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Abstract

Vision Transformers (ViT)s have shown great performance
in self-supervised learning of global and local representations
that can be transferred to downstream applications. Inspired
by these results, we introduce a novel self-supervised learning
framework with tailored proxy tasks for medical image analy-
sis. Specifically, we propose: (i) a new 3D transformer-based
model, dubbed Swin UNEt TRansformers (Swin UNETR),
with a hierarchical encoder for self-supervised pre-training;
(ii) tailored proxy tasks for learning the underlying pattern
of human anatomy. We demonstrate successful pre-training
of the proposed model on 5,050 publicly available computed
tomography (CT) images from various body organs. The ef-
fectiveness of our approach is validated by fine-tuning the
pre-trained models on the Beyond the Cranial Vault (BTCV)
Segmentation Challenge with 13 abdominal organs and seg-
mentation tasks from the Medical Segmentation Decathlon
(MSD) dataset. Our model is currently the state-of-the-art
on the public test leaderboards of both MSD1 and BTCV 2

datasets. Code: https://monai.io/research/swin-unetr.

1. Introduction
Vision Transformers (ViT)s [16] have started a revolu-

tionary trend in computer vision [12, 54] and medical image

analysis [6, 19]. Transformers demonstrate exceptional

capability in learning pre-text tasks, are effective in learning

of global and local information across layers, and provide
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1https : / / decathlon - 10 . grand - challenge . org /
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2https://www.synapse.org/#!Synapse:syn3193805/

wiki/217785/
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Figure 1. Overview of our proposed pre-training framework.

Input CT images are randomly cropped into sub-volumes and

augmented with random inner cutout and rotation, then fed to the

Swin UNETR encoder as input. We use masked volume inpainting,

contrastive learning and rotation prediction as proxy tasks for

learning contextual representations of input images.

scalability for large-scale training [38, 52]. As opposed to

convolutional neural networks (CNNs) with limited receptive

fields, ViTs encode visual representations from a sequence

of patches and leverage self-attention blocks for modeling

long-range global information [38]. Recently, Shifted

windows (Swin) Transformers [30] proposed a hierarchical

ViT that allows for local computing of self-attention with
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non-overlapping windows. This architecture achieves

linear complexity as opposed to quadratic complexity of

self-attention layers in ViT, hence making it more efficient. In

addition, due to the hierarchical nature of Swin Transformers,

they are well-suited for tasks requiring multi-scale modeling.

In comparison to CNN-based counterparts, transformer-

based models learn stronger features representations during

pre-training, and as a result perform favorably on fine-tuning

downstream tasks [38]. Several recent efforts on ViTs [5, 48]

have achieved new state-of-the-art results by self-supervised

pre-training on large-scale datasets such as ImageNet [15].

In addition, medical image analysis has not benefited from

these advances in general computer vision due to: (1) large

domain gap between natural images and medical imaging

modalities, like computed tomography (CT) and magnetic

resonance imaging (MRI); (2) lack of cross-plane contextual

information when applied to volumetric (3D) images (such

as CT or MRI). The latter is a limitation of 2D transformer

models for various medical imaging tasks such as segmen-

tation. Prior studies have demonstrated the effectiveness of

supervised pre-training in medical imaging for different ap-

plications [9, 39]. But creating expert-annotated 3D medical

datasets at scale is a non-trivial and time-consuming effort.

To tackle these limitations, we propose a novel self-

supervised learning framework for 3D medical image

analysis. First, we propose a new architecture dubbed

Swin UNEt TRansformers (Swin UNETR) with a Swin

Transformer encoder that directly utilizes 3D input patches.

Subsequently, the transformer encoder is pre-trained with

tailored, self-supervised tasks by leveraging various proxy

tasks such as image inpainting, 3D rotation prediction, and

contrastive learning (See Fig. 1 for an overview). Specifically,

the human body presents naturally consistent contextual infor-

mation in radiographic images such as CT due to its depicted

anatomical structure [43, 50]. Hence, proxy tasks are utilized

for learning the underlying patterns of the human anatomy.

For this purpose, we extracted numerous patch queries

from different body compositions such as head, neck, lung,

abdomen, and pelvis to learn robust feature representations

from various anatomical contexts, organs, tissues, and shapes.

Our framework utilizes contrastive learning [35], masked

volume inpainting [37], and 3D rotation prediction [17] as

pre-training proxy tasks. The contrastive learning is used to

differentiate various ROIs of different body compositions,

whereas the inpainting allows for learning the texture,

structure and correspondence of masked regions to their

surrounding context. The rotation task serves as a mechanism

to learn the structural content of images and generates various

sub-volumes that can be used for contrastive learning. We

utilize these proxy tasks to pre-train our proposed framework

on a collection of 5,050 CT images that are acquired from

various publicly available datasets.

Furthermore, to validate the effectiveness of pre-training,

we use 3D medical image segmentation as a downstream

application and reformulate it as a 1D sequence-to-sequence

prediction task. For this purpose, we leverage the Swin

UNETR encoder with hierarchical feature encoding and

shifted windows to extract feature representations at four

different resolutions. The extracted representations are

then connected to a CNN-based decoder. A segmentation

head is attached at the end of the decoder for computing the

final segmentation output. We fine-tune Swin UNETR with

pre-trained weights on two publicly available benchmarks

of Medical Segmentation Decathlon (MSD) and the Beyond

the Cranial Vault (BTCV). Our model is currently the

state-of-the-art on their respective public test leaderboards.

Our main contributions in this work are summarized as

follows:

• We introduce a novel self-supervised learning frame-

work with tailored proxy tasks for pre-training on

CT image datasets. To this end, we propose a novel

3D transformer-based architecture, dubbed as Swin

UNETR, consisting of an encoder that extracts feature

representations at multiple resolutions and is utilized

for pre-training.

• We demonstrate successful pre-training on a cohort

of 5,050 publicly available CT images from various

applications using the proposed encoder and proxy

tasks. This results in a powerful pre-trained model with

robust feature representation that could be utilized for

various medical image analysis downstream tasks.

• We validate the effectiveness of proposed framework

by fine-tuning the pre-trained Swin UNETR on two

public benchmarks of MSD and BTCV and achieve

state-of-the-art on the test leaderboards of both datasets.

2. Related Works
Medical Segmentation with Transformers Vision trans-

formers are first used in classification tasks and are adopted

from sequence-to-sequence modeling in natural language

processing. Self-attention mechanisms that aggregate

information from the entire input sequence are first achieving

comparable, then better performance against prior arts of

convolutional architectures such as ResNet [21] or U-Net [13].

Recently, transformer-based networks [24, 47, 49, 55] are pro-

posed for medical image segmentation. In these pioneering

works, the transformer blocks are used either as a bottleneck

feature encoder or as additional modules after convolutional

layers, resulting in limited exploitation of the spatial context

advantages of transformers. Comparing to prior works [6,47],

which are using transformers as secondary encoder, we

propose to utilize transformers to embed high-dimensional

volumetric medical images, which allow for a more direct

encoding of 3D patches and positional embeddings.
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Figure 2. Overview of the Swin UNETR architecture.

Most medical image analysis tasks such as segmentation

requires dense inference from multi-scale features. Skip

connection-based architectures such as UNet [13] and

pyramid networks [40] are widely adopted to leverage hier-

archical features. However, vision transformers with a single

patch size, while successful in natural image applications,

are intractable for high-resolution and high-dimensional

volumetric images. To avoid quadratic overflow of computing

self-attention at scales [29, 41], Swin Transformer [30, 31]

is proposed to construct hierarchical encoding by a shifted-

window mechanism. Recent works such as Swin UNet [4] and

DS-TransUNet [28] utilize the merits of Swin Transformers

for 2D segmentation and achieve promising performance.

Augmenting the above-mentioned methods, we learn

from 3D anatomy in broader medical image segmentation

scenarios by incorporating hierarchically volumetric context.

Pre-training in Medical Image Analysis In medical im-

age analysis, previous studies of pre-training on labeled

data demonstrate improved performance by transfer learn-

ing [9, 39]. However, generating annotation for medical im-

ages is expensive and time-consuming. Recent advances in

self-supervised learning offer the promise of utilizing unla-

beled data. Self-supervised representation learning [2,14,27]

constructs feature embedding spaces by designing pre-text

tasks, such as solving jigsaw puzzles [34]. Another commonly

used pre-text task is to memorize spatial context from medical

images, which is motivated by image restoration. This idea is

generalized to inpainting tasks [18, 37, 57] to learn visual rep-

resentations [3,7,46] by predicting the original image patches.

Similar efforts for reconstructing spatial context have been for-

mulated as solving Rubik’s cube problem [58], random rota-

tion prediction [17,42] and contrastive coding [11,35]. Differ-

ent from these efforts, our pre-training framework is simulta-

neously trained with a combination of pre-text tasks, tailored

for 3D medical imaging data, and leverages a transformer-

based encoder as a powerful feature extractor.

3. Swin UNETR
Swin UNETR comprises a Swin Transformer [30] encoder

that directly utilizes 3D patches and is connected to a CNN-

based decoder via skip connections at different resolutions.

Fig. 2 illustrates the overall architecture of Swin UNETR. We

describe the details of encoder and decoder in this section.

3.1. Swin Transformer Encoder

Assuming that the input to the encoder is a sub-volume

X P R
HˆWˆDˆS , a 3D token with a patch resolution of

pH 1,W 1,D1q has a dimension ofH 1ˆW 1ˆD1ˆS. The patch

partitioning layer creates a sequence of 3D tokens with size
H
H1 ˆ W

W 1 ˆ D
D1 that are projected into a C-dimensional space

via an embedding layer. Following [30], for efficient model-

ing of token interactions, we partition the input volumes into

non-overlapping windows and compute local self-attention

within each region. Specifically, at layer l, we use a window

of size MˆMˆM to evenly divide a 3D token into
Q
H1
M

U
ˆQ

W 1
M

U
ˆ

Q
D1
M

U
windows. In the subsequent layer l`1, we shift

the partitioned windows by
`X

M
2

\
,
X
M
2

\
,
X
M
2

\˘
voxels. The

shifted windowing mechanism is illustrated in Fig. 3. The out-

puts of encoder blocks in layers l and l`1 are computed as in

ẑl “W-MSApLNpzl´1qq`zl´1

zl “MLPpLNpẑlqq`ẑl

ẑl`1 “SW-MSApLNpzlqq`zl

zl`1 “MLPpLNpẑl`1qq`ẑl`1,

(1)

where W-MSA and SW-MSA denote regular and window

partitioning multi-head self-attention modules, respectively,
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ẑl and ẑl are the outputs of W-MSA and SW-MSA; LN and

MLP denote layer normalization and Multi-Layer Perceptron

(see Fig. 2). Following [30], we adopt a 3D cyclic-shifting

for efficient batch computation of shifted windowing.

Furthermore, we calculate the self-attention according to

AttentionpQ,K,V q“Softmax

ˆ
QKJ
?
d

˙
V. (2)

whereQ,K,V represent queries, keys and values respectively,

d is the size of the query and key.

Our encoder uses a patch size of 2ˆ2ˆ2 with a feature

dimension of 2 ˆ 2 ˆ 2 ˆ 1 “ 8 (i.e. single input channel

CT images) and a C “ 48-dimensional embedding space.

Furthermore, the overall architecture of the encoder consists

of 4 stages comprising of 2 transformer blocks at each stage

(i.e. L “ 8 total layers). In between every stage, a patch

merging layer is used to reduce the resolution by a factor of 2.

Stage 1 consists of a linear embedding layer and transformer

blocks that maintain the number of tokens as H
2 ˆ W

2 ˆ D
2 .

Furthermore, a patch merging layer groups patches with

resolution 2ˆ 2ˆ 2 and concatenates them, resulting in a

4C-dimensional feature embedding. A linear layer is then

used to downsample the resolution by reducing the dimension

to 2C. The same procedure continues in stage 2, stage 3 and

stage 4 with resolutions of H
4 ˆ W

4 ˆ D
4 , H

8 ˆ W
8 ˆ D

8 and
H
16 ˆ W

16 ˆ D
16 respectively. The hierarchical representations of

the encoder at different stages are used in downstream applica-

tions such as segmentation for multi-scale feature extraction.

3.2. Decoder

The encoder of Swin UNETR is connected to a CNN-based

decoder at each resolution via skip connections to create a

“U-shaped” network for downstream applications such as

segmentation. Specifically, we extract the output sequence

representations of each stage i (iPt0,1,2,3,4uq in the encoder

as well as the bottleneck (i“5) and reshape them into features

with size H
2i ˆ W

2i ˆ D
2i . The extracted representations at each

stage are then fed into a residual block consisting of two post-

normalized 3ˆ3ˆ3 convolutional layers with instance nor-

malization [45]. The processed features from each stage are

then upsampled by using a deconvolutional layer and concate-

nated with processed features of the preceding stage. The con-

catenated features are fed into a residual block with aforemen-

tioned descriptions. For segmentation, we concatenate the out-

put of the encoder (i.e. Swin Transformer) with processed fea-

tures of the input volume and feed them into a residual block

followed by a final 1ˆ1ˆ1 convolutional layer with a proper

activation function (i.e. softmax ) for computing the segmen-

tation probabilities (see Fig. 2 for details of the architecture).

4. Pre-training
We pre-train the Swin UNETR encoder with multiple

proxy tasks and formulate it with a multi-objective loss func-

3D Tokens: 8
Window size: 4 Number of windows: 8

Layer l 
Self-attention Unit

Layer l+1 

Figure 3. Shifted windowing mechanism for efficient self-attention

computation of 3D tokens with 8 ˆ 8 ˆ 8 tokens and 4 ˆ 4 ˆ 4
window size.

tion (Fig. 1). The objective of self-supervised representation

learning is to encode region of interests (ROI)-aware infor-

mation of the human body. Inspired by previous works on

context reconstruction [18, 57] and contrastive encoding [20],

we exploit three proxy tasks for medical image representation

learning. Three additional projection heads are attached to the

encoder during pre-training. Furthermore, the downstream

task, e.g. segmentation, fine-tunes the full Swin UNETR

model with the projection heads removed. In training,

sub-volumes are cropped random regions of the volumetric

data. Then, stochastic data augmentations with random

rotation and cutout are applied twice to each sub-volume

within a mini-batch, resulting in two views of each data.

4.1. Masked Volume Inpainting

The cutout augmentation masks out ROIs in the sub-

volume X P R
HˆWˆDˆC randomly with volume ratio of

s. We attach a transpose convolution layer to the encoder as

the reconstruction head and denote its output as X̂M. The

reconstruction objective is defined by an L1 loss between X
and X̂M

Linpaint “}X ´X̂M}1, (3)

The masked volume inpainting is motivated by prior work

which focused on 2D images [37]. We extend it to 3D domain

to showcase its effectiveness on representation learning of

volumetric medical images.

4.2. Image Rotation

The rotation prediction task predicts the angle categories

by which the input sub-volume is rotated. For simplicity,

we employ R classes of 0˝, 90˝, 180˝, 270˝ rotations along

the z-axis. An MLP classification head is used for predicting

the softmax probabilities ŷr of rotation categories. Given

the ground truth yr, a cross-entropy loss is used for rotation

prediction task:

Lrot “´
Rÿ

r“1

yrlogpŷrq, (4)
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The 3D rotation and cutout also serves simultaneously as an

augmentation transformation for contrastive learning.

4.3. Contrastive Coding

The self-supervised contrastive coding presents promising

performance on visual representation learning when

transferred to downstream tasks [10, 36]. Given a batch of

augmented sub-volumes, the contrastive coding allows for

a better representation learning by maximizing the mutual

information between positive pairs (augmented samples from

same sub-volume), while minimizing that between negative

pairs (views from different sub-volumes). The contrastive

coding is obtained by attaching a linear layer to the Swin

UNETR encoder, which maps each augmented sub-volume

to a latent representation v. We use cosine similarity as the

distance measurement of the encoded representations as

defined in [10]. Formally, the 3D contrastive coding loss

between a pair vi and vj is defined as:

Lcontrast “´log
exppsimpvi,vjq{tqř2N

k 1k‰iexppsimpvi,vkq{tq , (5)

where t is the measurement of normalized temperature scale.

1 is the indicator function evaluating to 1 iff k ‰ i. sim
denotes the dot product between normalized embeddings.

The contrastive learning loss function strengthens the

intra-class compactness as well as the inter-class separability.

4.4. Loss Function

Formally, we minimize the total loss function by training

Swin UNETR’s encoder with multiple pre-training objec-

tives of masked volume inpainting, 3D image rotation &

contrastive coding as follows:

Ltot “λ1Linpaint`λ2Lcontrast`λ3Lrot. (6)

A grid-search hyper-parameter optimization was performed

which estimated the optimal values of λ1 “λ2 “λ3 “1.

5. Experiments
5.1. Datasets

Pre-training Datasets : A total of 5 public CT datasets,

consisting of 5,050 subjects, are used to construct our

pre-training dataset. The corresponding number of 3D

volumes for chest, abdomen and head/neck are 2,018, 1,520

and 1,223 respectively. The collection and source details

are presented in the supplementary materials. Existing

annotations or labels are not utilized from these datasets

during the pre-training stage.

BTCV : The Beyond the Cranial Vault (BTCV) abdomen

challenge dataset [26] contains 30 subjects with abdominal

3https://www.synapse.org/#!Synapse:syn3193805/
wiki/217785/

CT scans where 13 organs are annotated by interpreters under

supervision of radiologists at Vanderbilt University Medical

Center. Each CT scan is acquired with contrast enhancement

phase at portal venous consists of 80 to 225 slices with

512ˆ512 pixels and slice thickness ranging from 1 to 6mm.

The multi-organ segmentation problem is formulated as a 13

classes segmentation task (see Table 1 for details). The pre-

processing pipeline is detailed in supplementary materials.

MSD: Medical Segmentation Decathlon (MSD)

dataset [1] comprises of 10 segmentation tasks from different

organs and image modalities. These tasks are designed to

feature difficulties across medical images, such as small train-

ing sets, unbalanced classes, multi-modality data and small

objects. Therefore, the MSD challenge can serve as a compre-

hensive benchmark to evaluate the generalizability of medical

image segmentation methods. The pre-processing pipeline

for this dataset is outlined in supplementary materials.

5.2. Implementation Details

For pre-training tasks, (1) masked volume inpainting: the

ROI dropping rate is set to 30% (as also used in [2]); the

dropped regions are randomly generated and they sum up to

reach overall number of voxels; (2) 3D contrastive coding: a

feature size of 512 is used as the embedding size; (3) rotation

prediction: the rotation degree is configured to 0˝, 90˝,

180˝, and 270˝. We train the model using the AdamW [32]

optimizer with a warm-up cosine scheduler of 500 iterations.

The pre-training experiments use a batch-size of 4 per GPU

(with 96ˆ96ˆ96 patch), and initial learning rate of 4e´4,

momentum of 0.9 and decay of 1e´5 for 450K iterations. Our

model is implemented in PyTorch and MONAI4. A five-fold

cross validation strategy is used to train models for all BTCV

and MSD experiments. We select the best model in each fold

and ensemble their outputs for final segmentation predictions.

Detailed training hyperparameters for fine-tuning BTCV and

MSD tasks can be found in the supplementary materials. All

models are trained on a NVIDIA DGX-1 server.

5.3. Evaluation Metrics

The Dice similarity coefficient (Dice) and Hausdorff

Distance 95% (HD95) are used as measurements for

experiment results. HD95 calculates 95th percentile of

surface distances between ground truth and prediction point

sets. Metric formulations are as follows:

Dice“ 2
řI

i“1YiŶiřI
i“1Yi`řI

i“1Ŷi

, (7)

HD“maxtmax
y1PY 1 min

ȳ1PȲ 1
}y1´ȳ1},max

ȳ1PȲ 1
min
y1PY 1}ȳ1´y1}u. (8)

where Y and Ȳ denote the ground truth and prediction of

voxel values. Y 1 and Ŷ 1 denote ground truth and prediction

4https://monai.io/
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Methods Spl RKid LKid Gall Eso Liv Sto Aor IVC Veins Pan AG Avg.

SETR NUP [53] 0.931 0.890 0.897 0.652 0.760 0.952 0.809 0.867 0.745 0.717 0.719 0.620 0.796
SETR PUP [53] 0.929 0.893 0.892 0.649 0.764 0.954 0.822 0.869 0.742 0.715 0.714 0.618 0.797
SETR MLA [54] 0.930 0.889 0.894 0.650 0.762 0.953 0.819 0.872 0.739 0.720 0.716 0.614 0.796
ASPP [8] 0.935 0.892 0.914 0.689 0.760 0.953 0.812 0.918 0.807 0.695 0.720 0.629 0.811
TransUNet [6] 0.952 0.927 0.929 0.662 0.757 0.969 0.889 0.920 0.833 0.791 0.775 0.637 0.838
CoTr* [47] 0.943 0.924 0.929 0.687 0.762 0.962 0.894 0.914 0.838 0.796 0.783 0.647 0.841
CoTr [47] 0.958 0.921 0.936 0.700 0.764 0.963 0.854 0.920 0.838 0.787 0.775 0.694 0.844
RandomPatch [44] 0.963 0.912 0.921 0.749 0.760 0.962 0.870 0.889 0.846 0.786 0.762 0.712 0.844
PaNN [56] 0.966 0.927 0.952 0.732 0.791 0.973 0.891 0.914 0.850 0.805 0.802 0.652 0.854
nnUNet [23] 0.967 0.924 0.957 0.814 0.832 0.975 0.925 0.928 0.870 0.832 0.849 0.784 0.888
UNETR [19] 0.972 0.942 0.954 0.825 0.864 0.983 0.945 0.948 0.890 0.858 0.852 0.812 0.891
Swin UNETR 0.976 0.958 0.956 0.893 0.875 0.985 0.953 0.948 0.904 0.899 0.897 0.846 0.918

Table 1. Leaderboard3Dice results of BTCV challenge on multi-organ segmentation. The proposed method achieves state-of-the-art

performance in both free and standard competitions. Note: Spl: spleen, RKid: right kidney, LKid: left kidney, Gall: gallbladder, Eso: esophagus,

Liv: liver, Sto: stomach, Aor: aorta, IVC: inferior vena cava, Veins: portal and splenic veins, Pan: pancreas, AG: left and right adrenal glands.

Figure 4. Qualitative visualizations of the proposed Swin UNETR and baseline methods. Three representative subjects are demonstrated.

Regions of evident improvements are enlarged to show better details of pancreas (blue), portal vein (light green), and adrenal gland (red).

Method Rank
Average Accuracy

Dice Ò NSD Ò
Swin UNETR 1 78.68 89.28
DiNTS [22] 2 77.93 88.68

nnUNet [23] 3 77.89 88.09

Models Gen. [57] 4 76.97 87.19

Trans VW [18] 5 76.96 87.64

Table 2. Overall performance of top-ranking methods on all 10

segmentation tasks in the MSD public test leaderboard. NSD

denotes Normalized Surface Distance.

surface point sets. Surface Dice [33] is also used, which

is referred as Normalized Surface Distance (NSD) in MSD

challenge evaluation. The metric measures the overlap of

ground truth and prediction surfaces (with a fixed tolerance)

instead of the overlap of two volumes. This provides a

measure of agreement between the surfaces of two structures.

5https : / / decathlon - 10 . grand - challenge . org /
evaluation/challenge/leaderboard/

5.4. Results

5.4.1 BTCV Multi-organ Segmentation Challenge

We extensively compare the benchmarks of our model with

baselines. The published leaderboard evaluation is shown in

Table 1. Compared with other top submissions, the proposed

Swin UNETR achieves the best performance. We obtain the

state-of-the-art Dice of 0.908, outperforming the second, third

and fourth top-ranked baselines by 1.6%, 2.0% and 2.4% on

average of 13 organs, respectively. Distinct improvements

can be specifically observed for organs that are smaller in size,

such as splenic and portal veins of 3.6% against prior state-

of-the-art method, pancreas of 1.6%, and adrenal glands of

3.8%. Moderate improvements are observed in other organs.

The representative samples in Fig. 4 demonstrate the success

of identifying organ details by Swin UNETR. Our method de-

tects the pancreas tail (row 1), and branches in the portal vein

(row 2) in Fig. 4, where other methods under segment parts

of each tissue. In addition, our method demonstrates distinct

improvement in segmentation of adrenal glands (row 3).
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Organ Task01 Brain Tumour Task03 Liver Task06 Lung

Metric Dice1 Dice2 Dice3 Avg. NSD1 NSD2 NSD3 Avg. Dice1 Dice2 Avg. NSD1 NSD2 Avg. Dice1 NSD1

Kim et al [25] 67.40 45.75 68.26 60.47 86.65 72.03 90.28 82.99 94.25 72.96 83.61 96.76 88.58 92.67 63.10 62.51

Trans VW [18] 68.03 46.98 68.40 61.14 87.52 72.42 90.91 83.62 95.18 76.90 86.04 97.86 92.03 94.95 74.54 76.22

C2FNAS [51] 67.62 48.60 69.72 61.98 87.61 72.87 91.16 83.88 94.98 72.89 83.94 98.38 89.15 93.77 70.44 72.22

Models Gen. [57] 68.03 46.98 68.40 61.14 87.52 72.42 90.91 83.62 95.72 77.50 86.61 98.48 91.92 95.20 74.54 76.22

nnUNet [23] 68.04 46.81 68.46 61.10 87.51 72.47 90.78 83.59 95.75 75.97 85.86 98.55 90.65 94.60 73.97 76.02

DiNTS [22] 69.28 48.65 69.75 62.56 89.33 73.16 91.69 84.73 95.35 74.62 84.99 98.69 91.02 94.86 74.75 77.02

Swin UNETR 70.02 52.52 70.51 64.35 89.07 80.30 93.46 87.61 95.35 75.68 85.52 98.34 91.59 94.97 76.60 77.40

Organ Task07 Pancreas Task08 Hepatic Vessel Task09 Spleen Task10 Colon

Metric Dice1 Dice2 Avg. NSD1 NSD2 Avg. Dice1 Dice2 Avg. NSD1 NSD2 Avg. Dice1 NSD1 Dice1 NSD1

Kim et al [25] 80.61 51.75 66.18 95.83 73.09 84.46 62.34 68.63 65.49 83.22 78.43 80.83 91.92 94.83 49.32 62.21

Trans VW [18] 81.42 51.08 66.25 96.07 70.13 83.10 65.80 71.44 68.62 84.01 80.15 82.08 97.35 99.87 51.47 60.53

C2FNAS [51] 80.76 54.41 67.59 96.16 75.58 85.87 64.30 71.00 67.65 83.78 80.66 82.22 96.28 97.66 58.90 72.56
Models Gen. [57] 81.36 50.36 65.86 96.16 70.02 83.09 65.80 71.44 68.62 84.01 80.15 82.08 97.35 99.87 51.47 60.53

nnUNet [23] 81.64 52.78 67.21 96.14 71.47 83.81 66.46 71.78 69.12 84.43 80.72 82.58 97.43 99.89 58.33 68.43

DiNTS [22] 81.02 55.35 68.19 96.26 75.90 86.08 64.50 71.76 68.13 83.98 81.03 82.51 96.98 99.83 59.21 70.34

Swin UNETR 81.85 58.21 70.71 96.57 79.10 87.84 65.69 72.20 68.95 84.83 81.62 83.23 96.99 99.84 59.45 70.89

Table 3. MSD test dataset performance comparison of Dice and NSD. Benchmarks obtained from MSD test leaderboard5.

5.4.2 Segmentation Results on MSD

The overall MSD results per task and ranking from the

challenge leaderboard are shown in Table. 2. The proposed

Swin UNETR achieves state-of-the-art performance in

Task01 BrainTumour, Task06 Lung, Task07 Pancreas, and

Task10 Colon. The results are comparable for Task02 Heart,

Task03 Liver, Task04 Hippocampus, Task05 Prostate, Task08

HepaticVessel and Task09 Spleen. Overall, Swin UNETR

presents the best average Dice of 78.68% across all ten

tasks and achieves the top ranking in the MSD leaderboard.

The detail number of multiple tasks are shown in Table 3.

Qualitative visualization can be observed in Fig. 5. Swin

UNETR with self-supervised pre-training demonstrates

visually better segmentation results in the CT tasks. The

pre-trained weights are only used for fine-tuning CT tasks

including Liver, Lung, Pancreas, HepaticVessel, Spleen, and

Colon. For MRI tasks: Brain Tumour, Heart, Hippocampus,

Prostate, experiments are trained from scratch because of

the domain gap between CT and MRI images. Due to space

limitations, we present the MSD test benchmarks for the

remaining three MRI tasks in the supplementary materials.

5.5. Ablation Study

5.5.1 Efficacy of Pre-training

A comparison of all MSD CT tasks using pre-trained model

against training from scratch can be observed in Fig. 6.

Distinct improvement can be observed for Task03 Liver,

Dice of 77.77% comparing to 75.27%. Task08 Hepatic

Vessel achieves 68.52% against 64.63%. Task10 Colon

shows the largest improvement, from 34.83% to 43.38%.

Task07 Pancreas and Task09 Spleen both achieve significant

improvement from 67.12% to 67.82%, and 96.05% to 97.32%

respectively.

Figure 5. Qualitative results of representative MSD CT tasks.

Average Dice values are illustrated on top of each image. Our model

demonstrates more accurate performance in comparison to DiNTS

for both organ and tumor segmentation across different tasks.

Loss Function Average Accuracy

Dice Ò HD Ó
Scratch 83.43 42.36

Lrot 83.56 36.19
Lcontrast 83.67 38.81
Linpaint 83.85 28.94
Linpaint`Lrot 84.01 26.06
Linpaint`Lcontrast 84.45 24.37
Linpaint`Lcontrast`Lrot 84.72 20.03

Table 4. Ablation study of the effectiveness of each objective

function in the proposed pre-training loss. HD denotes Hausdorff

Distance. Experiments on fine-tuning the BTCV dataset.

5.5.2 Reduce Manual Labeling Efforts

Fig. 7 demonstrates the comparison results of fine-tuning

using a subset of BTCV dataset. We show using 10% of
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Figure 6. The indication of Dice gap between using pre-training

(Green) and scratch model (Blue) on MSD CT tasks validation set.

Figure 7. Data-efficient performance on BTCV test dataset.

Significance under Wilcoxon Signed Rank test, ˚ :pă0.001.

labeled data, experiments with pre-training weights achieve

approximately 10% improvement comparing to training from

scratch. On employing all labeled data, the self-supervised

pre-training shows 1.3% higher average Dice. The Dice

number 83.13 of learning from scratch with entire dataset

can be achieved by using pre-trained Swin UNETR with

60% data. Fig. 7 indicates that our approach can reduce the

annotation effort by at least 40% for BTCV task.

5.5.3 Size of Pre-training Dataset

We perform organ-wise study on BTCV dataset by using

pre-trained weights of smaller unlabeled data. In Fig. 8, the

fine-tuning results are obtained from pre-training 100, 3,000,

and 5,000 scans. We observe that Swin UNETR is robust

with respect to the total number of CT scans trained. Fig. 8

demonstrates the proposed model can benefit from larger

pre-training datasets with increasing size of unlabeled data.

5.5.4 Efficacy of Self-Supervised Objectives

We perform empirical study on pre-training with different

combinations of self-supervised objectives. As shown in Ta-

ble 4, on BTCV test set, using pre-trained weights by inpaint-

ing achieves the highest improvement at single task modeling.

On pairing tasks, inpainting and contrastive learning show

Dice of 84.45% and Hausdorff Distance (HD) of 24.37. Over-

all, employing all proxy tasks achieves best Dice of 84.72%.

Figure 8. Pre-trained weights using 100, 3000 and 5000 scans are

compared for fine-tuning on the BTCV dataset for each organ.

6. Discussion and Limitations
Our state-of-the-art results on the test leaderboards

of MSD and BTCV datasets validate the effectiveness

of the proposed self-supervised learning framework in

taking the advantage of large number of available medical

images without the need of annotation effort. Subsequently,

fine-tuning the pretrained Swin UNETR model achieves

higher accuracy, improves the convergence speed, and

reduces the annotation effort in comparison to training with

randomly initialized weights from scratch. Our framework is

scalable and can be easily extended with more proxy tasks and

augmentation transformations. Meanwhile, the pre-trained

encoder can benefit the transfer learning of various medical

imaging analysis tasks, such as classification and detection.

In MSD pancreas segmentation task, Swin UNETR with

pre-trained weights outperforms AutoML algorithms such as

DiNTS [22] and C2FNAS [51] that are specifically designed

for searching the optimal network architectures on the same

segmentation task. Currently, Swin UNETR has only been

pre-trained using CT images, and our experiments have not

demonstrated enough transferability when applied directly to

other medical imaging modalities such as MRI. This is mainly

due to obvious domain gaps and different number of input

channels that are specific to each modality. As a result, this is

a potential direction that should be studied in future efforts.

7. Conclusions
In this work, we present a novel framework for self-

supervised pre-training of 3D medical images. Inspired by

merging feature maps at scales, we built the Swin UNETR

by exploiting transformer-encoded spatial representations

into convolution-based decoders. By proposing the first

transformer-based 3D medical image pre-training, we lever-

age the power of Swin Transformer encoder for fine-tuning

segmentation tasks. Swin UNETR with self-supervised

pre-training achieves the state-of-the-art performance on

the BTCV multi-organ segmentation challenge and MSD

challenge. Particularly, we presented the large-scale CT

pre-training with 5,050 volumes, by combining multiple

publicly available datasets and diversities of anatomical ROIs.
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