coarse points as Xi−1 = {xj}Ni−1

j=1 and surface-skeleton

as Si−1 = {pj}Si−1

j=1 . The integrated points X̂i−1 =
concat(Xi−1,Si−1) on the i-th step where concat(·) refers
to concatenate operation. Ni−1 and Si−1 denote numbers
of coarse points and surface-skeleton, respectively. In this
paper, we set Ni = Si in each step. Therefore, the up-
dated points output by the i-th RSR module Xi = X̂i−1 +
R(X̂i−1) will be sent to the next step.

3.5. Training and Losses

Point Cloud Reconstruction. In the first stage, the UMKD
D, auto-encoder E1 and refinement subnet R are trained
together. The training losses are divided into two parts,
one is to constrain the keypoint detection, the other is data

reconstruction. Firstly, in order to encourage the detected
keypoints P to be well-distributed and not deviate from the
global shape, we calculate the Chamfer Distance (CD) loss
between the predicted keypoints and sparse point clouds
X∗ downsampled from input data using FPS strategy. As
for training one detector within several categories, we also
train a classification head. We denote the predicted output
is ω and certain category label is σ. We train a criterion
loss Lcls. Besides, as mentioned in Sec. 3.2, we expect the
surface-skeleton can reconstruct the geometric shape of the
ground truth. We calculate CD between multi-scale surface-
skeletons {Si}3i=1 and the ground truth X. So the overall
loss for training keypoint detector is:

LCD =
1

|X|
∑
x∈X

min
y∈Y

||x− y||2 + 1

|Y |
∑
y∈Y

min
x∈X

||y − x||2,

(2)

Lcls = −
Q∑
i=1

(σilogωi + (1− σi)log(1− ωi)), (3)

Lkp = LCD(P,X∗) +

3∑
i=1

LCD(Si,X) + Lcls. (4)

At last, we calculates CD between the ground truth X
and sparse output Xc, dense output Xf , respectively.

Lrec = LCD(Xc,X) + LCD(Xf ,X). (5)

In general, the overall training loss in the first stage is:

L1 = Lrec + λ1
kpLkp, (6)

where λ1
kp denotes hyper-parameters to balance inference.

Point Cloud Completion. In the second stage, we fix the
weights of UMKD D and auto-encoder E1, and train a new
auto-encoder E2 and CKG G. The refinement subnet R
pre-trained before continues to be optimized. We constrain
keypoints prediction using absolute distance between pre-
dicted keypoints P̂ and ground truth keypoints P:

Lc
kp =

3∑
i=1

Ki∑
j=1

||pij − p̂ij ||2. (7)

Same as other concurrent network [31], we align global
features c and ĉ ∈ R1×d encoded by auto-encoders in two
stages for hidden feature space learning:

Lfeat =
1

d

d∑
i=1

||ci − ĉi||2. (8)

As for typical training on completion task, we follow the
coarse-to-fine process in the first stage. The coarse output
Xc and fine output Xf are optimized using CD loss:

Lcom = LCD(Xc,X) + LCD(Xf ,X). (9)

In the summary, the full objective of point cloud comple-
tion in the second stage is:

L2 = Lcom + λ2
kpLc

kp + λfeatLfeat, (10)

where (λ2
kp, λfeat) denote hyper-parameters.
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4. Experiments
4.1. Dataset Setting and Evaluation metric

PCN: The PCN dataset is a widely-used benchmark for
point cloud completion, which is created by [41], includ-
ing different objects from 8 categories: plane, cabinet, car,
chair, lamp, sofa, table, and vessel. The training set contains
28,974 objects, while validation and test set contains 800
and 1,200 objects, respectively. The complete point cloud
consists of 16,384 points which are uniformly sampled on
the original CAD model. Partial point cloud, consisting of
2,048 points, is created by back-projecting 2.5D depth im-
ages into 3D from 8 random viewpoints.
ShapeNet55: To explore the performance of our method
on a large number of categories, we evaluate our method on
all 55 categories of ShapeNet [3], named ShapeNet55. The
ShapeNet55 dataset was first created by PoinTr [40]. The
training set contains 41,952 objects, while test set contains
10,518 objects. We randomly sample 80% objects in each
category to form training set and use the rest 20% to form
validation set.
Evaluation Metrics: We utilize two evaluation metrics
between output point cloud and the ground truth, Cham-
fer Distance (CD) using L2 norm and Earth Mover’s Dis-
tance (EMD), following most of the methods on PCN and
ShapeNet55 test set. CD is introduced in Equation 2 and
EMD is defined as:

EMD(X,Y ) = min
ϕ:X→Y

1

|X|
∑
x∈X

||x− ϕ(x)||2, (11)

where ϕ is a bijection. It is noteworthy that we compute
these metrics using 16,384 and 8,192 points for PCN and
ShapeNet55, respectively.

4.2. Implementation Details

The whole training of LAKe-Net is a two-stage process:
point cloud reconstruction and point cloud completion. The
input of the first stage (reconstruction) is a set of complete
point clouds with coordinates and object category labels
from training set of all datasets. We train the keypoint de-
tection for 60 epochs and progressively extract 256, 128,
64 keypoints. The refinement subnet includes three RSR
modules, the up factors of de-convolution are [1,1,2]. For
the second stage (the bottom completion branch of Fig. 2),
we only input partial point clouds from training set with its
coordinate information. We utilize Adam optimization to
train the whole architecture of point cloud completion for
100 epochs with batchsize 64 and learning rate 0.001. The
hyper-parmeters λ1

kp = λ2
kp = 10, λfeat = 1000. The

inference time of our method is 34.5ms per sample.

4.3. Results on PCN dataset.

We compare the performance of our proposed LAKe-
Net and other state-of-the-art completion methods. We im-

Input

GRNet

PoinTr

Spare

PMP

Snow

Ground
Truth

Ours

Figure 5. Visualization of point cloud completion comparison re-
sults on PCN dataset with other recent methods.

plement other methods using their open source code and
hyper-parameters for fair comparison. Table 2 and 3 show
the quantitative comparison results of our method and other
point cloud completion methods on PCN datasets, from
which we can see that our method achieves the best perfor-
mance over all counterparts on both CD and EMD metrics.
Specifically, compared with the second-ranked Snowflake
which also proposed progressive decoding modules, our
method has better performance with the help of aligned key-
points and surface-skeletons. Besides, according to exper-
imental results, our proposed LAKe-Net is more powerful
to predict symmetrical geometries and their topology infor-
mation compared with SnowflakeNet.

Moreover, we also show the visualization of qualitative
comparison results and some recent methods in Figure 5,
which show that our method has better performance on
completing missing topology. Specifically, methods which
also utilize progressive coarse-to-fine decoding like PMP-
Net and SnowflakeNet, tended to predict coarse missing
shape and generate scattered points, especially for geom-
etry with a plane or surface. Other methods like GRNet,
SpareNet and PoinTr are weak on recovering the local de-
tails and some missing topology like table legs. Our method
can predict geometries with more clear topology structure
and fewer noises.

4.4. Results on ShapeNet55 dataset

Moreover, to evaluate the generalization and powerful
of our method on a large account of categories of data
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Category Bed Bench Bookshelf FileCabinet Faucet Telephone Can Flowerpot Tower Pillow Average

Metrics CD EMD CD EMD CD EMD CD EMD CD EMD CD EMD CD EMD CD EMD CD EMD CD EMD CD EMD

Folding [35] 3.17 73.6 1.45 50.1 2.48 64.4 1.94 65.3 3.19 66.2 0.69 39.1 1.76 60.2 4.11 82.9 1.83 59.5 1.64 63.2 2.06 60.2
PCN [41] 2.50 49.4 0.96 28.9 2.39 44.7 1.49 37.2 1.96 40.3 0.54 24.0 1.30 30.9 2.58 48.7 1.34 33.7 1.09 31.5 1.36 34.0
GRNet [34] 0.93 29.7 0.86 25.8 0.93 29.6 1.57 24.9 0.83 27.6 0.87 26.2 1.15 32.3 1.24 33.5 0.87 25.3 1.06 28.8 1.15 28.2
PoinTr [40] 2.18 37.6 0.93 21.4 1.86 37.1 3.23 42.7 1.75 42.4 0.55 20.8 2.13 31.2 2.68 42.7 1.73 35.9 1.40 31.8 1.70 31.7

Ours 0.72 28.4 0.71 18.2 0.89 29.7 0.97 16.4 0.34 20.5 0.48 20.8 0.63 29.0 1.19 35.9 0.60 21.9 0.97 29.8 0.89 31.0

Table 1. Quantitative comparison results with other completion methods on ShapeNet55 dataset using CD-l2(×103) and EMD(×103)
metrics. We report the detailed results for each method on 10 sampled categories and overall average results on all 55 categories.

CD-l2(×104) Airplane Cabinet Car Chair Lamp Sofa Table Vessel Average

Folding [35] 3.151 7.943 4.676 9.225 9.234 8.895 6.691 7.325 7.142
PCN [41] 1.400 4.450 2.445 4.838 6.238 5.129 3.569 4.062 4.016
AtlasNet [7] 1.753 5.101 3.237 5.226 6.342 5.990 4.359 4.177 4.523
MSN [15] 1.543 7.249 4.711 4.539 6.479 5.894 3.797 3.853 4.758
GRNet [34] 1.531 3.620 2.752 2.945 2.649 3.613 2.552 2.122 2.723
PMP-Net [29] 1.205 4.189 2.878 3.495 2.178 4.267 2.921 1.894 2.878
SpareNet [33] 1.756 6.635 3.614 6.163 6.313 7.893 4.987 3.835 5.149
PointTr [40] 0.993 4.809 2.529 3.683 3.077 6.535 3.103 2.029 3.345
Snowflake [32] 0.913 3.322 2.246 2.642 1.898 3.966 2.011 1.692 2.336

Ours 0.646 2.594 1.743 2.149 2.759 2.186 1.876 1.602 1.944

Table 2. Quantitative comparison results with other methods of
point cloud completion on PCN using CD-l2 (lower is better).

EMD(×102) Airplane Cabinet Car Chair Lamp Sofa Table Vessel Average

Folding [35] 1.682 2.576 2.183 2.847 3.062 3.003 2.500 2.357 2.526
PCN [41] 2.426 1.888 2.744 2.200 2.383 2.062 1.242 2.208 2.144
AtlasNet [7] 1.324 2.582 2.085 2.442 2.718 2.829 2.160 2.114 2.282
MSN [15] 1.334 2.251 2.062 2.346 2.449 2.712 1.977 2.001 2.142
GRNet [34] 1.376 2.128 1.918 2.127 2.150 2.468 1.852 1.876 1.987
PMP-Net [29] 1.259 2.058 2.520 1.798 1.280 2.579 1.651 1.760 1.863
SpareNet [33] 1.131 2.014 1.783 2.050 2.063 2.333 1.729 1.790 1.862
PointTr [40] 0.938 1.986 1.851 1.892 1.740 2.242 1.931 1.532 1.764
Snowflake [32] 1.375 2.633 2.591 2.086 1.599 3.070 1.616 1.957 2.116

Ours 0.958 1.830 1.564 1.667 1.782 1.755 1.499 1.402 1.557

Table 3. Quantitative comparison results with other methods of
point cloud completion on PCN using EMD (lower is better).

to adapt to real-world scenarios, we conduct experiments
on ShapeNet55 dataset and compare with other completion
methods. We drop 75% of the complete point cloud and re-
sample the remaining partial point clouds to 2,048 points as
input for all methods. Table 1 shows the quantitative com-
parison results on 10 sampled categories. The last column
shows the overall average results of 55 categories. We can
see that our method achieves the best result on CD metric
and have competitive results on EMD metric. Specifically,
the results on Bed, Bench, Bookshelf, FileCabinet, Faucet,
which are similar as samples in PCN datasets or have shared
topology within a sub-category, show that our method can
recover geometries more efficiently using topology assis-
tant. Moreover, the results on other categories show that
our method is more powerful in completing geometries with
regular and symmetrical contours, similar as Vessel in PCN
dataset. We visualize the completion process of our method
on samples from ShapeNet55 in Figure 6. It can be seen that
our method can localize effect keypoints and recover miss-
ing topological and geometric information with the help of
surface-skeletons.

Input Keypoints Surface-Skeleton Output GroundTruth

Figure 6. Visualization of completion on ShapeNet55 dataset by
our proposed method. We also show the predicted keypoints and
generated surface-skeletons on the second and third columns.

5. Method Analysis
In this section, we examine the effectiveness of our mo-

tivations in LAKe-Net. We conduct several ablation studies
from different points of view. For fair comparison, all meth-
ods are trained and tested on PCN dataset for completion
and KeypointNet for keypoint detection.

Unsupervised Muti-scale Keypoint Detector. To prove
the effectiveness and accuracy of our proposed UMKD, we
evaluate our extracted keypoints compared with two recent
unsupervised keypoint detectors Fernandez et al. [6] and
SkeletonMerger [24]. All methods are trained and tested
on KeypointNet [37], which has keypoints annotations with
semantic correspondence labels. We evaluate these meth-
ods on five categories: airplane, car, chair, table and ves-
sel. Specifically, we detect 16, 32, 64 keypoints for all cat-
egories. As for other methods, we train five models and de-
tect 16 keypoints for each category. We firstly down-sample
the same number of predict keypoints as the annotated key-
points using the nearest neighbor strategy.

For evaluation metrics, we follow SkeletonMerger and
utilize mean Intersection over Unions (mIoU) metrics to
evaluate the keypoint silence and accuracy. It is calculated
with a threshold of 0.1 using euclidean distance. The quan-
titative results are shown in Table 4, which illustrates that
our proposed keypoint detector trained on multiple cate-
gories has competitive performance, or even better, than
other unsupervised methods trained on a single category.
The results on airplane, chair and table also show that our
method has better performance on geometries with obvious
topological structures. The visualization is shown in Fig-
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GroundTruth SkeletonMerger Ours-16 Ours-32 Ours-64

Ours-32 without csop FPS Points

(a)

(b) (c)

Figure 7. Visualization of (a) multi-scale keypoint detected by
ours and SkeletonMerger on KeypointNet dataset; (b) failed case
by our method without csop; (c) drawbacks of FPS 16 points. csop
denotes category-specific offset predictors.

mIoU Airplane Car Chair Table Vessel

Fernandez et al. 69.7 50.5 51.2 49.3 53.5
SkeletonMerger 72.7 64.6 63.2 59.6 62.0

Ours-16 73.2 58.1 69.2 62.5 61.3
Ours-32 73.7 60.2 70.5 63.2 62.5
Ours-64 74.0 62.9 71.3 65.4 64.0

Ours-32 w/o csop 35.4 13.2 27.8 23.9 11.0

Table 4. Quantitative comparison results with other unsupervised
keypoint detector on KeypointNet using mIoU (higher is better).

ure 7(a). Our detector can produce more salient and seman-
tic richer keypoints. We also show our detected keypoints
in multi-scale which represent finer geometric details.

Besides, to evaluate the effectiveness of our proposed
category-specific offset predictors (csop) in UMKD, we re-
place all offset predictors with a single category invariant
offset predictor. The qualitative results is visualized in Fig-
ure 7(b) and quantitative results are shown in Table 4. It is
obvious that a single offset predictor cannot handle geome-
tries in multiple categories. The predicted keypoints tend to
aggregate together to reduce the loss.

Keypoints and Surface-skeletons. To evaluate the ne-
cessity of using aligned keypoints and surface-skeletons for
point cloud completion, we conduct several ablated exper-
iments. We consider the auto-encoder E2 and refinement
subnet R in the second stage as baseline. In particular, we
replace multi-scale complete keypoints detected in the first
stage with multi-scale down-sampled points from ground
truth using FPS strategy. And we use CD loss between
down-sampled points and predicted keypoints in the sec-
ond stage. We also remove the assist of generated surface-
skeletons and change the up factors into [2,2,4] for fair
comparison. The quantitative results are illustrated in Ta-
ble 5. We can see that the down-sampled points cannot
represent efficient topology information (as shown in Fig-
ure 7(c)) especially on some joint parts, and are not helpful
for completing missing geometries in our pipeline. Besides,

EMD(×102) Airplane Cabinet Car Chair Lamp Sofa Table Vessel Average

Ours 0.958 1.830 1.564 1.667 1.782 1.755 1.499 1.402 1.557
-use FPS 1.117 2.295 1.978 2.157 1.916 2.607 1.810 1.823 1.963
-w/o S-sk 1.469 2.638 2.386 2.380 2.221 2.989 1.906 2.020 2.251

PointDisturb 1.031 1.902 1.554 2.012 1.945 2.037 1.684 1.437 1.700
ClassDisturb 0.963 1.846 1.576 1.786 1.831 1.780 1.545 1.397 1.590

Table 5. Ablation studies and robustness test on PCN dataset using
EMD metrics. w/o S-sk denotes without surface-skeleton.

GroundTruth Curve-skeleton Meso-skeleton Surface-skeleton in Multi-scale

Figure 8. Visualization of different type of skeletons, including
curve skeleton generated by [24], meso-skeleton from [30] and
our surface-skeleton in multi-scale.
CD loss between two unordered and sparse point clouds is
harder to be optimized to convergence.

We also visualize different types of skeletons com-
pared with our multi-scale surface-skeleton in Figure 8.
It can be seen that our surface-skeleton focuses on repre-
senting surfaces of original shape, and can get competi-
tive performance with meso-skeletons detected by typical
method [30], and better than curve skeleton from [24].

Robustness Test. We also conduct ablation studies to
investigate the robustness of our method in some extreme
cases. We firstly randomly disturb 5% of the detected GT
keypoints with a threshold of 0.1 after the first stage. Sec-
ondly, we deliberately misclassify geometries with simiar
shapes: table, chair and sofa. The results are reported on
Table 5. Experimental results show that our method is ro-
bust to errors in keypoints detection in the first stage.

6. Conclusion
In this paper, we propose a novel topology-aware point

cloud completion method, named LAKe-Net, which fo-
cuses on completing missing topology by localizing aligned
keypoints, with a novel Keypoints-Skeleton-Shape pre-
diction manner, including aligned keypoints localization,
surface-skeleton generation and shape refinement. Exper-
imental results show that our LAKe-Net achieves the state-
of-the-art performance on point cloud completion.
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