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Abstract

Deep neural network (DNN) suffers from catastrophic
forgetting when learning incrementally, which greatly limits
its applications. Although maintaining a handful of samples
(called “exemplars”) of each task could alleviate forget-
ting to some extent, existing methods are still limited by the
small number of exemplars since these exemplars are too
few to carry enough task-specific knowledge, and therefore
the forgetting remains. To overcome this problem, we pro-
pose to “imagine” diverse counterparts of given exemplars
referring to the abundant semantic-irrelevant information
from unlabeled data. Specifically, we develop a learnable
feature generator to diversify exemplars by adaptively gen-
erating diverse counterparts of exemplars based on seman-
tic information from exemplars and semantically-irrelevant
information from unlabeled data. We introduce semantic
contrastive learning to enforce the generated samples to be
semantic consistent with exemplars and perform semantic-
decoupling contrastive learning to encourage diversity of
generated samples. The diverse generated samples could
effectively prevent DNN from forgetting when learning new
tasks. Our method does not bring any extra inference cost
and outperforms state-of-the-art methods on two bench-
marks CIFAR-100 and ImageNet-Subset by a clear margin.

1. Introduction
Recent years have witnessed the rapid development of

deep neural networks (DNNs) in various tasks [10, 15, 26].
However, when a pretrained deep model learns a new task,
it tends to forget the knowledge learned from previous tasks
in the absence of the corresponding training data [1, 7, 9,
17,19]. Such a catastrophic forgetting phenomenon greatly
limits the real-world application of deep models because it
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Figure 1. (a). Our motivation. We propose to ‘imagine’ diverse
counterparts of the limited exemplars referring to the semantically-
irrelevant information from unlabeled data. (b). We propose a
feature generator to ‘imagine’ diverse counterparts by adaptively
mixing semantic information from exemplars with semantically-
irrelevant information from unlabeled data. In the TSNE visual-
ization, blue/green/red dots are the features of one class’s gener-
ated samples/exemplars/real data. We observe that the exemplars
and generated samples cover real data. Best viewed in color.

is impractical to maintain the training data of each task due
to privacy concerns and so forth [4, 11, 20, 22, 29, 30, 32].

To overcome catastrophic forgetting, incremental learn-
ing methods are developed. Previous works widely adopt
rehearsal strategy [3, 6, 16, 22, 32]: storing a limited quan-
tity of samples called exemplars from the original training
dataset and reusing them against forgetting when the model
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learning new tasks. For instance, RM [3] selects hard sam-
ples as exemplars according to the classification uncertainty.
GD [16] distills the knowledge from the old network to the
new one based on stored exemplars. BiC [32] optimizes the
classification bias referring to a subset of exemplars.

However, only a handful of exemplars conveying limited
variations could be stored due to the reasons such as pri-
vacy concerns, which hinders the development of existing
methods. When learning a new task with abundant train-
ing data, the exemplars are too few and the model capacity
tends to be dominated by the training data of the new task.
Although one could emphasize the exemplars during learn-
ing, the deep model may overfit the exemplars as shown in
recent work [29], leading to unsatisfactory performance.

In this work, we propose a plug-and-play learnable fea-
ture generator to adaptively diversify the exemplars by ex-
ploiting unlabeled data. When a deep model learns new
tasks, it is easy to collect massive unlabeled data in the
real world [16, 37]. Referring to the abundant semantic-
irrelevant information within the unlabeled data, we could
learn a feature generator to ‘imagine’ various counterparts
for the given exemplars and consequently diversify the ex-
emplars for tackling the forgetting problem (See Fig. 1).

Our method adopts a two-stage training schedule.
Specifically, we sample a handful of exemplars from the
current dataset when a task ends. Before dropping the orig-
inal dataset, we train the feature generator to generate di-
verse counterparts of the exemplars based on exemplars and
massive unlabeled data. We perform semantic contrastive
learning between the generated samples and the original
dataset so that (i) the generator could learn to keep the gen-
erated samples semantically consistent with the exemplars
and (ii) the generated samples are encouraged to be as di-
verse as possible. To further facilitate the exploration of
semantically-irrelevant information within unlabeled data
and generate more diverse samples, we further introduce
semantic-decoupling contrastive learning between the gen-
erated samples and the unlabeled data. When a new task
starts, the feature generator is frozen and used to generate
diverse samples to prevent the deep model from forgetting
knowledge of previous tasks. At this time, the feature gen-
erator does not require any gradient and serves as a static
non-linear mapping function. Our method does not bring
extra inference costs. The feature generator is discarded
and only the vanilla deep model is needed during inference.

Our main contributions are as follows. Firstly, we pro-
posed a learnable feature generator to adaptively generate
diverse counterparts of limited exemplars by exploiting the
semantically irreverent information in a messy unlabeled
dataset. With the diverse generated samples, the model
could better overcome forgetting. Our method does not
bring extra inference cost and is insensitive to unlabeled
data. Secondly, we introduce semantic contrastive learning

and semantic-decoupling contrastive learning to ensure the
generated samples are diverse and semantically consistent
with given exemplars. Finally, experimental results show
that our method is effective and outperforms existing meth-
ods by a clear margin with arbitrary unlabeled data.

2. Related Work
Existing class incremental learning methods can be

roughly divided into two categories: data-driven methods
and structure-driven methods on the basis of alleviating
the forgetting problem by optimizing the data supply or
changing the network structure.
Data-driven methods. Existing data-driven methods [3, 4,
6, 11, 16, 18, 22, 27, 37] focus on the data and the relation of
new and old data to tackle forgetting. Many works use dis-
tillation to maintain representations of kept data. Icarl [22]
and EE2L [4] pull output logits between old and new mod-
els closer via distillation loss. PODNet [6] further con-
strains feature representations on different scales of the net-
work based on the old network. UCIR [11] utilizes normal-
ized features to distill between old and new models instead
of raw features. Some works use different sources of data
to assist training. GD [16] samples unlabeled data in the
wild and define a global distillation loss for anti-forgetting
learning. DMC [37] uses an extra unlabeled dataset to align
the old representations with the new one via a double dis-
tillation loss. Many rehearsal-based works focus on mem-
ory management. Mnemonics Training [18] proposes a bi-
level optimization via meta-learning which makes exem-
plars trainable. RM [3] offers a novel memory management
strategy that selects hard samples by checking the classifi-
cation uncertainty after adding noise into samples.

Most data-driven methods either focus on memory man-
agement or exemplar replay strategy albeit considering the
existence of unlabeled data. A few previous works includ-
ing GD [16] and DMC [37], use unlabeled data to assist
training. However, their methods [16, 37] only simply en-
force the logits of unlabeled data outputted from the new
model to be consistent with that from old models. Dif-
ferently, our proposed feature generator effectively utilizes
the abundant variations within unlabeled data to diversify
exemplars, which is orthogonal to existing methods. Be-
sides, our feature generator is learnable, making our mem-
ory more adaptive than others.
Structure-driven methods. Popular structure-driven meth-
ods [2,20,21,25,32,33,35] modify the network structure or
expand the network for training new tasks. BiC [32] ap-
plies a linear layer to correct the classification bias via a
small subset of exemplars. DER [33] expands the feature
extracting backbone at each training step and tries to reduce
parameters via pruning by a learnable channel-level mask.
iTAML [21] starts with multiple task-specific models and
utilizes meta-learning to better ensemble different models.
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Figure 2. The training framework of the proposed method. At the end of each task, we create a set of feature generators {G} and train the
generators with exemplars, new images, and unlabeled images. In this process, semantic contrastive loss, semantic-decoupling contrastive
loss, and cycle constraint are used to supervise G for desired generated feature maps. We use lines in different colors to indicate data flows
inside the model on different training proposes. The detailed structure of the feature generator G is shown at the right-down corner. We
adopt d residual blocks for one Gc and a 1× 1 convolution layer right after residual blocks for channel fusion. Best viewed in color.

CCGN [2] plugs a gating structure for each convolution and
fully-connecting layer to capture class-specific knowledge.
RPS-Net [20] defines parallel modules at every layer and
that forms a possible searching space that contains previous
task-specific knowledge. CEC [35] designs a graph model
for combining classifiers from different tasks.

Compared with structure-driven methods which often
expand the network structure and need further finetune over
these extra parameters, our introduced feature generator
does not need to be further finetuned during training stages
and brings no extra inference cost.

3. Learning to Imagine against Forgetting
3.1. Overview

Problem statement. For class incremental learning for a
deep model Φ(f(·)) consisting of a feature extraction back-
bone f and a classifier Φ, we aim to continuously learn
the deep model from a data stream of NT tasks denoted as
{Ti}NT

i=1. Since different tasks are totally disjoint, the classi-
fier will grow to adapt to more classes when the number of
tasks increases. Particularly, for the i-th task Ti, the classifi-
cation model is learned to classify a certain set of classes Yi

with a corresponding image dataset Di = {xk
i , y

k
i }

Ni

k=1 as
training data, where xk

i is the k-th image at task Ti with cor-
responding label yki ∈ Yi and Ni is the size of the dataset.
Once the learning task Ti finishes, the current dataset Di

will be discarded. To prevent the model from forgetting
knowledge about Yi when learning new tasks, rehearsal
based methods [6, 12, 22, 32] try to keep a small portion
of Di denoted as Mi in advance, called ‘exemplars’. After
learning all the tasks, the model is supposed to perform well
on all seen categories Y = ∪iYi.
Challenge and idea. However, the limited exemplars are
insufficient to remind the model of old knowledge and
therefore the catastrophic forgetting remains. To alleviate
this problem, we develop a plug-and-play learnable feature
generator G to generate diverse counterparts of the exem-
plars by exploiting abundant semantically-irrelevant infor-
mation within unlabeled data denoted as Du. And then,
these diverse generated samples are used to train the classi-
fication model in order to keep the model’s ability of classi-
fying all seen classes. An overview is shown in Fig. 2.

3.2. Learning Framework

We form a two-step training framework: one step to train
feature generator and another step to train network with the
help of the generator. Specifically, instead of constructing
a unified generator for all seen classes, we develop a light-
weight feature generator Gc for each class c to better cap-
ture the class-specific information. When the i-th task ends,
we use original dataset Di, exemplars Mi as well as unla-
beled dataset Du to learn class-specific feature generators
before dropping Di. The generators are trained to generate
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diverse counterparts for Mi based on Mi and Du. Here, we
use the original data Di to enforce that the generated sam-
ples should be semantically consistent and diverse. Besides,
semantic-decoupling contrastive learning is applied to facil-
itate the exploration of the unlabeled dataset (Sec. 3.3).

When learning new tasks, the generators are used to help
the classification model to overcome forgetting. Since the
feature map extracted from deeper layers is more likely to
contain task-specific information [34], the deeper layer is
easier to forget previous knowledge. Therefore, we split the
feature extraction network f into two parts: f1 and f2, i.e.,
f(·) = f2(f1(·)) and put our feature generators between
f1 and f2. The generators are frozen and generate diverse
counterparts of exemplars by mixing the feature maps of
exemplars and that of unlabeled data extracted by the bot-
tom layer f1. These diverse generated samples will be used
to remind the classification model of the old knowledge by
guiding the model to correctly classify them (Sec. 3.4).

We first detail the learning of our feature generators in
Sec. 3.3, and then apply them to assist the classification
model to overcome forgetting in Sec. 3.4.

3.3. Adaptive Feature Generator

Given a memory Mi and an original dataset Di, our goal
is to learn a set of class-specific adaptive feature generators
Gi that is capable of generating diverse samples which are
semantically consistent in Mi by exploiting valuable unla-
beled data. Formally, given an exemplar xm

i ∈ Mi belong-
ing to class c (i.e., ymi = c) and an unlabeled sample xu,
we first extract their feature maps hm

i and hu through the
bottom layers f1 as:

hm
i = f1(x

m
i ), (1)

hu = f1(xu). (2)

And then, the class-specific feature generator Gc is sup-
posed to generate a feature map hmix(m,u) by adaptively
mixing feature map from exemplars and the feature map
from unlabeled data:

hmix(m,u) = Gc(h
m
i , hu). (3)

Ideally, Gc should have two properties: (i) preserving the
semantic information from hm

i and (ii) augmenting hm
i with

the semantically-irrelevant information from hu. There-
fore, for (i), we apply semantic contrastive learning be-
tween hmix(m,u) and its intra-class counterparts. For (ii),
we perform semantic-decoupling contrastive learning be-
tween hmix(m,u) and the unlabeled sample.
Semantic contrastive learning. To extract the semantic in-
formation from the mixed feature map hmix(m,u), we apply
a global average pooling operation GAP (·) on hmix(m,u):

vmix(m,u) = GAP (hmix(m,u)). (4)

After encoding semantic information into vector vmix(m,u),
we enforce the generated samples to have the same seman-
tic information with xm

i so as to lead the feature generator
Gc to capture and preserve semantic information within the
input feature map hm

i . Here, instead of directly extracting
semantic information from hm

i for supervision, we exploit
semantic information from another sample xk

i from Di that
belongs to the same class with xm

i (i.e., yki = ymi = c).
Note that xk

i is sampled from Di, which forms the original
data distribution with abundant intra-class variance, while
xm
i is sampled from memory Mi in which the data distribu-

tion is often biased due to the small quantity of exemplars.
Therefore, using xk

i to guide the generator will further close
the gap between the distribution of generated samples and
the original data distribution. Consequently, the Semantic
Contrastive learning loss can be formulated as:

LSC = ∥vki − vmix(m,u)∥2, (5)

where ∥ · ∥2 denotes the L2-norm and vki is the semantic
information extracted from xk

i similar to Eq. (4).
Semantic-Decoupling contrastive learning. To guide fea-
ture generator G to ‘imagine’ diverse samples referring to
unlabeled data, we need to mine semantically irreverent in-
formation from unlabeled data. To facilitate the exploration
of the unlabeled dataset, we decouple the semantic informa-
tion and mine the semantically irreverent information using
gram matrix [8]. The gram matrix is adopted on the level
of feature map to encode such semantically-irrelevant infor-
mation following prior works [8, 13, 23, 24, 31]. Formally,
given a feature map hu of an unlabeled sample, its gram
matrix could be calculated as:

Wu = Gram(hu), (6)

where Gram(·) denotes the inner product of the flattened
vectors between pairwise channels. The value of position
(i, j) in Wu is calculated as:

W (i,j)
u = Gram(hu) = riu

T
rju, (7)

where riu = flatten(hu(i, :, :)) represents the flattened
vector of i-th channel of feature map hu and Wu en-
codes the relationships between channels. By modeling
the channel-wise relationships, we could obtain abundant
semantically-irrelevant information such as the textures [8,
13, 23, 24, 31]. Similarly, we could compute the gram
matrix of the generated samples hmix(m,u). A Semantic-
Decoupling Contrastive loss is imposed to guide Gc to learn
the semantically-irrelevant information:

LSDC = ∥Wu −Wmix(m,u)∥F , (8)

where ∥ · ∥F denotes the Frobenius norm.
Cycle constraint. The semantic inputs of Gc only come
from the exemplars in Mi and the limited quantity of Mi

9552



may lead to the overfitting of the feature generator. To fa-
cilitate the training process, we introduce a cycle constraint
to further utilize the generated samples. Specifically, after
we obtain the generated feature map hmix(m,u), we feed
hmix(m,u) into Gc to provide semantic information so that
Gc could learn to extract semantic information for not only
exemplars but also generated samples, and therefore im-
prove the generalization ability of generator Gc,:

hcyc(mix,m) = Gc(hmix(m,u), h
m
i ). (9)

Here, we guide Gc to extract the semantically-irrelevant
information from exemplars hm

i . Since we have guided Gc

to extract semantic information from hm
i in Eq. (3), further

encouraging Gc to extract semantically-irrelevant informa-
tion from hm

i in Eq. (9) could impose a feature disentangle-
ment constraint on Gc, which is beneficial for generating
acquired feature maps. We enforce the generator to extract
semantic information from hmix(m,u) and decompose se-
mantic information from hm

i in the same way as formulated
in Eq. (5) and Eq. (8):

Lcyc
SC = ∥vcyc(mix,m) − vcyc(m,u)∥2, (10)

Lcyc
SDC = ∥Wcyc(mix,m) −Wm

i ∥F , (11)

where vcyc(mix,m), vcyc(m,u) are obtained by Eq. (4) and
Wcyc(mix,m),W

k
i are based on Eq. (6). If the generator min-

imizes LSC by overfitting on exemplars hm
i , it will suffer

from large loss due to the existence of Lcyc
SC and Lcyc

SDC .
Training objective of G. With all losses mentioned above,
we have the following over all training loss for module Gc:

LG = Lce+LSC+λLSDC+λcyc(Lcyc
SC+λLcyc

SDC), (12)

where λ and λcyc are the trade-off parameters. Lce is the
cross entropy loss used to ensure the discrimination of gen-
erated feature maps and is formulated as:

Lce = − log Φ(f2(hmix(m,u)))
(ym

i ), (13)

where Φ(f2(hmix(m,u)))
(ym

i ) is the ymi -th element
of Φ(f2(hmix(m,u))), representing the probability of
hmix(m,u) belonging to class ymi . Please note that LG is
the loss for single triplet samples (xm

i , xu, x
k
i ), and the

total loss of a mini-batch is the average of LG of all triplets
within the batch. During the training process of Gc, we
freeze network f and Φ.

3.4. Anti-forgetting Learning

When learning a new task, we train the classifier Φ and
backbone f with the corresponding training data Di. For
any samples from Di, we pass it through our backbone f

and the classifier Φ, guiding the model correctly classify
each sample in the new training set. Formally, the classifi-
cation loss can be formulated as:

Lcls = −
|Di|∑
k=1

log Φ(f(xk
i ))

(yk
i ), (14)

where Φ(f(xk
i ))

(yk
i ) is the yki -th element of Φ(f(xk

i )).
To overcome forgetting previous tasks, we not only use

realistic data from Di, and M = ∪i−1
i′=1Mi′ for training,

but also use the generated feature maps. Since M denotes
the union of exemplars from multiple previous tasks, we use
xm 1 denote the m-th instance in M.

We utilize the feature generators to generate n diverse
counterparts for each exemplar based on n unlabeled data in
each training batch. Specifically, we feed memorized exem-
plar xm (whose label is ym) and n unlabeled samples into
f1 and get outputs hm = f1(h

m) and {hu}nu=1. And then,
diverse counterparts of xm are obtained via feature gener-
ator Gym , denoted as {hmix(m,u)}nu=1 where hmix(m,u) =
Gym(hm, hu). Without losing generality, we talk about the
situation of n = 1, i.e. generating a counterpart for each ex-
emplar xm. To train the network with diverse memory (the
generated samples), we put hmix(m,u) into f2 and classifier
Φ to get prediction Φ(f2(hmix(m,u))). Finally, we com-
pute a cross entropy loss for all exemplars and the generated
sample hmix(m,u), whose ground truth label is consistent
with ym as the feature generator Gym had been trained to
preserve the semantic information from xm:

LM
cls = −

|M|∑
m=1

log Φ(f(xm))(y
m), (15)

LG
cls = −

|M|∑
m=1

∑
u

log Φ(f2(hmix(m,u)))
(ym), (16)

where Φ(f2(hmix(m,u)))
(ym) is the ym-th element of

Φ(f2(hmix(m,u))).
Training objective for classification model. Objective
function for training model Φ(f(.)) are summarized as:

L = Lcls + α1(LM
cls + LG

cls) + α2Ldist, (17)

where α1 and α2 are the trade-off parameters. Ldist is the
widely-used distillation loss in previous works [4, 11, 17,
38], which forces the current feature space close to the old
feature space to overcome forgetting and is formulated as:

Ldist =

Nm∑
k=1

(1− fold(x
k
m) T f(xk

m)

∥fold(xk
m)∥2 · ∥f(xk

m)∥2
), (18)

where fold is the old network backbone (of last task Tn−1).
1In the following, we do not care about the task label of exemplar, so

we omit the task label of each exemplar in this section for simplicity.
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Method
CIFAR-100 ImageNet-Subset

2 steps 5 steps 10 steps 5 steps 10 steps
Paras(M) Avg Acc. Paras(M) Avg Acc. Paras(M) Avg Acc. Paras(M) Avg Acc. Paras(M) Avg Acc.

Upper Bound 0.46 72.80 0.46 72.80 0.46 72.80 11.2 81.20 11.2 81.20
Parameter-growing methods Memory size = 2000
DER(w/o P) [33] >0.92 70.18 >1.61 68.52 >2.76 67.09 - - >67.2 78.20

DER(P) [33] >0.32 69.52 >0.59 67.60 >0.61 66.36 - - >8.87 77.73
Parameter-static methods Memory size = 2000

Icarl† [22] 0.46 55.29 0.46 56.29 0.46 52.42 11.2 65.04 11.2 68.72
DMC† [37] 0.46 43.90 0.46 38.20 0.46 23.80 11.2 43.07 11.2 30.30
GD† [16] 0.46 62.62 0.46 56.39 0.46 51.30 11.2 58.70 11.2 57.70
BiC† [32] 0.46 48.43 0.46 48.20 0.46 44.58 11.2 70.07 11.2 64.96

UCIR† [11] 0.46 66.76 0.46 59.66 0.46 55.77 11.2 70.84 11.2 68.09
TPCIL [28] - - - 65.34 - 63.58 - 76.27 - 74.81

Mnemonics [18] - - 0.46 63.34 0.46 62.28 11.2 72.58 11.2 71.37
PODNet [6] 0.46 67.69 0.46 64.83 0.46 64.03 11.2 75.54 11.2 74.58
DDE [12] - - - 65.42 - 64.12 - 76.71 - 75.41

MixUp‡ [36] 0.46 62.30 0.46 61.83 0.46 58.13 11.2 69.82 11.2 68.55
Ours 0.46 69.50 0.46 68.01 0.46 66.47 11.2 77.20 11.2 76.76

Parameter-static methods Memory size = 1000
UCIR [11] - - 0.46 61.68 0.46 58.30 11.2 68.13 11.2 64.04

PODNet [6] - - 0.46 61.40 0.46 58.92 11.2 74.50 11.2 70.40
DDE [12] - - - 64.41 - 62.20 - 71.20 - 69.05

Ours 0.46 68.76 0.46 67.08 0.46 64.41 11.2 75.73 11.2 74.94

Table 1. Compare to state-of-the-art methods on CIFAR-100 and ImageNet-Subset. We conduct experiments on 3 different settings on
CIFAR-100: 2, 5, and 10 steps, and we conduct 5 and 10 steps experiments on ImageNet-Subset. Paras(m) indicates the parameters used
in inference after learning (counted in millions). We mark the best results in red and second-best results in blue among all parameter-static
methods at the same memory budget. †denotes the results produced using the public authorized codes. ‡denotes the experimental results
produced by replacing our feature generator with the widely used MixUp [36] data augmentation. Best viewed in color.

4. Experiments

In this section, extensive experiments are shown to val-
idate the effectiveness of the proposed method. Experi-
ment setup is list in Sec. 4.1. We compare our method
with existing state-of-the-art incremental learning meth-
ods in Sec. 4.2. In Sec. 4.3, we validate the indispens-
ability of each objective function proposed for generator
G. We further analyze each component of our method in
Sec. 4.4. More experiments including evaluations with dif-
ferent trade-off parameters are in Appendix.

4.1. Experiment Setup

Datasets. We conduct experiments on two widely used im-
age classification datasets: CIFAR-100 [14] and ImageNet-
Subset [5]. CIFAR-100 training set contains 100 classes and
there are totally 50,000 images for training and 10,000 im-
ages for evaluation. ImageNet is a large-scale dataset con-
taining 1,000 classes, 1.2 million images. For simplicity, we
follow prior works [6, 11, 12, 18, 28, 33] and use ImageNet-
Subset which contains 100 classes.
Auxiliary Datasets. As stated in Sec. 3, our method is ca-
pable of adaptively generating diverse exemplars referring
to unlabeled data. We use ImageNet with different mod-
ifications following previous works [16, 37] as our unla-
beled dataset due to its diversity. For CIFAR-100 dataset,
to align the input resolution, we use 32× 32 down-sampled

ImageNet [16] as the auxiliary unlabeled dataset. For
ImageNet-Subset which contains 100 classes, we use the
rest 900 classes from original ImageNet as the auxiliary un-
labeled dataset. We also evaluate our method with different
auxiliary unlabeled data in Sec. 4.4.
Testing Protocols. We follow a popular testing protocol in
class-incremental learning [6, 11, 12, 18, 22, 28, 33]. Exper-
iments are started by training the model on half the classes,
that is, 50 classes for CIFAR-100 and ImageNet-Subset.
The rest classes are added incrementally in steps. We split
rest classes into 2, 5, 10 steps to validate our method. After
each training task, the model will be evaluated by testing on
all classes that had been seen until the current task and each
top-1 accuracy in every task is averaged for a final score
called average accuracy [6, 12, 22, 28, 33]. Following prior
works [6, 11, 22, 33], we limit our memory budget to 2,000
exemplars for 100-classes datasets (including CIFAR-100
and ImageNet-Subset).
Implementation Details. For CIFAR-100, we adopt a
modified 32-layers ResNet as in previous works [6, 12, 22,
33], which have fewer channels and shallower stages com-
pared to the official ResNet-32 [10, 33]. For ImageNet-
Subset, we use the original RseNet-18 as our backbone fol-
lowing prior works [6,12,18,28,32,33]. As for the memory
saving strategy, we follow a popular herding selection strat-
egy proposed in [22]. We use SGD optimizer with an initial
learning rate of 0.1. The feature generator G is plugged
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between stage3 and stage4 of the ResNet.

4.2. Comparison to the State-of-the-Art

We conduct experiments on CIFAR-100 and ImageNet-
Subset and compare our method to state-of-the-art meth-
ods [6,11,11,12,16,18,22,28,32,37]. For CIFAR-100, we
incrementally learn the classes in 2,5 and 10 steps to better
valid our method following previous works [6,12,18,28,33].
For ImageNet-Subset, we divide the classes equally into 5,
10 incremental tasks to validate our method following pre-
vious works [6, 12, 33].

Note that DER [33] has increasing parameters for in-
ference during incremental learning processes and we cat-
egorize it as parameter-growing method. Differently, our
method has fixed and fewer parameters for inference since
our inference does not rely on the feature generator, so we
categorize our method as parameter-static method. We also
compare our method with other parameter-static methods,
such as PODNet [6], DDE [12] and TPCIL [28]. To show
the upper bound for reference, we train a model without
splitting the training set and evaluate it on the test set. More-
over, we evaluate our method under a more limited memory
budget to further show the effectiveness of our method.
Results on CIFAR-100. Our method outperforms other
parameter-static methods by a clear margin under all the
experimental settings as shown in Table 1. Under the set-
ting of 10 steps incremental learning, our method achieves
66.47% accuracy, which is about 3% higher than advanced
parameter-static methods PODNet, UCIR, BiC, DDE and
Icarl. Surprisingly, our method also outperforms advanced
parameter-growing method DER(P) by 0.11% accuracy
with fewer parameters (0.46M vs. more than 0.61M). It
is mainly because our method could effectively utilize the
abundant semantically-irrelevant information within unla-
beled data to adaptively diversify exemplar, helping the
model overcome forgetting of old knowledge.

When we cut the memory budget down to half, our
method still performs best among parameter-static methods
and even outperforms their counterparts which have 2000
exemplars. For example, we achieve 67.08% accuracy un-
der the 5-step setting with 1000 exemplars, which is 1.66%
higher than that of the DDE with 2000 exemplars.

To further demonstrate the importance of the learnable
feature generator, we replace generator G with widely used
data augmentation MixUp [36] and the experimental results
demonstrate the superiority of our method. The reason is
that MixUp will inevitably destroy the semantic information
from exemplars since it coarsely mixes two images at pixel
level. Differently, our proposed method is learnable, mak-
ing it more effective at exploiting semantically-irrelevant in-
formation from unlabeled data while keeping the generated
samples semantically consistent with exemplars.
Results on ImageNet-Subset. Our method outperforms

Method Avg Acc.
Baseline 63.98
+ LSC 64.41

+ LSC + LSDC 65.53
+ LSC + LSDC + Lcyc

SC + Lcyc
SDC 66.47

Table 2. Effectiveness of each objective function during training
G. ‘Baseline’ denotes training model without G while other meth-
ods use G for feature generator. Experiments are conducted on
CIFAR-100 under the 10 step incremental setting.

advanced parameter-static methods and is comparable to
advanced parameter-growing method DER as shown in Ta-
ble 1. Under the 5-step setting, our method achieves 77.2%
accuracy, which is 1.66% higher than that of PODNet.
When there are more learning steps or fewer exemplars, the
performance gap becomes larger, showing that our method
is more effective in overcoming forgetting. For example,
our method achieves 76.76% accuracy under the 10-step
setting, which is 2.18% higher than PODNet, and such the
performance gap becomes 4.54% when there are only 1000
exemplars. It is mainly because previous works are limited
by the small number of exemplars while our method could
effectively diversify the exemplars. Besides, our method
outperforms MixUp by a large margin as in CIFAR100.

The experiments under 1000 exemplars suggest that our
method is superior to others since we could achieve com-
parable performance to others with fewer exemplars, which
helps to address the limitations such as privacy concerns.

4.3. Ablation Study

In this section, we discuss the effectiveness of each ob-
jective function for G. We perform ablation studies on
CIFAR-100 using modified ResNet-32 as backbone under
10 steps incremental learning to analyze the effect of each
component in G. Our baseline is to train the deep model
with the task-specific training dataset Di and the limited ex-
emplar memory M in each task.
The effectiveness of the semantic contrastive learning.
From Table 2, we can observe that with the help of LSC , our
method outperforms baseline by 0.5%. It is mainly because
the LSC encourages generated samples to be semantically
consistent with LSC and improve the performance.
The effectiveness of the semantic-decoupling contrastive
learning. As shown in Table 2, when further combining
LSC with LSDC to train the model, the model outperforms
the baseline model by 1.55% accuracy. It is mainly because
the feature generator G is explicitly guided to decompose
semantic information from unlabeled data by LSDC , lead-
ing to more diverse generated samples.
The effectiveness of the cycle constraint. Upon the LSC

and LSDC , applying cycle constraint to our model could
further boost the performance from 65.53% to 66.47% at
accuracy as shown in Table 2. It is mainly because the cy-
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Unlabeled dataset Avg Acc.
ImageNet1k 66.47
ImageNet-ec 66.11

ImageNet-500 66.07
ImageNet-300 65.55
ImageNet-100 64.23

Table 3. The impact of different unlabeled datasets when in-
crementally learning CIFAR-100. ‘ImageNet-ec’ indicates the
classes that appear in CIFAR-100 are excluded from ImageNet1k.
We form several subsets by sampling different number of classes
from ‘ImageNet-ec’, denoted as ‘ImageNet-#classes’.

cle constraint could effectively prevent the overfitting of the
generator G, making the generated samples more diverse.

4.4. Further Analysis

Investigation on unlabeled data. In the last section,
we use a resized version of ImageNet1k as the auxil-
iary unlabeled dataset. To show that the performance
gain is not mainly from the overlapping classes between
the ImageNet1k and CIFAR-100, we exclude the classes
in CIFAR-100 from ImageNet1k and denote the resulting
dataset as ImageNet-ec. The experimental result about us-
ing ImageNet-ec as unlabeled data is shown in Table 3.
We find out that our method does not rely on the overlap-
ping classes between unlabeled dataset and labeled dataset
because the results denoted as ‘ImageNet-ec’ are slightly
lower than ‘ImageNet-full’ in Table 3.

To further study the impact of unlabeled datasets with
different scales, we evaluate our method using different sub-
sets of ImageNet-ec. Specifically, we select the first 100,
300, 500 classes of ImageNet-ec as the unlabeled datasets
denoted as ‘ImageNet-#classes’. From the experimental re-
sults in Table 3, we can observe that the performance drops
2.2% when ImageNet-100 is used as unlabeled data, in-
dicating that the abundant semantically-irrelevant informa-
tion in the unlabeled dataset is critical to our method. Be-
sides, our performance becomes stable when the unlabeled
dataset declines from ‘ImageNet-ec’ to ‘ImageNet-500’. It
is mainly because our proposed feature generator is efficient
at generating diverse samples for CIFAR-100 with abundant
information in ‘ImageNet-500’.
Number of generated samples. To investigate the impact
of the number of generated counterparts of each exemplar
in a training batch, denoted as n, we evaluate our method
on CIFAR-100 with n = 0 (baseline), n = 1, n = 2,
n = 4, and n = 8. Results from Fig. 3a show that when we
adopt generated samples, even only generating one sample
per exemplar in each training batch, the performance in-
creases about 3%, which indicates the effectiveness of our
method. Our method is not sensitive to n ∈ [1, 4] and the
optimal n is 2. When n is greater than 4, the performance
drops significantly. This shows that our method could ef-

0 1 2 4 8
Num. n of generated samples each exemplar

63

64
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68

(a) Experiment on the impact of the
number of generated samples.

1 2 3 4
Depth d of feature generator G

65.0

65.5

66.0

66.5

67.0

67.5

(b) Experiment on the depth of fea-
ture generator G.

Figure 3. We conduct experiments on the impact of the number
of fused samples (a) and the impact of depth of feature genera-
tor G (b). All experiments are conducted on CIFAR-100 and use
ImageNet1k-32x32 as the unlabeled dataset.

fectively generate diverse counterparts for exemplars by ex-
ploiting unlabeled data. Meanwhile, when generating too
many samples, the model will spend most of its capacity on
previous knowledge, hindering its ability to learn new tasks.
Structure of G. To show the impact of the structure of
G, we construct our feature generator G with a different
number of Residual blocks. We set the number of Residual
blocks d to 1, 2, and 4. The experimental results shown
in Fig. 3b indicate that our feature generator G performs
well even with a single residual block and performs better
at d = 2 and our method is not sensitive to d ∈ [1, 4]. When
the feature generator G gets deeper, the performance drops
slightly. It is mainly because the Gc is trained with limited
exemplars (the input of Gc are exemplars and the generated
samples produced by itself), and a deeper Gc will easily
overfit these inputs and degenerate its performance.

5. Conclusion
In this paper, we argue that the small number of ex-

emplars hinders overcoming forgetting. To this end, we
proposed a learnable feature generator to generate di-
verse counterparts for the exemplars by adaptively mixing
semantic-irreverent information from unlabeled data with
semantic information from exemplars. The generator is
frozen after its training and generates diverse samples to re-
mind the model of the old task. Moreover, the generator is
not needed during inference, making our method efficient.
Extensive experiments demonstrate that our method outper-
forms state-of-the-art methods in two widely used datasets.
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