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Abstract

Generic event boundary detection (GEBD) is an impor-
tant yet challenging task in video understanding, which
aims at detecting the moments where humans naturally per-
ceive event boundaries. The main challenge of this task
is perceiving various temporal variations of diverse event
boundaries. To this end, this paper presents an effective and
end-to-end learnable framework (DDM-Net). To tackle the
diversity and complicated semantics of event boundaries,
we make three notable improvements. First, we construct
a feature bank to store multi-level features of space and
time, prepared for difference calculation at multiple scales.
Second, to alleviate inadequate temporal modeling of pre-
vious methods, we present dense difference maps (DDM)
to comprehensively characterize the motion pattern. Fi-
nally, we exploit progressive attention on multi-level DDM
to jointly aggregate appearance and motion clues. As a re-
sult, DDM-Net respectively achieves a significant boost of
14% and 8% on Kinetics-GEBD and TAPOS benchmark,
and outperforms the top-1 winner solution of LOVEU Chal-
lenge@CVPR 2021 without bells and whistles. The state-of-
the-art result demonstrates the effectiveness of richer mo-
tion representation and more sophisticated aggregation, in
handling the diversity of GEBD. The code is made available
at https://github.com/MCG-NJU/DDM .

1. Introduction
With the explosive growth of online videos, video un-

derstanding has drawn tremendous attention from both
academia and industry. Cognitive science [43] suggests that
humans naturally divide a video into meaningful units by
perceiving event boundaries. To this end, a task termed as
Generic Event Boundary Detection [35] (GEBD) is re-
cently proposed to localize the generic event boundaries in
videos, which is expected to facilitate the development of
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Figure 1. Comparisons of sparse motion representation (black
lines, optical flow) and dense motion representation (green
lines, some are omitted for clarity, dense feature differences).
Numbers on lines indicate the magnitude of motion between two
frames. Dense motion representation provides more holistic tem-
poral cues to better distinguish boundaries and non-boundaries.

video understanding.
Generic event boundaries in GEBD task are taxonomy-

free and related to a broad range of temporal changes, in-
cluding changes of action, subject and environment. The
primary challenge in GEBD task is to model diverse pat-
terns of generic event boundaries: a) Spatial diversity is
dominantly characterized by the change of appearance,
which normally comprises low-level changes (e.g., change
in color or brightness) and high-level changes (e.g., the
dominant subject appears or disappears). b) Temporal di-
versity is mainly relevant to actions, such as change of ac-
tion (e.g., walk to run) or change of object of interaction.
Notably, different actions usually exhibit inconsistent speed
and duration, which further increases the temporal diversi-
ties of event boundaries. As a result, the spatio-temporal
diversities lead to overly complicated variations in videos,
which impedes the accurate detection of event boundaries.
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Since GEBD task is highly correlated with changes in
temporal dimension, motion information is the key to per-
ceiving temporal variations and detecting event boundaries.
Previous methods wildly use optical flow [24, 25, 45] as al-
ternative motion representation to learn temporal clues in
videos. However, they model the semantics in a single
feature level and focus on local motion cues between two
consecutive frames (Figure 1), which is insufficient to per-
ceive diverse event boundaries. In addition, previous two-
stream methods [36, 45] commonly resort to simple fusion
schemes, short of interaction across appearance and motion
modalities. Hence, they are less effective for learning com-
plex semantics of diverse event boundaries.

To address the above issues, we present a method (DDM-
Net) that progressively aggregates dense motion informa-
tion along with appearance cues to perceive event bound-
aries, as illustrated in Figure 2. We make three notable
improvements, including Multi-Level Feature Bank, Dense
Difference Map and Progressive Attention. First, we build
a Multi-Level Feature Bank where the features are collected
in different spatial and temporal scales respectively, which
empowers the subsequent modules to thoroughly perceive
different levels of changes in videos.

Second, based on aforementioned feature bank, we pro-
pose a Dense Difference Map (DDM) to model rich tem-
poral contexts. Technically, we calculate pairwise feature
differences between every two frames in a clip of length T ,
and obtain a T × T dense difference map. The main advan-
tage of DDM is to exploit the difference of each feature pair
and provide holistic motion information. As shown in Fig-
ure 1, our proposed DDM is able to provide more holistic
and salient temporal clues than optical flow, which is cal-
culated between two consecutive frames. Furthermore, in-
stead of directly being operated on raw frames, our DDM is
built on the features collected from different layers of back-
bone network, and thus ought to be more robust to temporal
noise (e.g., camera blur in the second row of Figure 1).

Third, as event boundaries show their spatio-temporal di-
versities and complexities, we argue that simple linear fu-
sion in two-stream methods is insufficient to aggregate the
appearance and motion clues. We thus exploit Progressive
Attention to mine important clues hidden in RGB features
and DDM. In order to align the shape of DDM to RGB fea-
tures, we design map-squeezed attention to squeeze DDM.
Then, in intra-modal attention, key features of two modal-
ities are respectively enhanced through two sets of learn-
able queries, prepared for cross-modal attention. Cross-
modal attention is leveraged to perform feature interaction
across modalities, enabling appearance and motion features
to query and guide each other. As a result, DDM-Net can
more effectively aggregate spatio-temporal clues and im-
prove the discrimination of event boundaries.

Our DDM-Net exploits multi-level dense differences to

perceive diverse temporal variations, and leverages progres-
sive attention to effectively aggregate appearance and mo-
tion clues. To prove the effectiveness of DDM-Net, we
perform extensive experiments on two datasets: Kinetics-
GEBD [35] and TAPOS [34]. Evaluation results demon-
strate that our DDM-Net outperforms the existing state-of-
the-art methods by a large margin on all evaluation metrics.
Particularly, DDM-Net obtains a superior 76.4% F1@0.05
on Kinetics-GEBD, with a significant boost of 14 percent.
On TAPOS, we improve F1 score@0.05 from 52.2% to
60.4%. In addition, our DDM-Net is superior to winners
of LOVEU Challenge@CVPR 2021 [35] on the testing set
of Kinetics-GEBD, demonstrating the effectiveness of our
method. In summary, our main contributions are as follows:

• We propose dense difference maps equipped with
multi-level feature bank to leverage richer temporal
clues for detection of diverse event boundaries.

• Instead of simple feature fusion methods, progressive
attention is employed to aggregate appearance and mo-
tion clues from RGB features and DDM, enabling
DDM-Net to generate more discriminative representa-
tions and learn more complicated semantics.

• Extensive experiments and studies demonstrate that
our DDM-Net achieves the state-of-the-art perfor-
mance on Kinetics-GEBD and TAPOS benchmark, un-
der the setting of the same backbone.

2. Related Work
Temporal Detection Tasks in Video Understanding.
Temporal action detection task aims to detect action in-
stances in untrimmed videos, namely predict starting point,
ending point and category of each action. One-stage and
two-stage methods are two mainstream solutions. Different
from direct one-stage methods [3, 23, 47], two-stage meth-
ods [24, 25, 27, 33, 39, 49] decompose the task into class-
agnostic proposal generation and action classification. Tem-
poral action parsing [34] is recently proposed, of which
the target is dividing actions into segments of sub-actions.
Video anomaly detection [12, 26, 31, 37] is aimed at rec-
ognizing frames where abnormal events happen, wildly ap-
plied in video surveillance. As for shot boundary detec-
tion [2, 13, 40], it is a classical task for significant shot
change detection. Different from them, GEBD [35] is a
generic detection task, where generic event boundaries in-
clude all of the above. To address the diversity and com-
plicated semantics of generic event boundaries, our method
improves the boundary discrimination via progressively at-
tending to multi-level dense difference maps.
Motion Representation. Previous methods of current
video understanding tasks (e.g., action recognition, tempo-
ral action detection, etc.) wildly used optical flow [4,24,36,
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Figure 2. Overview of DDM-Net. Our DDM-Net streamlines the process of generic event boundary detection by viewing it as a binary
classification problem of sliding video clips. Specifically, our method classifies the current frame with a clip centered on it and repeats the
same process on other frames. The network is mainly composed of three stages: multi-level feature bank construction, dense difference
map calculation, and progressive attention. DDM-Net exploits richer motion information and more sophisticated aggregation to achieve
accurate detection for generic event boundaries. (L: number of levels of features, T: number of frames, C: number of channels.)

45], RGB differences [18, 32, 45, 51, 52] and feature differ-
ences [8, 17, 22, 28, 29, 44] as the motion representation to
learn temporal clues in videos. However, they focus on local
motion cues between two consecutive frames and do not ex-
plicitly employ multi-level features for complex semantics
learning. Compared with single-level sparse motion repre-
sentations, our proposed multi-level DDM is a dense motion
representation built upon the multi-level feature bank, better
to perceive diverse temporal variations in multiple levels.
Multi-Modal Feature Aggregation and Fusion. Multi-
modal feature aggregation and fusion are wildly applied for
holistic semantics learning in many tasks, such as image-
text [1, 30, 46, 48], video-text [10, 14, 21] and audio-video
tasks [11,41]. In video understanding, previous two-stream
methods [9, 36, 45] train two separate networks and resort
to a simple fusion of two video modalities, namely appear-
ance and motion, via linear fusion or feature concatenation.
However, they are less effective due to a lack of interac-
tion across two modalities, falling short of dependencies be-
tween appearance and motion features [6]. To this end, our
method progressively attends to multi-level DDM, taking
advantage of correlations between two modalities to enrich
the semantic information and improve the discrimination.

3. Method

3.1. Overview

Generic Event Boundary Detection [35] (GEBD) aims to
detect the taxonomy-free event boundaries, e.g., change of
action, change of subject, shot change, etc. As the temporal

boundaries in video usually exhibit the dominant character-
istics of ambiguity and diversity, it indeed is a challenging
vision task remaining to be studied. To this end, we propose
a novel spatio-temporal modeling scheme, which constructs
and attends to multi-level dense difference maps to address
aforementioned issues.

Given a video V = {It}Et=1, where It is the t-th frame
and E is the number of frames in video, we sample a
clip U = {It−w, ..., It, ..., It+w} of T (T = 2 × w + 1)
frames from video V to infer whether It is a boundary
frame. As illustrated in Figure 2, DDM-Net mainly refers
to three parts: a multi-level spatio-temporal feature bank,
multi-level dense difference maps and cross-modal aggre-
gation between RGB features A and Dense Difference
Map (DDM) M via progressive attention. Firstly, the sam-
pled clip U is fed into a backbone network and a serial of
temporal convolutions to yield Multi-Level spatio-temporal
features F = {fij}i∈[1,m],j∈[1,n], where i and j respec-
tively denotes the spatial level (m levels in total) and the
temporal level (n levels in total) of the feature. Secondly,
a Dense Difference Map M ∈ RC×T×T is constructed
with F by measuring the discrepancy among frames, which
is expected to provide more discriminative information to
aid the model in perceiving temporal variations. Thirdly,
in our Progressive Attention module, intra-modal attention
module exploits a set of learnable queries to enhance key
intra-modal representations, and co-attention transformers
are leveraged to perform cross-modal attention. It is worth
noting that, to align with RGB features A, DDM M ∈
RC×T×T is firstly squeezed to a sequence D ∈ RC×T via
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map-squeezed attention. Finally, A and D are respectively
fed into separate fully-connected (fc) layers. With a linear
fusion after fc layers, the model outputs the final boundary
probability of the center frame It.

In contrast to previous two-stream methods [9, 36, 45]
that use optical flow as motion representation to learn tem-
poral clues in videos, we meticulously construct dense dif-
ference maps, which enable the model to perceive generic
event boundaries along with RGB features. Since DDM is
calculated on-the-fly, our method is more efficient than pre-
vious two-stream methods that train two separate networks.
In the following sections, we will introduce the technical
details of each module.

3.2. Multi-Level Feature Bank

To model diverse motion patterns of generic event
boundaries, we exploit a feature bank to store multi-level
features of input video clips, based on which the dense dif-
ference map is calculated to yield rich temporal clues.
Temporal View of Multi-Level Feature Bank. Before
building the feature bank, an issue that needs to be figured
out is whether we take a clip or the whole video as inputs
to detect event boundaries. As videos normally are com-
posed of multiple non-overlapping and relatively indepen-
dent snippets that belong to different events, we argue that
whether the current frame is an event boundary is mostly
related to its adjacent snippets. Snippets far away from the
current frame contribute little to infer whether it is an event
boundary. Therefore, we opt to build our model based on
a clip around the current frame, instead of the whole video.
Notably, experiments in Table 4b have also examined the
rationality of our point. Specifically, along with the cur-
rent frame, we sample w frames before and after the current
frame, namely T (T = 2 × w + 1) frames as an input clip.
Then, the input clip is fed into backbone network to con-
struct the multi-level feature bank.
Construction of Multi-Level Feature Bank. Since event
boundaries in GEBD task are generic and taxonomy-free,
patterns of different event boundaries vary considerably in
space and time. From a perspective of space, appearance
changes include low-level changes and high-level changes.
Low-level changes mainly refer to change in environment
(i.e., change in color and brightness), while high-level
changes are related to complex semantics (e.g., the domi-
nant subject appears or disappears). From a temporal per-
spective, the duration of action changes is usually inconsis-
tent. For instance, ‘a runner suddenly changes direction’
can happen very fast, while ‘an old man slowly stands up’
usually takes several frames.

To detect event boundaries with diverse motion patterns,
our method models temporal variations upon multi-level
spatio-temporal features. Specifically, we perform average
spatial pooling on m layers of ResNet features (e.g., layer3

and layer4), and get m feature sequences of different se-
mantic levels. It is notable that the feature sequence of high-
level layer4 is also denoted as RGB features A, which are
later fused with DDM features D, as shown in Figure 2.
Then, for each feature sequence, we exploit temporal con-
volutions to get n feature sequences with different temporal
receptive fields. Consequently, there are m× n = L levels
of features in total, prepared for multi-level dense difference
calculation. In Table 4c, we observe that both multi-level
features from spatial and temporal domain provide crucial
clues to detect diverse event boundaries.

3.3. Dense Difference Maps

Motion representation is crucial in GEBD task. As for
boundaries like changes of action, there is little change in
appearance (e.g., a man waves gently towards the camera, or
walk to run). To detect such boundaries, motion information
plays a principal role in perceiving temporal variations. Pre-
vious methods commonly exploit sequential optical flow or
RGB differences to approximate motion information. How-
ever, they can only reflect local motion cues between two
consecutive frames and fail to take advantage of rich tem-
poral contexts. Considering the variety of boundaries and
complicated scenarios in GEBD task, it is insufficient to use
local and sparse motion representation.

To alleviate inadequate temporal context modeling of
sparse motion representation, we propose dense difference
maps based on aforementioned multi-level feature bank.
Given a feature sequence of T frames, we calculate the fea-
ture difference of each frame pair and construct a T × T
map. Compared with the sparse motion sequence of length
T − 1, T × T pairs of feature differences provide denser
temporal cues (Figure 1). Since DDM contains richer mo-
tion information, it characterizes the motion pattern around
the current frame more holisticly, enabling our method to
better perceive temporal variations and distinguish bound-
aries and non-boundaries. Moreover, DDM is constructed
with aforementioned multi-level feature bank, where fea-
tures are collected from different layers of backbone net-
work and consist of multi-level semantics. Hence, it is more
robust to temporal noise than optical flow and RGB differ-
ences, which are directly calculated on raw frames.

In practice, Euclidean distance is employed across all
the channels to measure the feature difference between two
frames Ii and Ij ,

FD(i, j) =

√√√√ C∑
c=1

(Ac
i −Ac

j)
2, (1)

where Ai and Aj are appearance features of Ii and Ij , C is
the total number of channels. Then, we exploit stacked con-
volution layers to transform difference matrices∈ RL×T×T

into M ∈ RC×T×T . In Table 4d, DDM-Net also achieves
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close performance with other distance metrics(e.g., Man-
hattan distance), which demonstrates the performance of
our method is robust to the choice of difference operators.

3.4. Progressive Attention

Previous two-stream networks usually leverage simple
aggregation and fusion manners, such as linear fusion or
feature concatenation of temporal averaging results. How-
ever, they lack interaction between modalities and thus can-
not take full advantage of our proposed DDM, which is
proved in Table 4e. Hence, to better aggregate appearance
and motion clues, we employ progressive attention on our
proposed multi-level DDM, including map-squeezed atten-
tion, intra-modal attention and cross-modal attention.

Map-Squeezed Attention. To align M ∈ RC×T×T with
RGB features A ∈ RC×T , we transform it into a feature se-
quence of length T via frame-wise map-squeezed attention.
In DDM, feature sequence of the i-th row (Mi ∈ RC×T )
is the difference between the i-th frame Ii and other frames
of the current clip. Hence, it is intuitive to aggregate el-
ements of the Mi to get a clip-level motion measurement
of the Ii. Due to the diversity of temporal dependencies,
it is common that differences with several specific frames
are more important than others. Therefore, we propose a
frame-wise attention mechanism to squeeze M , calculating
the weights of all elements in Mi based on feature Ai of Ii.
Concretely, we exploit Ai to attend all elements of Mi and
generate weights γi, adaptively aggregating all differences
into a motion measurement Di, formulated as:

µij = W⊺
µ (W

⊺
AAi +W⊺

MMij),

γij =
exp (µij)∑T
t=1 exp (µit)

,

Di =
∑T

j=1
γijMij ,

(2)

where W⊺
A, W⊺

M and W⊺
µ are projection matrices.

Intra-Modal Attention. As mentioned in Section 3.1
and 3.2, our method predicts the boundary confidence of
the current frame It based on a clip U centered on it. In the
clip, features of different timestamps should not be equally
important. For example, the center frame of the clip is
more important than edge frames of the clip in most cases.
To adaptively aggregate and enhance key representations
of RGB features A and DDM features D, we employ two
sets of ω learnable queries q, which are formed by adding
content queries cq (initialized with standard normal distri-
bution) and learnable positional embeddings of queries pq .
Specifically, We exploit two separate transformer decoders
to respectively aggregate and enhance key intra-modal fea-

tures of A and D,

q = cq + pq,

k = ck + pk = H + pk, v = cv = H,
(3)

where ck and cv are features H of the modality (A or
D), pk is sine positional embedding. In cross-attention
layers, queries globally attend and aggregate features of
high activation into each query. Self-attention layers model
the dependencies between queries and enhance correspond-
ing query embeddings. Through intra-modal representation
learning, two sets of queries q independently aggregate and
enhance key features of two modalities, and become refined
queries q

′
. In Table 4e, we observe that cross-modal atten-

tion can achieve better performance upon refined key fea-
tures q

′
, compared with the unrefined features H .

Cross-Modal Attention. Due to the diversity and com-
plex semantics of generic event boundaries, it is difficult
to distinguish them with only appearance or motion fea-
tures. A fusion of them can alleviate this issue, but previous
fusion methods (e.g., feature concatenation) fail to jointly
learn features across modalities and make full use of fea-
ture complementarity. Thus, in order to leverage the depen-
dencies between two modalities, we perform cross-modal
feature aggregation. Concretely, we take the feature pair
of ω refined queries q

′
as the input of two independent co-

attention transformers. One co-attention transformer takes
refined RGB features q

′

A as queries, and refined DDM fea-
tures q

′

D as keys and values,

q = cq = q
′

A,

k = ck = q
′

D, v = cv = q
′

D.
(4)

That is to say, q
′

A guide and enhance q
′

D via cross-attention
layers. Inputs of the other co-attention transformer are sym-
metric to the first one, namely q

′

D as queries, q
′

A as keys
and values. Through cross-attention layers, cross-modal
attention module outputs RGB-conditioned DDM features
q

′′

D and DDM-modulated RGB features q
′′

A. As a conse-
quence, DDM-Net aggregates appearance and motion cues
with cross-modal guidance, effectively improving the dis-
crimination of event boundaries.

3.5. Training

Balanced Sampler. GEBD is a binary classification task,
and non-boundary frames are far more than boundary
frames (r:1). Following [35], we leverage a balanced sam-
pler. Due to slowness prior in videos [50], features of
consecutive non-boundary frames change at a very slow
speed. Hence, we apply a sparse sampling strategy on non-
boundary frames, namely select one out of sequential r non-
boundary frames randomly and sample all boundary frames.
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Rel.Dis. threshold 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 avg

Unsuper.
SceneDetect [5] 0.275 0.300 0.312 0.319 0.324 0.327 0.330 0.332 0.334 0.335 0.318

PA - Random [35] 0.336 0.435 0.484 0.512 0.529 0.541 0.548 0.554 0.558 0.561 0.506
PA [35] 0.396 0.488 0.520 0.534 0.544 0.550 0.555 0.558 0.561 0.564 0.527

Super.

BMN [24] 0.186 0.204 0.213 0.220 0.226 0.230 0.233 0.237 0.239 0.241 0.223
BMN-StartEnd [24] 0.491 0.589 0.627 0.648 0.660 0.668 0.674 0.678 0.681 0.683 0.640
TCN-TAPOS [20] 0.464 0.560 0.602 0.628 0.645 0.659 0.669 0.676 0.682 0.687 0.627

TCN [20] 0.588 0.657 0.679 0.691 0.698 0.703 0.706 0.708 0.710 0.712 0.685
PC [35] 0.625 0.758 0.804 0.829 0.844 0.853 0.859 0.864 0.867 0.870 0.817

DDM-Net 0.764 0.843 0.866 0.880 0.887 0.892 0.895 0.898 0.900 0.902 0.873

Table 1. Comparison with previous methods on the validation set of Kinetics-GEBD, measured by F1 score at different Rel.Dis. thresholds.

Rel.Dis. threshold 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 avg

Unsuper.
SceneDetect [5] 0.035 0.045 0.047 0.051 0.053 0.054 0.055 0.056 0.057 0.058 0.051

PA - Random [35] 0.158 0.233 0.273 0.310 0.331 0.347 0.357 0.369 0.376 0.384 0.314
PA [35] 0.360 0.459 0.507 0.543 0.567 0.579 0.592 0.601 0.609 0.615 0.543

Super.

ISBA [7] 0.106 0.170 0.227 0.265 0.298 0.326 0.348 0.369 0.382 0.396 0.302
TCN [20] 0.237 0.312 0.331 0.339 0.342 0.344 0.347 0.348 0.348 0.348 0.330
CTM [16] 0.244 0.312 0.336 0.351 0.361 0.369 0.374 0.381 0.383 0.385 0.350

TransParser [34] 0.289 0.381 0.435 0.475 0.500 0.514 0.527 0.534 0.540 0.545 0.474
PC [35] 0.522 0.595 0.628 0.646 0.659 0.665 0.671 0.676 0.679 0.683 0.642

DDM-Net 0.604 0.681 0.715 0.735 0.747 0.753 0.757 0.760 0.763 0.767 0.728

Table 2. Comparison with previous GEBD methods on the validation set of TAPOS, measured by F1 score at different Rel.Dis. thresholds.

Method rank1 [19] rank2 [15] rank3 [38] DDM-Net
F1 score 0.8354 0.8330 0.8309 0.8368

Table 3. Comparison with winner solutions of LOVEU challenge
on the testing set of Kinetics-GEBD, measured by F1 score@0.05.

Loss Function. The balanced sampler relieves the imbal-
ance of positive and negative samples. Therefore, we sim-
ply define the binary classification loss Lbc as:

Lbc = − 1

N

N∑
η=1

(p̂η log pη + (1− p̂η) log(1− pη)), (5)

where pη is the binary classification probability and N is
the total number of training samples. p̂η is 1 if the sample
is marked as a boundary, and otherwise 0.

3.6. Inference

Linear Fusion of Logits. After progressive attention, q
′′

A

and q
′′

D are separately passed into two independent fc lay-
ers to generate logits lA and lD. With a learnable parameter
α, we perform a linear fusion of logits: l = α ∗ lA + (1 −
α) ∗ lD. Softmax function is applied on the final logit l to
get the boundary probability p.
Efficient Post-processing Scheme. Repeating the above
process of predicting the boundary probability of one frame,
we obtain the boundary confidence sequence of the whole
video. To select the final boundary predictions of the video,
we apply an efficient post-processing scheme on the se-

quence. In detail, a boundary frame should satisfy the fol-
lowing two requirements: (1) The boundary probability of
the frame is greater than a set threshold θ (e.g., 0.5). (2) Its
boundary probability is the maximum within a pre-defined
range (e.g., [-5, 5]). Since our post-processing scheme is
free of time-consuming pairwise IoU calculation, it only
takes about 0.0003 seconds per video (5.302s for all 18,813
videos) on one Nvidia V100 machine.

4. Experiments
4.1. Dataset and Setup

Kinetics-GEBD. Kinetics-GEBD dataset [35] consists
of 60,000 videos randomly selected from Kinetics-400.
Among them, 18,794 training videos and 17,725 testing
videos are randomly selected from Kinetics-400 training
set. Kinetics-GEBD validation set contains all 18,813
videos in Kinetics-400 validation set. The ratio of training,
validation and testing sets is nearly 1:1:1. Since temporal
annotations of testing set are not available, we train on the
training set and evaluate with the validation set.
TAPOS. TAPOS dataset [34] contains Olympics sports
videos with 21 actions. There are 13,094 training action
instances and 1,790 validation action instances. Follow-
ing [35], we re-purpose TAPOS for GEBD task by trimming
each action instance with its action label hidden.
Evaluation Protocol. To evaluate the results of generic
event boundary detection task, we calculate F1 score and
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Representation 0.05 0.25 0.5 Average
RGB 0.6793 0.8589 0.8772 0.8375

Optical flow 0.6625 0.8045 0.8206 0.7877
RGB differences 0.7272 0.8591 0.8753 0.8440

DDM 0.7512 0.8738 0.8861 0.8591
RGB + Optical flow (two-stream) 0.6881 0.8682 0.8844 0.8465

RGB + RGB differences (two-stream) 0.7307 0.8702 0.8834 0.8536
RGB + DDM (on-the-fly) 0.7643 0.8870 0.9016 0.8726

(a) Study on Different Representations. We compare the performance of single
modality and two modalities. When combined with RGB features, only DDM is
calculated online and can be trained on-the-fly.

w s 0.05 0.25 0.5 Average
5 3 0.7551 0.8815 0.8970 0.8666
5 6 0.7643 0.8870 0.9016 0.8726
5 12 0.7521 0.8788 0.8924 0.8636
5 30 0.6914 0.8563 0.8717 0.8371
15 2 0.7703 0.8890 0.9042 0.8754

(b) Study on Temporal Views. We compare the
performance of input clips with different tempo-
ral views, and further boost the performance with
a more-frames setting.

Multi-level 0.05 0.25 0.5 Average
None 0.7353 0.8617 0.8726 0.8463

Spatial 0.7487 0.8694 0.8820 0.8552
Temporal 0.7497 0.8727 0.8848 0.8579

Spatial + Temporal 0.7643 0.8870 0.9016 0.8726

(c) Study on Multi-Level Feature Bank. ‘None’
refers to only using the feature collected from the last
layer of backbone network (layer4 of ResNet50).

Operators 0.05 0.25 0.5 Average
Manhattan 0.7632 0.8870 0.9024 0.8725
Euclidean 0.7643 0.8870 0.9016 0.8726
Chebyshev 0.7540 0.8789 0.8931 0.8643

Cosine 0.7611 0.8834 0.8982 0.8691

(d) Study on Difference Operators. ‘Dif-
ference operator’ refers to the distance metric
applied in difference calculation.

Aggregation 0.05 0.25 0.5 Average
Avg 0.7498 0.8685 0.8804 0.8543
Intra 0.7588 0.8793 0.8922 0.8650
Cross 0.7590 0.8770 0.8894 0.8631

Intra + Cross 0.7643 0.8870 0.9016 0.8726

(e) Study on Aggregation Methods of Pro-
gressive Attention. ‘Avg’ refers to direct tem-
poral averaging operation without attention.

Table 4. Ablation Studies on Kinetics-GEBD dataset, measured by F1 score at different Rel.Dis. thresholds.

use the Relative Distance (Rel.Dis.) measurement [35].
Rel.Dis. is the relative distance between predictions and
ground truths, divided by the length of the corresponding
video. Given a threshold, a prediction is determined to be
true if Rel.Dis. is smaller than or equal to the threshold,
otherwise false. In experiments, we follow [35] to report F1
score with Rel.Dis. threshold set [0.05 : 0.05 : 0.5].
Implementation Details. In practice, we select one frame
out of every 3 consecutive frames, namely the stride of
boundary evaluation is 3. To predict the confidence of the
current frame, we take a T × s (T = 2×w + 1) clip as the
input, where w is 5 and s is 6. Following [35], our model
is built on ImageNet-pretrained ResNet-50 backbone and
trained end-to-end. m and n of multi-level feature bank are
set to 3. ω of progressive attention is set to 5. To train
DDM-Net, we employ Adam as the optimizer. The batch
size is set to 32 and the learning rate is set to 1e-5.

4.2. Main Results

We fairly compare our DDM-Net with state-of-the-
art methods on the validation set of Kinetics-GEBD and
TAPOS. As a result, our method outperforms the state-of-
the-art methods by a large margin at all Rel.Dis. thresholds.
Kinetics-GEBD. Table 1 illustrates the performance of dif-
ferent methods on Kinetics-GEBD validation set. It can be
seen that DDM-Net remarkably outperforms other methods
on F1 score, demonstrating the effectiveness of dense differ-
ences and sophisticated aggregation. Especially, DDM-Net
achieves significant improvements from 62.5% to 76.4% at
the most strict threshold (Rel.Dis.=0.05). A boost of nearly
14 percent proves the boundary predictions of DDM-Net are
the most precise. Furthermore, combined with a more pow-
erful backbone CSN [42], our DDM-Net can be superior

to winner solutions of LOVEU Challenge@CVPR 2021, as
shown in Table 3. It is worth noting that this result is ob-
tained without bells and whistles (e.g., model ensemble, au-
dio data and human-object detector) of winner solutions.
TAPOS. The comparison results of the state-of-the-art
GEBD methods on TAPOS are summarized in Table 2.
Since DDM-Net is able to learn complex semantics and
distinguish subtle changes between sub-actions, it ob-
tains state-of-the-art performance on TAPOS, increasing
F1 score@0.05 from 52.2% to 60.4%. The result proves
that our model can not only achieve accurate generic event
boundary detection (Kinetics-GEBD), but also precisely de-
tect boundaries between fine-grained sub-actions (TAPOS).

4.3. Ablation Study

Study on Different Representations. We analyze our pro-
posed DDM by experimenting with different representa-
tions, which is shown in Table 4a. First, we compare the
performance of single representation. Our proposed DDM
outperforms RGB, optical flow and RGB differences by
a large margin, especially under strict settings (Rel.Dis.
= 0.05). Second, we find that DDM brings the greatest
improvements when combined with RGB features, which
proves the complementarity of dense differences and RGB
features. Furthermore, as DDM is calculated on-the-fly, our
method is free of training two separate networks and thus is
more efficient than previous two-stream methods.
Study on Temporal Views. In Section 3.2, we argue that
boundary frames have stronger correlations with their ad-
jacent snippets than faraway frames. To prove our point,
we experiment with clips of different temporal views. As
illustrated in Table 4b, the temporal view grows with the in-
crease of stride s, but the performance decreases in row 3
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Figure 3. Qualitative results and comparisons of PC, DDM-Net
and ground truths on Kinetics-GEBD dataset.

and 4. Particularly, when s is increased to 30, namely we
classify the current frame with uniformly sampled frames
through the whole video (about 300 frames), the perfor-
mance witnesses a significant drop. Hence, it is unneces-
sary to introduce global temporal contexts in GEBD task.
In addition, if the temporal view is fixed, using more frames
(w = 15 instead of w = 5) to calculate denser differences
can slightly improve the performance (row 2 and row 5).
Study on Multi-Level Feature Bank. In order to model
various motion patterns of diverse event boundaries, we first
build a multi-level feature bank, then calculate dense differ-
ences upon it. As demonstrated in Table 4c, both multi-level
spatial and temporal features outperform the result with
single-level features. Moreover, a combination of multi-
level spatial and temporal features (firstly generate multi-
level spatial features, then yield multi-level temporal fea-
tures upon spatial features of each layer) can further lead to
a remarkable performance advance, confirming the overall
contributions of multi-level feature bank.
Study on Difference Operators. In Table 4d, Euclidean
distance, Manhattan distance and Cosine distance are re-
spectively employed to measure the feature difference. We
observe that our method obtains close performance. There-
fore, performance of DDM-Net is robust to the choice of
difference operators. In contrast, our model witnesses a
drop with Chebyshev distance. Since Chebyshev distance
measures the max discrepancy among all channels, it can-
not reflect the overall differences between two frames.
Study on Aggregation Methods of Progressive Attention.

In Table 4e, we study two aggregation methods of progres-
sive attention (map-squeezed attention is required to align
the shape and cannot be removed). Intra-modal attention
mainly focuses on aggregating and enhancing key intra-
modal features with learnable queries q. Compared with the
overall feature sequence H , refined queries q

′
contain key

patterns and less noise, which can explain the performance
gain of row 2. If only cross-modal attention is leveraged,
overall RGB features A and DDM features D directly query
and guide each other through joint feature learning across
modalities, leading to the improvement of row 3. More-
over, instead of H , cross-modal aggregation of refined key
features q

′
can further boost the performance (row 4).

4.4. Qualitative Results

Figure 3 displays qualitative results of our method, in-
cluding different types of event boundaries. The first exam-
ple is a video of several shot changes. DDM-Net precisely
perceives temporal variations and hits every boundary in-
stance, while predictions of PC are not accurate. Case in
the second row is more challenging, as only the position of
the left hand changes. DDM-Net is able to model complex
semantics and distinguish subtle action changes, therefore
it makes accurate predictions. In contrast, PC misses all the
ground truths. The last example is a combination of shot
changes and action changes. Since our method is more ro-
bust to temporal noise (camera jitter), it predicts fewer false
positives. In summary, thanks to multi-level DDM and pro-
gressive attention, our method is able to precisely perceive
temporal changes and understand complicated semantics,
hence it has shown advantages in many different cases.

5. Conclusion
In this paper, we have presented a modular framework

for the task of generic event boundary detection (GEBD).
To perceive diverse temporal variations and learn com-
plex semantics of generic event boundaries, our method
progressively attends to multi-level dense difference maps
(DDM). Thanks to holistic temporal modeling and joint fea-
ture learning across modalities, our DDM-Net outperforms
the previous state-of-the-art methods by a large margin on
Kinetics-GEBD and TAPOS benchmark. In addition, our
method is better than winner solutions of LOVEU Chal-
lenge@CVPR 2021, further demonstrating the efficacy of
DDM-Net. As for limitations, large-scale GEBD bench-
marks of untrimmed videos are expected to further validate
our method in future work.
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