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Abstract

We address the problem of estimating the poses of mul-
tiple instances of the source point cloud within a target
point cloud. Existing solutions require sampling a lot of
hypotheses to detect possible instances and reject the out-
liers, whose robustness and efficiency degrade notably when
the number of instances and outliers increase. We propose
to directly group the set of noisy correspondences into dif-
ferent clusters based on a distance invariance matrix. The
instances and outliers are automatically identified through
clustering. Our method is robust and fast. We evaluated
our method on both synthetic and real-world datasets. The
results show that our approach can correctly register up to
20 instances with an F1 score of 90.46% in the presence
of 70% outliers, which performs significantly better and
at least 10× faster than existing methods. (Source code :
https://github.com/SJTU-ViSYS/multi-instant-reg)

1. Introduction

Three-dimensional point cloud registration [12] [48] [45]
mainly focuses on estimating one single transformation be-
tween the source point cloud and the target point cloud.
However, we may sometimes want to estimate multiple
transformations between point clouds. For instance, we
have a 3D scan of an object and may want to find the poses
of the same objects on the table within the target point cloud
as shown in Figure 1. This problem, named multi-instance
point cloud registration here, has been less investigated in
the literature. It is non-trivial to extend existing point cloud
registration methods to solve this problem.

The major challenge is to identify different clusters
of corresponding points belonging to different instances
within the set of noisy correspondences. One solution is
to adopt a 3D object detector or apply instance segmenta-
tion to the target point cloud. After that, the pose of each
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instance can be estimated by a conventional point cloud reg-
istration method. However, this approach needs to train a
detector or a segmentation network [39] [25] for specific ob-
jects or classes, which does not apply to unknown objects or
arbitrary 3D scans. Another solution is via multi-model fit-
ting [32] [33] [34] or [35] [29] [11]. Existing multi-model
fitting methods rely on sampling valid hypotheses, which
involves a large number of sampling steps when the num-
ber of models or the outlier ratio becomes high, making the
efficiency and robustness of those algorithms drop drasti-
cally.

Figure 1. Multi-instance point cloud registration: Given a source
point cloud of an object, multi-instance registration needs to esti-
mate the pose of each object within the target point cloud.

In this paper, we propose a robust and efficient solu-
tion to the multi-instance 3D registration problem. The key
idea is to directly group the corresponding points into dif-
ferent clusters according to a distance invariance matrix.
Specifically, the matrix is constructed by checking the dis-
tance consistency between each pair of correspondences af-
ter the point correspondences have been obtained by fea-
ture matching using descriptors like D3Feat [7], PREDA-
TOR [26], or SIFT [31]. We find that the row or column
vector of this matrix has a powerful representation capa-
bility that can be used for identifying the set of correspon-
dences from a particular instance. We hence apply a simple
and efficient clustering algorithm to divide those correspon-
dences into cliques. The clustering is further refined by a
few recursive steps involving merging similar clusters and
re-assigning cluster ids to each correspondence. Finally,
both the outliers and the inliers of each instance are auto-
matically identified by a simple ranking strategy.
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Our method is highly efficient since no time-consuming
hypothesis sampling is required. We have conducted exten-
sive experiments on both synthetic and real-world datasets.
The results show that our method is at least ten times faster
than existing methods while performing significantly bet-
ter in terms of accuracy and robustness. To summary, our
contributions include:

• We propose an efficient and robust solution to the
multi-instance point cloud registration problem, which
achieves superior performance in terms of accuracy,
robustness, and speed.

• We propose to use three metrics (Mean Hit Recall,
Mean Hit Precision, and Mean Hit F1) to fully evaluate
the performance of multi-instance point cloud registra-
tion.

• Our solution can be potentially used for zero-shot de-
tection of 3D objects as our real-world tests demon-
strate.

2. Related Work
Point cloud registration can be divided into three

stages: point matching, outlier rejection, and pose estima-
tion. Most works focus on the first two stages since ac-
quiring correct point correspondences is the key to suc-
cessful registration. Point matching usually relies on fea-
tures, either hand-crafted features [41] [22] or learning-
based features [51] [21] [24] [18] [7]. Though recent re-
sults show that the latter is superior to the hand-crafted ones
in some benchmarks, those features are still far from pro-
ducing perfect matching and a powerful outlier rejection
mechanism is still required. RANSAC [23] and its vari-
ants( [8] [13] [19]) follow the hypothesis-and-verification
process to reject outliers. This kind of method requires a
lot of sampling steps when many outliers exist, becoming
highly time-consuming, while could still fail to obtain the
correct model. GORE [15] and PMC [37] seek to reduce
the outliers by geometric consistency checks. Other meth-
ods such as FGR [52] and TEASER [48] adopt robust es-
timators to solve the transformation directly from the noisy
correspondences. By carefully tackling each subproblem,
TEASER [48] achieved impressive performance in terms
of robustness and efficiency. There are also learning-based
outlier rejection methods. DGR [17] and 3DRegNet [36]
treat outlier rejection as binary classification and predict the
inlier probability for each correspondence. PointDSC [6]
takes a step further to embed the spatial consistency into
feature learning for better training the inlier classifier. Re-
cently, a stream of work (e.g.PointNetLK [1], FMR [27],
DCP [45], PRNet [46], RPMNet [50]) tries to apply end-
to-end learning to solve the registration problem. They also

exhibit impressive performance, especially in low-overlap
cases [26].

Existing point cloud registration methods mostly focus
on the one-to-one registration problem which estimates a
single transformation between two point clouds. The multi-
instance registration that aligns a source point cloud to its
multiple instances in the target point cloud is however less
investigated. This task is different from the multi-way reg-
istration [16] whose goal is to produce a globally consis-
tent reconstruction from multiple fragments via pair-wise
registration [52] [17]. The multi-instance registration re-
quires not only rejecting outliers from the noisy correspon-
dences but also identifying the set of inliers for individual
instances, making it even more challenging than the classic
registration problem.

3D object detection and instance segmentation are
closely related to multi-instance 3D registration. Given a
single point cloud, 3D object detection [39] is to obtain the
bounding box of each object of interest, while 3D instance
segmentation [44] [25] produces the instance labels for each
point. Though they produce results [4] [5] similar to that
of multi-instance registration, they need to train the prior
of specific objects or categories into the network. By con-
trast, multi-instance registration processes two point clouds
by directly aligning the source one to multiple instances in
the target one, without using any priors about the contents
of input 3D scans.

Multi-model fitting Multi-instance registration can be
approached by multi-model fitting, which aims to esti-
mate the model parameters from the data points generated
from multiple models. Existing multi-model fitting meth-
ods can be categorized into clustering-based methods and
RANSAC-based ones. The clustering-based methods(e.g.
[32] [33] [34]) initialize a huge hypothesis set by sampling
points and then calculate the preference vector about those
hypotheses for each point. Those data points are clustered
according to their preference vectors. Finally, the model pa-
rameters are computed from different clusters. RANSAC-
based methods(e.g. [28] [9] [10] [35] [29] [11]) run revised
RANSAC sequentially to obtain multiple model parame-
ters. They change the sampling weight of each point in each
iteration to get different model parameters. CONSAC [29]
is a learning-based method that learns to weigh each point
for sampling. Both clustering-based and RANSAC-based
methods rely on sampling valid hypotheses. When the num-
ber of models or the outlier ratio increases, a lot of hypothe-
ses are required to be sampled, making those algorithms
highly inefficient.

3D spatial consistency, defined between every pair of
points by a rigid transformation, is an important property
for outlier rejection in 3D registration. Spectral match-
ing [30] constructs a graph using the length consistency be-
tween each pair of correspondences and extracts the maxi-
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Figure 2. The pipeline of the proposed method for multi-instance point cloud registration. A distance invariance matrix is constructed from
the input correspondences, which is used to cluster the correspondences into different clusters (Clustering) and being refined (Cluster re-
finement). Finally, the rigid transformation (Transformations) related to each instance is estimated from each cluster of correspondences.
To handle a large number of correspondences, two addition processes (Downsampling and Upsampling) are adopted.

mum clique from the graph to reject outliers. Existing meth-
ods such as TEASER [48], GORE [15], and PMC [37] also
incorporate the spatial consistency in their algorithms. Re-
cently, ROBIN [43] generalizes the concept of spatial con-
sistency to high orders. PointDSC [6] integrates the spatial
consistency into an end-to-end learning pipeline to better
regress the inlier probability.

Motivated by those works, we also adopt spatial con-
sistency in our solution. Different from existing methods
that apply spectral clustering [30] or approximated solu-
tions [43] in the spatial consistency graph which is slow
and has trouble dealing with multiple instances, we employ
an efficient algorithm to find multiple instances within the
correspondences. Specifically, we take the row vector or
the column vector of the distance invariance matrix as the
’feature vector’ of correspondence and run bottom-up clus-
tering to get the inlier correspondences from different in-
stances. Our method avoids hypothesis sampling which is
the key weakness of existing multi-model fitting methods. It
also does not rely on any particular features to obtain point
correspondences, hence the performance can be further im-
proved if better features (either 3D or image features) are
adopted.

3. Problem Statement

In multi-instance point registration problem, the source
point cloud X provides an instance of a 3D model and the
target point cloud Y contains K instances of this model,
where those instances are the sets of points that may sam-
ple only a part of the 3D model. If we write the kth in-
stance as Yk, the target point cloud Y can be decomposed
as Y = Y0∪Y1∪. . .Yk . . .∪YK . Here we use Y0 to rep-
resent the part of the point cloud that does not belong to any
instances. The goal of multi-instance 3D registration is to
find the rigid transformation (Rk, tk) that aligns the source
instance X to each target instance Yk. If we manage to ob-
tain the correspondences between the source instance and
each target instance X ↔ Yk, the pose of the kth instance
in the target point cloud, (Rk, tk), can be solved from the

set of correspondences X↔ Yk by minimizing the sum of
alignment errors (1) [2]:

min
Rk,tk

∑
i

‖yki − (Rkxi + tk) ‖2 . (1)

Consider we have obtained a set of correspondences C be-
tween the source and target point clouds. The key of
multi-instance registration task is to classify those corre-
spondences into separate sets related to different instances,
namely,

C = C0 ∪ C1 · · · ∪ CK . (2)

Here C0 is used to represent the set of outliers. As we can
see, multi-instance registration needs to not only reject out-
lier correspondences but also resolve the ambiguity of cor-
respondences from different instances. This task is not easy
because all instances look the same and a lot of outlier cor-
respondences usually exist.

4. Method
The overview of the proposed method is shown in Fig.

2. Our method takes the point correspondences as the in-
put. An invariance consistency matrix is then constructed
by checking the distance consistency between correspon-
dences. Next, those correspondences are quickly clustered
into different groups by treating the column or row vec-
tors as ’features’ of those correspondences. The cluster-
ing is done efficiently via agglomerative clustering, which
is further refined by alternatively merging similar transfor-
mations and re-assigning the cluster labels for several itera-
tions. Optionally, we apply downsampling and upsampling
processes to handle the case when the number of correspon-
dences is large. The details are presented in the next sec-
tions.

4.1. Invariance matrix & compatibility vector

The distance invariance property has been already ex-
plored in 3D registration for many years [48] [43] [30],
which describes that the distance between two points keeps
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unchanged after a rigid transformation. Namely, if ci :
xi ↔ yi and cj : xj ↔ yj are two real correspondences,
they should have

Gij = |dij − d′ij | < δ (3)

where dij = ‖xi−xj‖, d′ij = ‖yi−yj‖ and δ is a threshold
accounting for the noise. Hence the difference between dij
and d′ij can be used as a metric to test whether an outlier ex-
ists, or whether the two correspondences are from different
rigid transformations. Instead of using the absolute differ-
ence defined in (3), we follow [14] to assign a score mea-
suring the relative difference between ci and cj by defining

Gij = s2ij , sij = min(
dij
d′ij

,
d′ij
dij

) ∈ (0, 1). (4)

A distance invariance matrix G (where we let Gii = 1) can
be obtained by computing the scores between all the cor-
respondence pairs. The distance invariance matrix is sym-
metric, where each column or row is a vector describing
the compatibility between a given correspondence and other
correspondences [49].

We name a column vector Gi = (Gi1, . . . , Gij , . . .)
T as

a compatibility vector of the correspondence ci. We observe
that if two correspondences belong to the same instance,
their compatibility vectors have similar patterns. Consider
two correspondences ci, cj ∈ Cs. For any correspondence
ck ∈ Cs, we have Gik → 1, Gjk → 1 because of distance
invariance. For other correspondences ck ∈ C/Cs, we are
likely to have Gik → 0, Gjk → 0. In other words, Gi, Gj

have similar 0 − 1 patterns. By contrast, if the two cor-
respondences belong to different instances, their compati-
bility vectors are very different. To better understand this
observation, we illustrate a simple example in Figure 3.

Figure 3. The column vectors (compatibility vectors) in the dis-
tance invariance matrix contain rich information related to the in-
stances. Here Gi, Gj represent the compatibility vectors of ith

and jth correspondences, which are both in the instance C1. We
observe that Gi is similar to Gj . By constrast, Gi differs signifi-
cantly from Gk since the kth correspondence is within the differ-
ent instance C3. Here C0 represents the set of outliers. Please refer
to Section 4.1 for details.

The compatibility vector of a correspondence can be re-
garded as a characteristic representation or ’feature’ of this

correspondence. Correspondences belonging to the same
rigid transformation have similar features. Therefore, based
on these compatibility vectors, we can cluster the corre-
spondences into different groups related to inliers from dif-
ferent instances.

4.2. Fast correspondence clustering

We cluster the correspondences in a bottom-up manner
which is much faster than spectral clustering adopted by ex-
isting methods [37] [43]. In the beginning, each correspon-
dence is treated as an individual group. We then repeatedly
merge the two groups with the smallest distance until the
smallest distance between two groups is larger than a given
value (min dist thresh). The way the distance between
groups being defined yields different flavors of algorithms.
We follow [32] to define the distance. Let pi,pj be the rep-
resentation vectors of two groups i and j, the group distance
is defined as

d(pi,pj) = 1− 〈pi,pj〉
‖ pi ‖2 + ‖ pj ‖2 −〈pi,pj〉

. (5)

If the two groups are merged, the representation vector of
the new group is updated by pi ← min(pi,pj), where
min(·) denotes taking the minimum value for each dimen-
sion of the two vectors. At the beginning of clustering, the
representation vector of a group (containing only one corre-
spondence) is set as the compatibility vector of that corre-
spondence.

4.3. Recursive cluster refinement

After agglomerative clustering, we further refine the re-
sult by repeating the following steps until no change hap-
pens.

Step 1. Estimate the rigid transformations from the clus-
ters where the number of correspondences is larger than a
threshold α.

Step 2. Merge similar transformations. This step will be
explained in the next section.

Step 3. Re-assign the cluster label to each correspon-
dence. Each correspondence is assigned to the transforma-
tion where its alignment error is the smallest. If the smallest
alignment error over all the transformations is larger than
inlier thresh, the correspondence is marked as an outlier.

During iteration, the correspondences become more and
more gathered, so we can adjust α in Step 1 to increase the
strength of outlier rejection. We use the following strategy
to update the α in each iteration:

α← min(α0 × θn−1, [N/100]), (6)

where n denotes the nth iteration,N is the number of corre-
spondences, and [·] is a rounding operation. We set α0 = 3
and θ = 3 in our experiments. The refinement process usu-
ally converges within three iterations in our experiments,
hence it is also highly efficient.
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4.4. Merge duplicated transformations

Sometimes similar transformations are generated from
different clusters, which means they probably belong to
the same instance. We need to merge them in this case.
Given two estimated transformations (R1, t1) and (R2, t2),
we compute the alignment error for each correspondence,
namely, eki = ‖yi − (Rkxi + tk)‖2, (k = 1, 2). Next, we
set pki = 1 if eki < inlier thresh, pki = 0 otherwise.
Thus, we obtain two binary sets P1, P2 for the two transfor-
mations. The criterion for merging the two transformations
is

IOU = |P1 ∩ P2|/|P1 ∪ P2| ≥ 80%. (7)

If this criterion is satisfied, we drop one of the two transfor-
mations with more outliers (pki = 0). Then we re-assign
the cluster label to each correspondence according to the
one with the smallest alignment error among all the trans-
formations.

4.5. Extract transformations from clusters

After clustering, we need to extract the rigid transfor-
mations from those correspondence clusters. Since we do
not know about the true number of instances in the target
point clouds, we need to choose those inlier clusters auto-
matically. We first select the inlier clusters whose element
number is larger than a threshold (10 in our experiments)
and estimate transformations from those clusters. Next, we
sort the transformations by their inlier numbers in descend-
ing order. The more inliers a transformation has, the higher
chance it is associated with a true instance. Finally, we
check the dropping ratio of the inlier number between the
transformations and the first transformation (with the most
inliers) by

γk = #Ik/#I0, k = 1, 2, . . . (8)

where #Ik denotes the number of inliers of kth transfor-
mation. We neglect all the transforms after k if γk <=
γ thresh. γ thresh can be changed for the trade-off be-
tween recall and precision.

4.6. Handle a large number of correspondences

When the number of input correspondences is large, both
calculating the distance invariance matrix and clustering the
correspondences may become expensive. We add down-
sampling and upsampling processes to address this issue.
The downsampling process is run before constructing the
distance invariance matrix, which is done by randomly sam-
pling a fixed number of correspondences (1024 in our im-
plementation) for further processing. The upsampling pro-
cess is run after clustering on the selected correspondences,
which assigns all the correspondences to existing clusters.
The assignment is done by selecting the transformation with
the smallest alignment error as described in Section 4.3
(Step 3).

5. Experiment

We conduct experiments on both synthetic and real-
world datasets by comparing our method with three state-
of-the-art multi-model fitting methods: T-linkage(2014)
[32], Progressive-X(2019) [10], and CONSAC(2020)
[29]. Other multi-model fitting methods: RPA [33] and
RansaCov [34] are extremely slow (need months) to run
our experiments, hence we do not include them. We also
present the results of the state-of-the-art one-to-one regis-
tration method TEASER(2020) [48] for comparison. We
carefully tune all the methods to achieve the best perfor-
mance on the evaluation datasets within a reasonable time
and memory consumption. For a fair comparison, all the
methods take the same set of point correspondences as the
input.

We implement our algorithm in Pytorch [38]. T-linkage
and Progressive-X are pure-CPU algorithms, while CON-
SAC is a learned-based method that runs on GPU. We
run our algorithm on the same CPU (Intel Core i7-8700K)
with T-linkage and Progressive-X, and the same GPU (GTX
1080Ti) with CONSAC. Our method has three parame-
ters, among which are set as min dist thresh = 0.2,
inlier thresh = 0.3 and γ thresh = 0.5 for our exper-
iments. All the point clouds were downsampled in 0.05m
voxel size. Our method is not sensitive to the parameter
change as the ablation study shown in the supplementary
material.

As the metrics used one-to-one registration can not be
used for the multi-instance setting, we adopt three metrics
from the retrieval task for evaluation: MHR (Mean Hit Re-
call), MHP (Mean Hit Precision), MHF1 (Mean Hit F1).
Their definitions are described in the supplementary mate-
rial.

5.1. Synthetic datasets

We generate a synthetic dataset from a pre-sampled
Modelnet40 dataset [47] from PointNet++ [40]. We down-
sample each point cloud to 256 points and randomly gener-
ateK (up to 20 in our tests) transformations to form a target
point cloud. The target point cloud is also mixed with other
objects and random points to better mimic real-world cases.

Synthetic correspondences In this test, we directly gen-
erate the input correspondences by mixing the ground truth
and outlier ones. Different outlier ratios were tested, 10% ∼
50%, 50% ∼ 70% and 70% ∼ 90%. Note that the outliers
were randomly sampled within a given range for each test
sample. The results are shown in Table 1. As the outlier
ratio increases, the performance of almost all the methods
decreases, but ours drops slowly and is still significantly
better than other methods. Our algorithm is 10x faster than
existing methods either on CPU or on GPU. We also plot
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(a) Input correspondences (outlier ratio : 95.5%) (b) Our clustering result

(c) Ours (d) T-Linkage(2014) [32] (e) Progressive-X(2019) [10] (f) CONSAC(2020) [29] (g) TEASER(2020) [48]

Figure 4. Results on the synthetic dataset. (a) Input correspondences by matching PREDATOR [26] features. The inlier and outliers are
visualized in green and red respectively. (b) Our clustering result is visualized by different colors (only inliers are shown). In (c-g), we
visualize estimated poses in red boxes and ground truth poses in green boxes. Our method (c) registers all instances. T-linkage (d) and
CONSAC (f) fail to register any instances. Progressive-X (e) registers 2 instances but produces a wrong registration. TEASER (g) registers
one instance.

the MHF1(Mean Hit F1) curve of our methods with differ-
ent outlier ratios in 20 instances in Figure 5(a). Though the
performance degrades quickly when the outlier ratio is very
large, our method still achieves 90.46% MHF1 with 70%
outlier ratio. Figure 5(b) shows the MHF1 curve with dif-
ferent instance numbers with a fixed outlier ratio 50%. Our
method’s MHF1 is about 92.73% even when 30 instances
are present.

Metric MHR(%) ↑ MHP(%) ↑ MHF1(%) ↑ Time(s) ↓
Outlier ratio : 10% ∼ 50%

T-Linkage 3.05 14.80 4.65 57.27
Progressive-X 27.91 80.28 41.04 87.25

CONSAC 0.47 0.47 0.47 9.23
Ours 96.08 99.73 97.03 0.62/0.30

Outlier ratio : 50% ∼ 70%
T-Linkage 1.33 7.00 2.05 56.90

Progressive-X 20.60 75.10 31.70 85.54
CONSAC 0.49 0.49 0.49 9.55

Ours 93.99 99.49 95.51 0.55/0.28
Outlier ratio : 70% ∼ 90%

T-Linkage 0.81 4.42 1.25 56.89
Progressive-X 12.88 62.60 20.73 84.5

CONSAC 0.51 0.51 0.51 7.70
Ours 60.39 94.42 69.36 0.50/0.24

Outlier ratio : 90% ∼ 99%
T-Linkage 0.28 1.30 0.42 56.69

Progressive-X 7.13 39.19 11.67 84.43
CONSAC 0.51 0.51 0.51 9.57

Ours 14.70 65.20 22.75 0.47/0.21

Table 1. Results on synthetic correspondences with different out-
lier ratios. ↑ means the larger the better, while ↓ indicates the con-
trary. The running time on CPU/GPU of our method is presented.

(a) (b)

Figure 5. (a) Mean Hit F1 vs Outlier Ratio. (b) Mean Hit F1 vs
Number of Instances (with a fixed outlier ratio 50%).

Correspondences by feature matching In this test, we
apply feature matching to obtain the point correspondences
by the PREDATOR [26] and D3Feat [7]. Both feature mod-
els were trained on synthetic data. The results are shown in
Table 2. Note that both features produce correspondences
with a high outlier ratio greater than 90%. In such a chal-
lenging case, our method still performs well and much bet-
ter than existing methods in terms of both robustness and
efficiency. The results of using D3Feat are much worse than
those of using PREDATOR. The reason is that not only be-
cause of the presence of more outliers but also missing in-
liers as we examine the results. We visualize some results
in Figure 4.

5.2. Benchmark dataset

Scan2CAD [3] is a benchmark dataset that aligns the
ShapeNet [42] CAD models with the object instances in
ScanNet [20] point clouds. Some scans have several aligned
CAD models with annotated poses. We choose those scans
containing multiple CAD models as the target point cloud
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(a) Input correspondences (b) Our clustering result

(c) Ours (d) T-linkage(2014) [32] (e) Progressive-X(2019) [10] (f) CONSAC(2020) [29] (g) TEASER(2020) [48]

Figure 6. Scan2CAD results. (a) Input correspondences by matching PREDATOR [26] features. The inlier and outliers are visualized
in green and red respectively. (b) Our clustering result is visualized by different colors (only inliers are shown). In (c-g), we visualize
estimated poses in red boxes and ground truth poses in green boxes. Our method (c) correctly aligns 8 instances. T-Linkage (d) and
CONSAC (f) fail to register any instances. Progressive-X (e) register 3 instances. TEASER (g) registers one instance.

(a) Input correspondences (b) Our clustering result

(c) Ours (d) T-linkage(2014) [32] (e) Progressive-X(2019) [10] (f) CONSAC(2020) [29] (g) TEASER(2020) [48]

Figure 7. Scan2CAD results. Our method (c) registers 13 instances among 16 chairs. Progressive-X (e) registers 2 instances, but one of
them has a large pose error. CONSAC (f) and TEASER (g) align one instance. T-Linkage (d) fails to register any instances.

and sample the source point cloud from the CAD model
for tests. We generate 173 samples for the registration test,
where most samples contain 2 ∼ 5 instances. Note that
in each point cloud, only parts of instances were annotated
in Scan2CAD. It means that we cannot correctly evaluate
the performance such as the precision and recall using the
partially annotated poses. To address this issue, we match
points only within the ground-truth bounding boxes of the
annotated objects in the target point clouds to generate the
correspondences. Similarly, we use PREDATOR [26] and
D3Feat [7] for point matching, where both are fine-tuned
with 1028 training and 187 validation samples from the

Scan2CAD dataset. The results are shown in Table 3. Our
method performs significantly better than existing methods
when using PREDATOR. Note that when using D3Feat, all
the methods perform poorly. After we carefully checked
the results, we found that the reason is not only the high
outlier ratio ( about 97.25% ) but also the lack of sufficient
inliers when using D3Feat, even though the feature match-
ing is restricted within the ground truth bounding boxes in
the target point clouds. Some results are visualized in Fig-
ure 6 and Figure 7. We also evaluate the performance of
our method by enlarging the bounding box by1.5×, 2.0×,
and 4.0×. When the box size is adjusted to 4×, the target
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Metric MHR(%) ↑ MHP(%) ↑ MHF1(%) ↑ Time(s) ↓
PREDATOR ( estimated outlier ratio : 94.32%)

T-Linkage 0.19 0.54 0.27 43.46
Progressive-X 15.90 31.01 18.98 86.39

CONSAC 0.1 0.07 0.08 7.65
Ours 53.39 61.44 51.80 1.28/0.48

D3Feat ( estimated outlier ratio : 99.30%)
T-Linkage 0.07 0.29 0.1 56.37

Progressive-X 4.29 15.28 5.94 87.22
CONSAC 0.13 0.04 0.05 9.53

Ours 16.98 27.05 17.91 0.68/0.30

Table 2. Results on synthetic data using feature matching to gen-
erate correspondences. Some results are visualized in Figure 4.

Metric MHR(%) ↑ MHP(%) ↑ MHF1(%) ↑ Time(s) ↓
PREDATOR( estimated outlier ratio : 76.44%)

T-Linkage 2.46 3.79 2.71 1655.0
Progressive-X 11.58 6.86 7.87 26.32

CONSAC 2.66 0.35 0.62 21.35
Ours 31.63 29.23 27.04 1.46/0.51

D3Feat ( estimated outlier ratio : 97.25%)
T-Linkage 0.04 0.22 0.06 2178.43

Progressive-X 0.67 0.30 0.4 28.48
CONSAC 0 0 0 21.88

Ours 0.29 0.04 0.07 2.13/0.89

Table 3. Results on Scan2CAD benchmark dataset.

point cloud is almost the original scan. The results based
on PREDATOR features are shown in Table 4. When more
background points are included, feature matching becomes
more challenging, producing highly noisy correspondences,
which makes the MHF1(Mean Hit F1) of our method de-
crease notably.

Box Size MHR(%) ↑ MHP (%) ↑ MHF1(%) ↑ Time(s) ↓

1.5 (94.50%) 40.58 12.61 16.64 0.63
2 (95.97%) 37.43 8.85 12.35 1.37
4 (98.73%) 7.25 6.28 4.92 3.86

Table 4. Results of using different sizes of bounding boxes for fea-
ture matching on Scan2CAD dataset. The estimated outlier ratio
is listed in the bracket after the box size. GPU time is listed in the
last column.

5.3. Real-world tests

We use an RGB-D camera (Intel D455) to capture a se-
quence of point clouds a pile of objects on the table and
apply our algorithm to align a 3D scan of a particular object
to its multiple instances in the target RGB-D scan. Since
the color information is available, we use SIFT feature to
generate 3D point correspondences. Then we apply our al-
gorithm to extract the pose of each object. Some results are
shown in Figure 8. Though the table is cluttered with dif-
ferent objects, our methods can correctly align the source
3D scan up to more than ten instances almost in real-time
(about 0.2s per frame). More results can be found in the
supplementary material.

(a) Kitkat (b) Watson

(c) Snickers (d) Crisp

Figure 8. Real-world tests on RGB-D scans. The source point
cloud is extracted from the depth scan of a single object. The target
point cloud is constructed from the depth scan captured from the
camera viewpoint.

6. Limitation

The performance of our method relies on the quality of
point correspondences. Unfortunately, we found that using
state-of-the-art 3D features such as D3Feat and PREDA-
TOR produces unsatisfactory correspondences, although
they have exhibited good performances on some bench-
mark tests. To improve the correspondence quality, we have
to train those features for each dataset in our experiments.
Even by doing so, the outlier ratios are still very high and
sometimes the inliers are missing for some instances (espe-
cially when using D3Feat) which significantly reduces the
recall as the experiments show. Therefore, the 3D feature is
a bottleneck that requires to be significantly improved. An-
other limitation is that distance invariance is a weak rule that
does not hold well for noisy point clouds and sometimes is
insufficient to reject outliers that are close to inliers, which
may also degrade the performance of our method. One pos-
sible solution is to seek a better invariance ’feature’ repre-
senting each correspondence within an end-to-end learning
pipeline as [6].

7. Conclusion

We address the novel task of multi-instance 3D regis-
tration in this paper. We found that the column vectors
of the distance invariance matrix encode rich information
about the instance to which the correspondences are related.
Based on this observation, we cluster the correspondences
into different groups efficiently by an agglomerative algo-
rithm and refine the result by several iterations. The results
on synthetic, benchmark, and real-world datasets show that
our method outperforms existing methods significantly in
terms of robustness, accuracy, and efficiency. Though our
solution is still far from perfect as discussed, we hope our
work could inspire future research on this topic.
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